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Abstract
In recent years, the study of dynamics and control of swarming robots and aircraft has been an active research topic.
Many multi-agent collaborative control algorithms have been developed and have been validated in simulations, however
the technological and logistic complexity involved in validation of these algorithms in actual flight tests has been a major
hurdle impeding more frequent and wider applications. This work presents robust navigation algorithms for multi-agent
fixed-wing aircraft based on an adaptive moving mesh partial differential equations controlled by the free energy heat flow
equation. Guidance, navigation, and control algorithms for control of multi-agent unmanned aerial system (UASs) were
validated through actual flight tests, and the robustness of these algorithms were also investigated using different aircraft
platforms. The verification and validation flight tests were conducted using two different fixed-wing platforms: A DG808
sail-plane with a 4m wingspan T-tail configuration and a Skyhunter aircraft utilizing a 2.4m wingspan and a twin-boom
configuration. The developed swarm navigation algorithm uses a virtual leader guidance scheme and has been implemented
and optimized using optimal control theory. Multi-scale moving point guidance has been developed and complimented by a
linear quadratic regulator controller. Several flight tests have been successfully conducted and a system of systems including
software and hardware was successfully validated and verified.

Keywords Validation and verification · Multi-agent systems · Formation flight

1 Introduction

Swarms of unmanned aerial systems (UASs) are the inevitable
future of the aerospace industry. However, without brakes
or the ability for rapid deceleration, the control of large
fixed-wing UASs in close proximity is one of the paramount
challenges of Modern Control. Increasing the swarm size
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and decreasing the proximity of the agents will only amplify
the complexity of collision avoidance and formation control.
In addition, stability and safety concerns will grow as the
number of UASs increases. Over the past two decades, large
and very expensive autonomous UASs with long ranges
and capability to carry large payloads have been used for
Earth science and military missions. The cost and complex-
ity of large fixed-wing UASs is many orders of magnitude
higher than smaller and more mobile UASs. However, the
geometry, power, and payload limitations of smaller UASs
reduce their functionality and effectiveness. This problem
can be addressed by distributing the tasks and payload through-
out a cooperative swarm of airborne UASs. For example,
the Global Hawk UAS can complete complex missions,
it can carry large payloads, and is capable of conducting
flights lasting up to 33 hours but each unit costs about
131.4 million dollars Ref [37]. A way to mitigate such high
costs is to increase effectiveness of small but less expen-
sive UASs by utilizing collaborative multi-agent systems
distributing large payloads among agents. Recent advances
in computer and computation technologies have set the
stage for computation-intensive real-time UAS guidance,
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navigation, and control (GNC) algorithms. Parallel comput-
ing platforms and graphical processing units (GPUs) speed
up GNC computations and have the ability to push the
scientific and technical boundaries of autonomous con-
trol. Advancement in microprocessor miniaturization and
computation technologies has prompted a broad range of
research in autonomous and collaborative robots. However,
the majority of existing work are focused on small,
slow, aircraft (e.g. rotary-wing UASs, quadcopters, etc.)
with a relatively small payload capacity. This work repre-
sents a complete set of guidance, navigation and control
(GNC) algorithms for large, fast, fixed-wing UASs capa-
ble of carrying scientific and/or military payloads (e.g.
cameras, synthetic aperture radar, etc.). The effectiveness
and robustness of GNC algorithms were successfully flight
tested using different UAS platforms with completely dif-
ferent configurations (e.g. T-tail versus H-tail, different
wing spans, different fuselage design).

In recent years, the study of dynamics and control of
swarming robots and aircraft has been an active research
topic. Many multi-agent collaborative control algorithms
have been developed. The Leader-Follower scheme, the Vir-
tual Leader-Follower, Graph theoretic methods, the Brute
Force search, the Boids model, Artificial Potential Field,
and Partitioning approaches are several optimization tech-
niques used for UAS swarm and formation flights. The
Leader-Follower method is probably the most popular
multi-agent control method [4, 5, 16]. In this method, one
of the agents is designated as the leader and the other
agents are designated as followers. Simplicity is the most
important advantage of this approach, however the high
dependency on the leader is the main drawback. To rem-
edy this drawback, the Virtual Leader-Follower approach
was proposed where there is no physical leader among
agents [4, 5, 16]. The Artificial Potential Field has been
most widely used because it provides inter-collision avoid-
ance among agents. Typically, attractive and repulsive
potential fields are combined together for multi-agent sys-
tems for holding agents close via attractive forces, while
avoiding collisions with each other by utilizing repulsive
forces [7, 29, 42]. Repulsive potential functions (VARP)
method is a reactive approach where actions are taken
after position errors occur in the geometry of the desired
formation shape. Another popular method for maintain-
ing geometry of multi-agent systems is Graph Theory.
A graph is a mathematical concept to visualize a group of
agents as pairs using vertices and edges. Directed and undi-
rected graph methods with different convergence rates have
been used in several research approaches [18, 22, 26, 28,
31]. Both the Graph method and Virtual Structure approach
assume the formation as a rigid body and no morphing
in formation can be considered, which makes agents vul-
nerable to inter-collision and external disturbances. Opti-

mization methods were also adopted for formation control
where a cost function is defined based on the distance
between agents, obstacles, and trajectories for avoiding
inter-collision, obstacles, and following desired trajectories
[27, 32]. More advanced topics, such as the robustness of
swarming agents towards time-delays in communications or
non-concurrent consensus problems of multi-agent systems
with discontinuous data transmission, have been studied.
However, in the majority of existing works, the dynamic
constraints of fixed-wing UASs are either ignored or relaxed
where GNC algorithms assume agents as 2D point masses
with no aerodynamic effects [3, 17, 19, 21, 33]. Fixed-
wing UASs have several state constraints (including stall
speed, stall angle of attack, and structural loading) that
are not considered in these optimization techniques. Sim-
ple linear controllers that lack robustness and adaptation
(e.g. Proportional-Integral-Derivative) are used for inner-
loop control, and guidance and navigation logics have been
designed for slow moving robots or quadcopters [3, 17, 19,
21, 33]. The nonlinear and unsteady nature of swarming
problems creates a demand for advanced controllers. Non-
linear model predictive control (NMPC) and adaptive fuzzy
control have been used for control of autonomous vehi-
cles in the presence of control and state constraints [8, 24,
36]. Ref. [24, 36] prove that all closed-loop control signals
are semi-globally uniformly ultimately bounded (SGUUB)
while full state constraints are satisfied. This is particularly
very important for collaborative flight tests where UASs fly
in close proximity of each other, where any violation of state
or control constraints can easily cause catastrophic accidents.
Ref. [8] shows control constraints are satisfied, however
states are not constrained as it is shown in Ref. [24, 36].

The point mass assumption is acceptable for small and
slow robots; however, such assumptions cannot be made on
large UASs where spatiotemporal requirements necessitate
close formations. In navigation algorithms, the state of
consensus between agents is used for aggregation of robots
[26, 27]. However, Earth science missions demand path
planning and UASs flight formation. Spatial tracking of
multi-agent aircraft transforms guidance and navigation
problems into a high-dimensional space problem and the
curse of dimensionality makes convergence of optimization
in real-time challenging. The stability of guidance logic is
essential for the long term coherency of swarming UASs.
Challenging subjects such as morphing, splitting, and
algorithm scalability are either neglected or investigated in
structured environments with no external disturbances such
as wind, gust, and windsheer. Most scalability and shape
optimization algorithms for swarms of multi-agent systems
are only designed to support computer-based animations
with no references to fixed-wing UASs with high speeds
and high inertia [1, 2]. Probably the most relevant research
was conducted by the Vijay Kumar Lab at the University
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Fig. 1 DG-808 and Skyhunter
UAS

of Pennsylvania, where demonstrations included search,
tracking, and classification of targets with small multi-agent
rotary-wing UASs that can ”Stop, Think, and Proceed” [19].
Literature review shows that most UAS swarm simulations
are started from optimal initial conditions (e.g. trim with
no rotational acceleration nor sideslip). However in actual
flight tests, achieving trim conditions is almost impossible
[1, 3–7, 9, 10, 16–22, 26–29, 31–33, 38, 41, 42]. Practically,
the initial conditions of the aircraft at the time of transition
to automatic control are unpredictable and the asynchronous
engagement of aircraft autopilot systems only exacerbate
the complexity of initializing swarms of UASs in actual
flight tests. Such randomness in the initial conditions and
the inability of large UASs to brake or rapidly decelerate
can quickly result in collision amongst the agents, or
instability in swarm control algorithms. This work presents
implementation and integration of adaptive moving mesh
partial differential equations and validation and verification
of guidance, navigation and control algorithms using
different UAS platforms in actual flight test experiments.

2 UAS 6-DoF Dynamic Model

This section describes the dynamic models used in this
research work. Dynamic modeling is an essential part of
GNC algorithms since the behavior of the systems will be
observed for different parameter designs based on various

aircraft platforms. Additionally, six degress of freedom (6
DoF) nonlinear equations of motions are construed in this
work not to assume the platform as a point mass. In order to
develop GNC algorithms for real world application, the 6 DoF
model is more appropriate than that of a point mass approach.
Lastly, the dynamic model is essential for accurately
propagating aircraft states in the simulation environment in
Simulink and the hardware-in-the-loop (HiTL) testbed.

Two distinct platforms have been used in this work: DG808
and Skyhunter UAS. TheDG808 is the glider type UAS which
has the long wingspan (13.08 ft). The Skyhunter has the
shorter wingspan of about 7 ft, though both platforms have a
similar weight of around 9 lbs. The DG808 has a faster trim

Table 1 DG808 and Skyhunter UAS characteristics [H]

Parameters Unit DG808 Skyhunter

S f t2 6.96 4.82
c̄ f t 0.6 0.731
b f t 13.08 6.875
AR ∼ 25.89 9.81
Vtrim f t/s 59.07 50.6
Vtrim knots 35 30
Mass lbm 9.53 8.27
IxxBody

slug − f t2 1.1 0.44
IyyBody

slug − f t2 0.3 0.54
IzzBody

slug − f t2 1.43 0.35
IxzBody

slug − f t2 0 0
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speed (35 knots) than the Skyhunter has (30 knots). Different
avionics payloads were used for each platform and are pre-
sented in detail at Section 6.1. Figure 1 presents both plat-
forms. The geometric characteristics are presented in Table 1.

To build the 6 DoF nonlinear equations of motion (EoM),
Newton’s second law (translational motion) and Euler’s law
(rotational motion) have been used Ref. [35]. The inertial
and body frames have been defined to consider the forces
and moments acting on the rigid body and to incorporate
sensor data appropriately. The inertial frame (Î ) is fixed at
the Earth and has three orthonormal axes: north, east, down.
The body frame (B̂) is fixed at the center of gravity (c.g.)
of the aircraft and defined along three orthonormal axes:
xB , yB , and zB . Equations 1 to 16 represents 16 differential
equations as the mathematical representation of the aircraft
motion including 6 DoF nonlinear EoM (Eqs. 1 to 6). The
kinematic equations are needed to generate aircraft attitude
angles (Eqs. 7 to 9) since there are no physical sensors in the
simulation environment. Equation 5 through Eq. 13 presents
the servo dynamics. Eqution 14 through Eq. 16 describes
the position coordinated in the inertial frame.

U̇ = RV − QW − g sin θ + (XT + XA)/m (1)

V̇ = −RU + PW + g sinφ cos θ + YA/m (2)

Ẇ = QU − PV + g cosφ cos θ + ZA/m (3)

Ṗ = JXZ[JX − JY + JZ]PQ

−[JZ(JZ − JY ) + J 2
XZ]QR + JZLA

+JXZNA/(JXJZ − J 2
XZ) (4)

Q̇ = ([JZ − JX]PR − JXZ[P 2 − R2] + MA + MT )

/(JXJZ − J 2
XZ) (5)

Ṙ = ([(JX − JY )JX + J 2
XZ]PQ

−JXZ[JX − JY + JZ]QR

+JXZLA + JXNA)/(JXJZ − J 2
XZ) (6)

φ̇ = P + tan θ(Q sinφ + R cosφ) (7)

θ̇ = Q cosφ − R sinφ (8)

ψ̇ = (Q sinφ + R cosφ)/ cos θ (9)

δ̇T = δT /τT + δcmd
T /τT (10)

δ̇E = δE/τE + δcmd
E /τE (11)

δ̇A = δA/τA + δcmd
A /τA (12)

δ̇R = δR/τR + δcmd
R /τR (13)

ṗN = U cos θ cosφ + V (− cosφ sinψ

+ sinφ sin θ cosψ)

+W(sinφ sinψ + cosφ sin θ cosψ) − wN (14)

ṗE = U cos θ sinφ + V (cosφ cosψ

+ sinφ sin θ sinψ)

+W(− sinφ cosψ + cosφ sin θ sinψ) − wE (15)

ṗH = U sin θ − V sinφ cos θ − W cosφ cos θ − wH (16)

{U,V,W} are the translational velocity components aligned
with B̂. {P,Q,R} are the rotational velocities (roll, pitch, and
yaw rate, respectively) in B̂. {φ, θ, ψ} are the Euler angles
(roll, pitch, yaw angle, respectively) in Î . {pN, pE, pH }
are the position coordinates (north, east, and height) in Î .
{LA, MA, NA} represents the aerodynamic moments in B̂.
Since the motors are installed above the center of gravity in
zB direction for both platforms, only thrust pitching moment
exists (MT ). {XA, YA, ZA} describes the aerodynamic force
in B̂. {XT } is the thrust force from the motor. The
aerodynamic forces and moments are estimated with the
component build-up method, see Ref. [30]. {JX, JY , JZ}
indicates the moment of inertia in B̂ and JXZ is the moment
of inertia in the xB and zB direction. m is the aircraft mass.
Due to the availability of the sensors onboard, the airspeed
of the aircraft (VT ) is measured by the pitot tube. Airflow
angles {α, β} are estimated by an Extended Kalaman filter.
Then, the body velocity can be found by the following
equations: U = VT cosα cosβ, V = VT cosβ, and W =
VT sinα sinβ, see Ref. [35]. {τT , τE, τA, τR} are the control
surface deflections of the throttle, elevator, aileron, and
rudder, respectively. {WN, WE, WH } are the wind velocity
in north, east, and height directions.

In order to extract the state space model for the controller
design, the 6 DoF nonlinear EoM should be linearized and per-
turbed. The perturbation value is defined as the difference
between the total state (x) and the trim state (xtrim) :	x(t) =
x(t) − xtrim. The states are defined as follows: xT =
[VT , α, β, φ, θ, ψ, P, Q, R, δt , δe, δa, δr , pN, pE, pH ].
Trim conditions of level-wing recti-linear flight for each
platform are defined in Table 2.

The LTI dynamic models were determined as follows for
DG808 and Skyhunter.

Longitudinal, DG808:

⎡
⎢⎣

u̇

α̇

θ̇

q̇

⎤
⎥⎦ =

⎡
⎢⎣

−0.2030 −7.7004 −32.1874 0
−0.0177 −9.6416 −0.0151 0.9632

0 0 0 1
0.2003 −121.3565 0.0093 −5.4812

⎤
⎥⎦

⎡
⎢⎣

u

α

θ

q

⎤
⎥⎦

+
⎡
⎢⎣

3.0391 −0.8475
0 −0.3067
0 0

−1.7311 −40.8156

⎤
⎥⎦

[
δt

δe

]
(17)

Table 2 Trim conditions for DG808 and Skyhunter

States/control DG808 Skyhunter

αtrim 1.5 deg 0.7 deg

VTtrim
35 knots 30 knots

δEtrim
−1.7 deg 8.27 deg
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Lateral, DG808:

⎡
⎢⎣

β̇

φ̇

ṗ
ṙ

⎤
⎥⎦ =

⎡
⎢⎣

−0.4412 0.5449 −0.0074 −0.9847
0 0 1 0

−10.7386 0 −20.9688 2.9327
10.0800 0 −1.2881 −0.6602

⎤
⎥⎦

⎡
⎢⎣

β
φ

p

r

⎤
⎥⎦

+
⎡
⎢⎣

0 0.1616
0 0

140.5722 0.6242
−6.7747 −6.4997

⎤
⎥⎦

[
δa

δr

]
(18)

Longitudinal, Skyhunter:

⎡
⎢⎣

u̇

α̇

θ̇

q̇

⎤
⎥⎦ =

⎡
⎢⎣

−0.1240 19.0662 −32.1974 0
−0.0250 −6.2646 −0.0080 0.9405

0 0 0 1
0.0224 −14.6920 0.0051 −2.7085

⎤
⎥⎦

⎡
⎢⎣

u

α

θ

q

⎤
⎥⎦

+
⎡
⎢⎣

5.9203 −0.7755
−0.0544 −0.3158

0 0
0.2737 −19.4782

⎤
⎥⎦

[
δt

δe

]
(19)

Lateral, Skyhunter:
⎡
⎢⎢⎣

β̇

φ̇

ṗ

ṙ

⎤
⎥⎥⎦ =

⎡
⎢⎣

−0.6048 0.6359 −0.0153 −0.9797
0 0 1 0

−35.6645 0 −8.2161 2.4729
34.3765 0 −1.3188 −2.1512

⎤
⎥⎦

⎡
⎢⎣

β

φ

p

r

⎤
⎥⎦

+
⎡
⎢⎣

0 0.2484
0 0

74.0763 3.8384
0.2236 −26.3674

⎤
⎥⎦

[
δa

δr

]
(20)

Table 3 presents the modal analysis for both platforms.
Skyhunter has the slower short period mode compared to
the DG808. Additionally, the damping ratio is very low in
the phugoid mode for both platforms. Due to the longer
wingspan of the DG808, the roll mode is slower than the
Skyhunter’s roll mode. The spiral of both aircrafts are
unstable. The low damping ratio in the phugoid mode and

Table 3 DG808 and Skyhunter modal analysis

Mode Unit DG808 Skyhunter

Longitudinal

ωSP rad/s 13.01 5.63

ζSP − 0.582 0.81

τSP s 0.132 0.22

ωphugoid rad/s 0.879 0.6691

ζphugoid − 0.094 0.013

τphugoid s 12.1 106

Lateral

ωDR rad/s 3.38 6.3024

ζDR − 0.19 0.174

τDR s 1.56 0.89

τSpiral s −19.4 −68.1

τRoll s 0.048 0.01114

the unstable spiral mode cause challenges in the control
tasks.

3 The Navigation for the Virtual Leader
andMulti-Scale Moving Point Guidance

This section discusses the foundation of the navigation and
guidance algorithms for the multi-agent systems. In order
to perform multi-agent flight, the guidance algorithm has
been decentralized for each agent and the virtual leader
scheme has been implemented to enhance the robustness
of the single-point failure. The single point failure is the
most common reason for errors in the leader-follower
schemes since the mission cannot be completed if the leader
becomes incapable of operating missions by any reason
(e.g. communication loss, stall etc.). Basically, followers
depend on the leader’s states (e.g. position, attitudes etc.) in
the leader-follower scheme. In this work, the virtual leader
has been used and provides the reference of position and
velocity for all agents. Therefore, to accomplish the mission,
the navigation for the virtual leader should be developed. In
this work, the mission is to follow the race track pattern in
the flight test field. The LQ guidance algorithm has been
modified to be used as the navigation algorithm for the
virtual leader. Ref. [25] presents the LQ guidance algorithm
and provides a desired lateral acceleration command and
converts it into a heading angle change command in order
to track the desired trajectory. It is imperative for the
guidance portion of the autonomous system to compute
the appropriate attitude angle commands (i.e. the roll and

Fig. 2 LQ guidance geometric description
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pitch angles) required for the aircraft to follow the desired
trajectory generated by the navigation algorithms.

3.1 LQ Path Planning for the Virtual Leader

At the beginning of the navigation algorithm, LQ path
planning updates the virtual leader’s position for the next
sample time (k). The dynamics of the cross-track error (dlat

in Fig. 2) has been developed to find the optimal lateral
acceleration as follows:

ḋlat = |V| sin(ψ − ψp) (21)

where |V| is the desired speed; ψ is the heading angle (in
this diagram, it was defined from the east axis); ψp is the
heading angle of the desired trajectory.

In order to apply LQR control methods, the cross-
track error(dlat ) is considered as a bounded or maximum
allowable error (db). That is, we assume that the cross-
track error is always less than the maximum allowable error
(dlat ≤ db ). Therefore, the lateral acceleration (ulat ) is
presented as follows:

ulat = |V|ψ̇ (22)

Next, the LTI (linear time invariant) state space is
formulated as follows:
[

ḋlat

v̇dlat

]
=

[
0 1
0 0

] [
dlat

vdlat

]
+

[
0
1

]
ulat (23)

By using the quadratic cost function (Eq. 24) and solving
the Ricatti equation, the lateral acceleration command
(Eq. 25) is derived as follows:

J = 1

2

∫ t0

∞
xT Qx + Ru2(t)dt, Q =

[
q2
1 0
0 q2

2

]
(24)

ulat = −[q1dlat +
√
2q1 + q2

2‖v‖], q1= | db

db − dlat

| (25)

where x and u are the states and control vector, respectively;
Q and R are the weighting matrices for states and control,
respectively. R is assumed to be 1. While the Ricatti
equation is solved, q1 is expressed as a function of the
maximum allowable error (db) and the current cross-track
error (dlat ).

Finally, the heading angle rate (ψ̇) can be determined
via Eq. 22, where aircraft dynamic constraints have been
applied in order to plan physically feasible paths for the
fixed-wing vehicle using the maximum allowable roll angle
for the aircraft (see Eq. 26).

	ψ ≤ g

VT

sinφmax · 	t (26)

3.2 Multi-Scale Moving Point Guidance

In order to describe the guidance algorithms used in this
work, the moving point should first be introduced. The
moving point is mathematically defined by the coordinates

Fig. 3 Waypoint generation
logic and distance and angle
errors
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of position and velocity in the inertial coordinate system
(Eq. 27).

o[k] =
{
po[k] = po

N [k], po
E[k], po

H [k]
vo[k] = vo

N [k], vo
E[k], vo

H [k] (27)

The biggest advantage of using moving points is that the
desired trajectory can be treated as an arbitrary shape by
forming a line segment (−→a [k] and

−→
b [k]) as the desired

trajectory at each time step using two consecutive moving
points (o[k] and o[k − 1]), see Fig. 3. For example, this
feature has been complimented with the morphing potential
field algorithm for collision avoidance, since the classical
navigation algorithm could not handle a curved path.

Ref. [23] investigated line-of-sight trajectory following
in the lateral plane. Then, Ref.[8] has expanded to 3D
space. The multi-scale moving point guidance algorithm is
a variation of guidance from Ref. [8, 23]. To articulate the
modification, some geometric characteristics are presented
in Fig. 4, where

−→
d is the projected aircraft position on the

line segment consisting of
−→
A and

−→
B . Using a predefined

length (ddRLat
), the reference point on the lateral plane

(
−→
R Lat ) can be found using Eq. 28.

−→
R Lat = −→

d +
−→
B − −→

d

‖−→B ‖ − ‖−→d ‖
ddrLat

(28)

A similar guidance approach is used in the longitudinal
plane. Modifications from previous work involves unique
positioning of the reference point in the lateral and
longitudinal planes in order to reflect their respective
aircraft dynamic modes. The predefined length in the lateral

plane (ddRLat
) is different than the one in the longitudinal

plane (ddRLon
) so that the reference points are separated.

These points are also aligned with the dynamic modes of the
fixed-wing aircraft, where the roll and short period modes
vary significantly. The positioning of these reference points
have a significant effect on the calculation of error angles
(ηLat and ηLon) as follows:

ηLat = tan−1 [rN − pN ]T
[rE − pE]T − tan−1 VtrackN

VtrackE

(29)

ηLon = tan−1
(

VtrackH

VtrackNE

)
− tan−1

(
LtrackH

LtrackNE

)
(30)

The basic principle for the multi-scale guidance is
to convert the error angles to the attitude commands
independently in the lateral and longitudinal plane. Once
the error angles are computed, the roll and pitch angle
commands can be determined. The pitch angle command is
calculated using an approach from Ref. [8]:

θcmd = tan−1
{
kaLon

(
kpLon

ηLon + kiLon

∫
ηLondt

)}
(31)

where kp and ki are the proportional and integral gains. For
the aircraft roll angle command, the lateral acceleration is
converted to φcmd as presented in Ref. [12]:

acmd = V 2
T

R
where R = LLat

2 sin ηLat

(32)

where R is the resultant desired turning radius shown in
Fig. 4. LLat is defined as the distance between the aircraft

Fig. 4 Lateral guidance
geometric description
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position and the reference point (Rlat ). The roll angle
command is calculated using the following equation:

φcmd = tan−1 acmd

g
(33)

Finally, there are two remaining guidance commands:
the airspeed (VTcmd

) and the sideslip angle (βcmd ). The
sideslip angle command (βcmd ) is always designated to zero
for coordinated turning. The airspeed command (VTcmd

) is
assigned as the current aircraft airspeed when the autopilot
is engaged in order to prevent abrupt behavior at the
beginning of autonomous flight.

In summary, the guidance algorithm provides four state
commands: VTcmd

, θcmd , φcmd and βcmd . These commands
have are used as the reference values for the LQR controller
in order to follow the desired trajectory.

4 Navigation of Multi-Agent UASs

The moving mesh method is utilized for path planning of
multi-agent systems by solving the moving mesh partial
differential equations (PDEs), Ref. [15]. The adaptive
properties of the moving mesh method is derived by the
free energy heat flow equation. As observed in the flocking
of birds, the moving mesh PDE is formulated according
to the M-uniformity requirement so the mesh points are
distributed uniformly as specified by a metric (M). Using
the evolutionary physical features of swarming birds, where
the distances are normalized as a function of the proximity
of other birds, corrective actions in the swarm are calculated
based on principles in the moving mesh method. This
method is specifically designed for the numerical solution
of PDEs. The position of any agent is denoted by po =
[poN,poE,poH]T , where the superscript T stands for the
transpose of a vector or a matrix. From Ref. [11], the mesh
velocity is given as:

dpo

dt
= 1

τ

∑
K∈wo

|K|vioK (34)

In the above equation, τ is a positive and constant
parameter used to adjust the time scale of mesh motion; wo

is the collection of the mesh elements for vertice i; |K| is
the volume of element K; and io and vi are the local index
and local velocity of K, respectively. The spatial dimension
is denoted by d (d = 2 for 2D and d = 3 for 3D). Finally,
the local velocities for the d + 1 vertices of element K (with
their position denoted by p0K, ...,pdK ) are given as:⎡
⎢⎢⎣

(
vk1

)T

...(
vkd

)T

⎤
⎥⎥⎦ = −GE−1

K + E−1
K

∂G

∂J
ÊE−1

K + ∂G

∂r

det (Ê)

det (EK)
E−1

K (35)

vKo = −
(
vK1 + . . . + vKd

)
(36)

In the above equation, “det” denotes the determinant of
a matrix, EK is the edge matrix of size d × d and is defined
as EK = [PK

1 − PK
0 , · · · ,PK

d − PK
0 ], and Ê is the edge

matrix of the unitary equilateral simplex in d dimensions.
The quantities G are associated with the objective function,
which is minimized for an optimal mesh. To make the mesh
as uniform as possible, we will use an objective function,
based upon the so-called equidistribution and alignment
conditions (Ref. 2). The quantities are given as:

G = 1

3

(
trace

(
ÊE−1

K E−T
K ÊT

))d + 1

3
dddet

(
ÊE−1

K

)2
(37)

∂G

∂J
= 2d

3

(
trace

(
ÊE−1

K E−T
K ÊT

))d−1
E−T

K ÊT (38)

∂G

∂r
= 2

3
dddet

(
ÊE−1

K

)
(39)

Notice that the first and third quantities are scalar while
the second one is a matrix of size d×d. The moving mesh
algorithm is robust against the morphing and splitting for-
mation shape since the objective function of equidistribution
and alignment (Eq. 35–39) will automatically correct the
inner agents’ desired position corresponding to the updated
formation shape or a boundary condition. Additionally, the
moving mesh methods have been developed for any number
of mesh points in any dimensional space, meaning it accom-
modates the scalability. UASs’ receding horizon moving
points (see Fig. 5) have fixed distances from the virtual
leader in the North-East-Down coordinate system. Agents
will be positioned using the desired relative distance and the
heading angle with respect to the virtual leader.

As the virtual leader moves in real-time, the outer
agents will be re-positioned in order to maintain formation
coherency. The following equations depict the position
update for the outer agents in this logic.

pNi
= pNRP

− ‖E‖ · sinψRP + ‖N‖ · cosψRP (40)

pEi
= pERP

+ ‖E‖ · cosψRP + ‖N‖ · cosψRP (41)

Above, pNi
is the north position of the ith agent and

pNRP
is the north position of the virtual leader. ‖E‖ is a

desired relative distance for the east direction, and ‖N‖ is a
desired relative distance for the north direction. ψRP is the
heading angle with respect to the virtual leader.

5 UAS LQR Optimal Flight Control

In this work, Linear Quadratic Regulator (LQR) controllers
have been designed for two platforms: DG808 and
Skyhunter. The guidance algorithm generates four desired
states: VTcmd

, φcmd, θcmd and βcmd . They are utilized as the
reference signal for the nonzero set point. While the nature
of LQR aims to regulate all states to zero, nonzero set points
have been used to follow the desired trajectory. The LTI
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Fig. 5 Virtual leader formation
algorithm geometric description

state space has been developed previously in Section 2. The
augmented LTI states and control vectors with guidance
commands have been defined to implement the nonzero set
point as follows:

xlong =

⎡
⎢⎢⎢⎢⎢⎢⎣

u

α

θ

q∫
uerr∫
θerr

⎤
⎥⎥⎥⎥⎥⎥⎦

, ulong =
[

δT

δE

]
(42)

xlat =

⎡
⎢⎢⎢⎢⎢⎢⎣

β

φ

p

r∫
βerr∫
φerr

⎤
⎥⎥⎥⎥⎥⎥⎦

, ulat =
[

δa

δr

]
(43)

The quadratic cost function for the LQR controller is
presented as follows:

J = 1

2

∫ t0

∞
xT Qx + uT Ru dt (44)

The Q and R weighting matrices are designed to maximize
the tracking quality while ensuring smooth control surface
maneuvers.

6 Validation and Verification

6.1 Software and Hardware in the Loop Simulations

Prior to flight testing, verification of the aircraft software
and hardware systems is imperative to mitigate any
potential abnormal behavior of the system. For this
purpose, software-in-the-loop (SiTL) and hardware-in-
the-loop (HiTL) test-beds have been developed and are
thoroughly documented in Ref. [13]. The purpose of SiTL
testing is to ensure that the software has been correctly
implemented onto the aircraft avionics. The purpose of
HiTL is to ensure that the hardware and software are
properly working together, and this testing is done using
an identical setting to that of flight testing. In this test, the
communication links, sensor integration, and the behavior
of control surface etc. can be observed in real time and
tested with the ground station (Fig. 6). Additionally, the
nonlinear 6 DoF EoM have been implemented onto the
flight computer in order to generate the simulation states
and test the corresponding control outputs to the aircraft via
servo commands.

The DG808 and Skyhunter platforms have different
avionics configurations. For the DG808 aircraft, an Nvidia
TK1 (four high-performance ARM cores and a 256 core
GPU) is used as the flight computer with a customized
Data Acquisition board (DAQ) to handle PWM signals. A
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Fig. 6 HiTL Simulation Setup
for DG808 and Skyhunter

VectorNav 200 is used as the IMU sensor. The Skyhunter
platforms utilize an Odroid XU4 as the flight computer and
a Pixhawk unit as an IMU sensor package.

Fig. 7 Swarm of two DG-808 and Skyhunter UAS in autonomous
flight

6.2 Validation and Verification Flight Tests

In order to verify and validate the essential parts of the
developed GNC algorithms (multi-scale guidance logic,
collision avoidance algorithms, and the LQR controller)
beyond the standard software and hardware in the loop
simulations, two flight tests were conducted in unstructured
environments and flight test results are presented in this
section. Structured environments are highly controlled
indoor test facilities. In structured environments, aircraft
experience no or little external disturbances (e.g. wind,
gust, etc.). In structured environments, space limitations
dictate size and speed of UASs used in experiments (e.g.
usually small and slow robots). Unstructured environments
are complex and have an inherent uncertainty mainly
due to external disturbances (e.g. wind, gust, etc.). There
is no a priori information on how and when external
disturbances change their amplitudes and/or directions.
Such uncertainties increase dimensional state space of
control problems. In unstructured environments, speed and
size of UASs are constrained by the aircraft performance
and design criterion and not by the size of the test facility.

Two different UAS platforms were used for validation
flight tests, one was held on April 2017 using two of DG808
UASs (Fig. 7), Ref. [39, 40]. The other one was held on
April 26th, 2018 using two of the Skyhunter UASs.

The scenario of both flight tests is presented below:

– Two agents have to follow a race track pattern due to
the confined flight test area.

– One of the agents will be ahead of the other agent.
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Fig. 8 Flight Test 1: 1st autopilot engagement Position Tracking DG808

– Pilots engaged the autopilot mode while each aircraft is
in a steady-level trim condition.

For the DG808 flight tests, autopilots were engaged
at different initial conditions in order to demonstrate
the robustness of GNC algorithms toward random initial
conditions. The positional tracking, longitudinal and lateral
directional states and controls are presented. The average
wind speed during this flight test was 4.6 mph.

Figure 8 presents the position tracking in the longitudinal
(top left) and lateral (top right) plane for DG808 UASs’
first swarm engagement flight test. Additionally, the rate of
altitude change (ḣ, bottom left) and 3D view (bottom right)
have been presented. Both agents engaged the autopilot
near the southwest corner of the race track and followed
the pattern in the counterclockwise direction. Waypoints 3
to 6 have been uploaded from the ground station, while
waypoint 1 (the average position of two agents during

Fig. 9 Flight Test 1: 1st autopilot engagement DG808 Longitudinal States
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Fig. 10 Flight Test 1: 1st autopilot engagement DG808 Lateral-Directional States

Fig. 11 Flight Test 1: 2nd autopilot engagement position tracking DG808
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Fig. 12 Flight Test 1: Agent
Separation during Autonomous
Flight for DG808

initialization) and waypoint 2 (intersection to the racetrack
by the average velocity of two agents during initialization)
are temporarily assigned to stabilize the attitude angle at
the beginning of the autonomous flight. Additionally, the
altitude (top right) plot shows that one agent stayed at the
desired higher altitude relative to the other agent according
to safety measures taken during the flight test.

The first agent (blue) stayed inside of the race track
while the second agent (red) stayed on the race track. Due
to the confined area, the agents had to turn often leading
to dramatic drops in the altitude and the rates of altitude
(ḣ). Since the first agent followed the smaller race track

pattern, it dropped altitude more significantly compared to
the second agent due to larger aircraft bank angles.

Figure 9 presents the longitudinal states and controls
for the first engagement of the autopilot. Figure 9, shows
that although each UAS was engaged at different initial
conditions, the GNC algorithms were robust toward out-of-
trim aircraft and random initial conditions. The first agent
is closer to the trim condition compared to the second agent
since the pitch angle and rate have lower values. The second
agent needs more time to settle down the attitudes after the
autopilot is engaged. Additionally, the airspeed, pitch angle
and rate of the first agent show a dramatic drop during the

Fig. 13 Flight Test 1: 2nd autopilot engagement DG808 Longitudinal States
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Fig. 14 Flight Test 1: 2nd autopilot engagement DG808 Lateral-Directional States

turning maneuvers since it had to follow the inner box of the
race track (this induced a larger roll angle command) and
this phenomenon is reflected in the altitude rate plots.

Figure 10 shows the lateral-direction states and controls
for 1st engagement of the autopilot. The initial yaw angles
of both agents were similar: 46 degree for the 1st agent

Fig. 15 Flight Test 2: Skyhunter Swarm Flight
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Fig. 16 Flight Test 2: Agent Separation during Autonomous Flight for Skyhunter

and 57 deg for the 2nd agent. However the second agent is
closer to trim as compared to the first agent–if only lateral
states are considered. The roll and yaw rate of the first
agent is larger at the initial condition than for the second
agent. The roll angles of the first agent is larger due to
the smaller desired race track. The guidance and control
algorithm worked in an appropriate way so that the agents
could track the desired trajectories.

The second engagement of the autonomous flight has
been presented below. The initial conditions are different
and this test demonstrates that the developed algorithms
have robustness towards randomness of initial conditions.
In this test, the initial yaw angles are challenging: -80

degree for the first agent and 55 degree for the second
agent. Basically, two agents were approaching each other.
The position of two agents causes another challenge due
to high moment of inertia and high speed. As Fig. 11
shows, the positions where autopilot were engaged at is
close to the corner of the race track. This indicates that
the agents should settle attitude and begin to turn very
soon. Again, the morphing potential algorithm has been
implemented and shows that the two agents successfully
avoided collision with each other, see Ref. [14] as well.
After 70 seconds of flight, the distance between the two
agents was minimum during this flight and did not violate
the minimum separation distance which is 100 ft, as shown

Fig. 17 Flight Test 2: Skyhunter Swarm U1 Longitudinal States
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Fig. 18 Flight Test 2: Skyhunter Swarm U1 Lateral-Directional States

in Fig. 12. Additionally, Fig. 11 (top right) shows that the
altitude of two agents were separated by the desired safe
distance.

Figure 13 presents the longitudinal states and controls for
the second engagement of the autonomous flight. The first

agent has a large variation of the pitch angle, throttle, and
airspeed. The initial airspeed was far from the trim point
(it was 72 ft/sec), compared to 59.07 ft/sec. This led to
dramatic changes in its airspeed, pitch angle and rate, and
the altitude rate at the beginning of the autonomous flight.

Fig. 19 Flight Test 2: Skyhunter Swarm U2 Longitudinal States

220 J Intell Robot Syst (2020) 97:205–225



Fig. 20 Flight Test 2: Skyhunter Swarm U2 Lateral-Directional States

Next, the changes in pitch angle and rate and airspeed during
the flight can be observed in the turning maneuver similar
to the first engagement.

Figure 14 shows the lateral-directional states and controls
for the second engagement of the autonomous flight. In this

flight, the first agent was closer to the trim point since it has
smaller roll rate and yaw rate compared to the second agent,
although the initial roll angle of the first agent (12 deg) is
larger than the second agent’s (-1.7 deg). The roll angles of
the second agent during turning maneuvers were larger than

Fig. 21 Position comparison between the flight test (DG808) and simulation (Red: flight test, Blue: simulation)
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the first agent due to the second agent following the inner
race track pattern in this case.

Figure 15 shows the position of two Skyhunters during
the flight test on April 26th, 2018. The desired formation
distance was 50 ft separation to the North and 50 ft
separation to the East between the agents. Each agent should
stay at a unique altitude: 475 ft or 377 ft AGL, which
is assigned based on the relative altitudes during autopilot
initialization. Two agents initiated the swarm flight with
different yaw angles (ψ): 154 and 76 degrees for agents 1
and 2, respectively. Next, the two agents followed the race
track in the counterclockwise direction. The height tracking
was tighter than that of the DG808 platforms, which were
shown in Fig. 8.

As Figs. 12 and 15 show, when the SkyHunter UASs got
closer than a safe distance (defined by collision avoidance
parameters), the morphing potential collision avoidance
kicked in and UAS2 avoided UAS1 (red trajectory on
the South East corner), also see Ref. [14, 34]. Figure 16
shows the lateral and longitudinal direction tracking error.
Compared to the DG808 (which has the total RMS of
129 ft), the total RMS has been improved by 29.2%.
Even though the wind speed was higher comparing to the
DG808 (average of 4.6 mph for DG808s and 10.4 mph
for the Skyhunters during their respective flight tests), the
tracking error is lower than the DG808. Figure 17 shows the
longitudinal states and control of the Skyhunter agent 1.

The orange lines in the plots correspond to data from
simulations performed using similar initial conditions to the
flight test. The biggest difference between the simulation
and the flight test data are the oscillations. The simulation
environment does not incorporate the wind field, along with

vibration due to the motor. Figure 18 shows the lateral-
directional states and control of the Skyhunter agent 1.

Similarly, the agent drifted due to the wind and the
roll angle commands are larger than the simulation.
Additionally, oscillations in roll and yaw rates are observed.
Due to the oscillatory behavior, the control surface
deflections also reacted to these rates.

Figure 19 shows the longitudinal states and control of the
Skyhunter agent 2. Similarly, oscillations in the pitch rate
led to oscillations in the commanded elevator deflection.
This relation is also seen in the pitch angle when compared
to that of the simulation. Figure 19 shows the lateral-
directional states and controls of Skyhunter agent 2. This is
also similar to Fig. 18. The roll angles are larger than the
simulation due to the agent being drifted by the wind.

The results of these flight tests involved the two
Skyhunters holding the desired formation using identical
GNC algorithms to the ones used for the DG808, using
only different gains for the guidance and control parameters.
Based on the RMS of the tracking error, the Skyhunter
achieved better performance than the DG808 even though
the wind speed was higher for the Skyhunter flight tests.

7 Comparison of Flight test and Simulations

This section presents the comparison between the flight test
and simulation data.

Figures 20, 21, 22, 23, 24 and 25 show comparison
of flight test demonstrations versus simulation results.
Waypoints, desired flight paths, and initial conditions were
identical. Although simulations are imperfect representative

Fig. 22 Longitudinal states (U1) comparison between the flight test (DG808) and simulation (Blue: flight test, Red: simulation)
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Fig. 23 Lateral states (U1) comparison between the flight test (DG808) and simulation (Blue: flight test, Red: simulation)

of reality, a good agreement can be observed between
simulation and flight test results. However, uncertainties
in the dynamic model of UASs due to the low-fidelity
of engineering level dynamic analysis software, lack of
robustness in the LQR controller, sensor noises and external
disturbances directly influence credibility of simulations
and cause mismatches between simulation and flight test
results. Five important lessons learned are summarized as
follows: (1) UASs’ altitude and velocity hold controllers
worked very effectively and flight test and simulation results

match very well (see Figs. 21, 22, and 24). (2) UASs
path following performance in flight tests was similar to
simulation results however the flight test was conducted
in the presence 4.6 mph West wind which affected the
trajectory of UASs on corners. (3) Impact of sensor noises
and motor vibration are evident on rate gyros and velocity
measurements. (4) Impact of external disturbances (e.g.
wind, etc.) can be observed in uncommanded motions
and delay in UASs’ positions and consequently guidance
commands. (5) Comparison of results show the importance

Fig. 24 Longitudinal states (U2) comparison between the flight test (DG808) and simulation (Blue: flight test, Red: simulation)
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Fig. 25 Lateral states (U2) comparison between the flight test (DG808) and simulation (Blue: flight test, Red: simulation)

of robustness of flight controllers (e.g. H-inf or H2
controllers) to mitigate effect of external disturbances,
uncertainty in dynamic models, and noise and vibration
when UASs perform complex missions in unstructured
environments.

8 Conclusion

A complete set of guidance, navigation and control
algorithms were developed for collaborative UASs and
uniquely flight tested using two completely different UAS
platforms. The developed GNC algorithms demonstrated
their effectiveness in holding a desired separation distance
between large collaborative UAS flying at high speeds.
Robustness of GNC algorithms was successfully validated
using out-of-trim or random initial conditions. Although,
the desired distance between UASs was reduced in the
second round of validation and verification flight test, the
UASs held their positions in the formation. Additionally,
when the distance between agents crossed the defined
threshold, the collision avoidance algorithms updated the
aircraft trajectory in order to achieve the desired separation.
Comparison of simulation and flight test results are
presented and the impact of modeling uncertainty, noise and
disturbances are identified.
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