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Abstract
In this paper, we design an optimal control system for a quadrotor to carry a cable-suspended load flying through a window.
As the window is narrower than the length of the cable, it is very challenging to design a practical control system to pass
through it. Our solution includes a system identification component, a trajectory generation component, and a trajectory
tracking control component. The exact dynamic model that usually derived from the first principles is assumed to be
unavailable. Instead, a model identification approach is adopted, which relies on a simple but effective low order equivalent
system (LOES) to describe the core dynamical characteristics of the system. After being excited by some specifically
designed manoeuvres, the unknown parameters in the LOES are obtained by using a frequency based least square estimation
algorithm. Based on the estimated LOES, a numerical optimization algorithm is then utilized for aggressive trajectory
generation when relevant constraints are given. The generated trajectory can lead to the quadrotor and load system passing
through a narrow window with a cascade PD trajectory tracking controller. Finally, a practical flight test based on an Astec
Hummingbird quadrotor is demonstrated and the result validates the proposed approach.

Keywords Micro aerial vehicles · Model identification · Optimal control · Trajectory generation

1 Introduction

Nowadays, unmanned aerial vehicles (UAVs) are gaining
more and more popularity in many applications, such
as last-mile deliveries [1], wireless communications [2],
disaster relief operations [3] and acrobat demostration [4].
Quadrotors have also been applied to payload manipulation.
For example, Quentin Lindsey et al. [5] utilized quadrotor
teams to construct cubic structures. Justin Thomas et al.
[6] designed and equipped a quadrotor with an actuated
appendage enabling grasping at high speed. Robin Ritz et
al. [7] introduced a method for carrying a flexible payload
with multiple flying vehicles.

As discussed in [8], a load held by a gripper can
undesirably increase the inertia of the system. Instead,
attaching the load to a quadrotor via a cable suspension
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could retain more of the vehicle’s agility. Many papers
have been published in terms of stabilization of the load or
minimization of the load swing while traversing trajectories.
Cruz et al. [9] addressed the problem of lifting a cable-
suspended load from the ground by a quadrotor, where
the mass of the load is unknown. Alothman et al. [10]
proposed a linear quadratic regulator (LQR) for lifting and
transporting the load. A fixed-gain nonlinear proportional-
derivative controller was presented in [11] to transport the
load to a desired position while aligning the links along
the vertical direction from an arbitrary initial position.
Frust et al. [12] presented a motion planning method for
generating trajectories with minimal residual oscillations
and completed the multi-waypoint flight in the cluttered
environment. Palunko et al. [13] used a high-level planner
to provide desired waypoints and utilized a dynamic
programming approach to generate the swing-free trajectory
to keep the minimum load swing.

The problem has also been described as a multi-
phase model. Koushil Sreenath et al. [14] established the
quadrotor-load system to be a differentially-flat hybrid
system and developed a nonlinear geometric control which
exhibits almost-global properties in each simulation case.
Furthermore, the single vehicle system was extended to
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multi-vehicles in [15], which addresses the problem of
cooperative transportation of a cable-suspended load by
multiple quadcopters.

With regard to trajectory generation, De Crousaz
et al. [16] addressed planning and control problems for
the quadrotor with payload system using an iterative LQG
(iLQG) algorithm. Another popular approach is to plan
trajectories directly in the flat space using differential
flatness. Koushil Sreenath et al. [14] studied how the
quadrotor trajectory evolves as the frequency of the load
trajectory varies. Sarah Tang et al. [17] addressed navigating
a similar system through obstacle-filled environments by
formulating the hybrid system as a Mixed Integer Quadratic
Programming (MIQP) problem and then searching the
optimal coefficients for the polynomial basis in the flat
space. Similarly in [8], choosing a trigonometric basis in
the flat space, they designed an aggressive trajectory using
Quadratic Programming (QP).

In the researches mentioned above, the system’s dynamic
model are derived from the First Principle without
considering the unknowns in practical systems. It is very
challenging to match the theoretical models with practical
systems. An engineering solution to this is to identify the
systems via collecting experiment data.

Basically, the system identification for UAVs is a proce-
dure by which a mathematical description of UAV dynamic
behaviour is extracted from experiment data. The work in [18]
detailed the basic issues of system identification for manned
aircraft, including dynamicmodel structure, estimation theories
as well as engineering practices. The work in [19] described
the detailed identification approach mainly from the perspec-
tive of frequency-domain. Thework in [20] presented a survey
and categorization of current methods and applications for
small low-cost UAV, for example, helicopter, fixed-wing,
multirotor, flapping-wing, and lighter-than-air. The work in
[21, 22] both used state space equations as the system model
and the unknown parameters were estimated through fitting
the model to the frequency response extracted from flight
data. The work in [23–26] chose neural networks as the
dynamic model and presented the corresponding identifica-
tion method. The work in [27] summarized the experiences
using CIFER tool for the modeling of UAV flight dynamics.
The work in [28] utilized a time domain system identi-
fication software (SIDPAC) developed by NASA Langley
Research Center to estimate a linear mathematical model
for a micro quadrotor. Apart from those off-line approaches,
some papers have been published about real-time system
identification methods [29, 30]. The work in [31, 32] used
a least square method in the frequency domain to estimate
the unknown aerodynamic coefficients for manned vehi-
cles. These publications are mainly aimed at fixed-wing
planes. Potentially, they could be used for quadrotors when
well-designed excitation inputs are designed.

Other related research on the control aspect of quadrotor
and payload carrying systems includes the work of [33] and
[34], where an indirect optimal control method was applied
to generate the time-optimal trajectory for the quadrotor,
and the work [35] where a novel method for learning
optimal control solutions and generalizing them in real-
time for a quadrotor-type vehicle with flat dynamics was
presented.

In this paper, we will address a full solution to the
practical control problem of a quadrotor carrying a cable-
suspended load flying through a narrow window. Different
from the similar work in [8, 17], it is assumed that the
exact non-linear dynamic model is unavailable. Thus, we
will present an easy but effective low order equivalent
system (LOES) to describe the system’s core dynamical
characteristics and a corresponding estimation algorithm. It
is also assumed that the best trajectory for the quadrotor and
payload passing through a narrow window is not available.
Thus we will present an optimal trajectory generation
algorithm, which can generate an aggressive trajectory to
pass through a narrow window based on the identified
results. Finally we will adopt a cascade PD controller for
the system to track the generated trajectory. In summary, our
main contributions in this paper are listed as follows.

1) We describe the core dynamical characteristics with
a low order equivalent system rather than the full
complicated non-linear model. Then we design a series
of specific manoeuvres to fully excite the model and
implement an estimation algorithm for the unknown
parameters.

2) Based on the above identification results, we apply
a numerical optimization algorithm to generate an
aggressive trajectory which meets the relevant con-
straints and is able to allow the system passing through
a narrow window.

3) A practical test is successfully demonstrated in our lab
environment. A swing behavior of the quadrotor with
a cable-suspended load is observed.

In the following, we will give an introduction to the
model identification in Section 3. Section 4 will address
the trajectory optimization problem. In Section 5, we
will demonstrate the aggressive manoeuvre by using an
Astec Hummingbird quadrotor in an indoor environment. In
Section 6, we will give a summary conclusion.

2 Preliminaries

2.1 3D Dynamic Model

The dynamic system, the quadrotor with a cable-suspended
load, is presented in Fig. 1, including the inertial frame,
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Fig. 1 Single quadrotor (Q) carrying a cable-suspended payload (P),
including ground frame xgygzg , body frame xbybzb, intermediate
frame xyz, control input {Fz, Mx, My, Mz}, swing angles α and β.
Specifically, frame xyz is obtained after translating frame xgygzg to
the center of quadrotor

intermediate frame, body-fixed frame, thrust and torques
with respect to the body frame and swing angles of the cable
with respect to the intermediate frame.

The dynamics of this system should be modeled as a
hybrid one, which includes two subsystems [17]. The first
one is referred to as the “quadrotor-with-load” subsystem,
where the cable-connection is taut. The second one is the
“quadrotor” subsystem, where the load has detached from
the cable and undergoes a projectile manoeuvre. In order
to simplify the problem, some reasonable assumptions are
made as follows:

1) The quadrotor is considered as a geometric symmetric
rigid body.

2) The payload is considered as a point mass attached on
an inextensible massless cable and the cable is attached
at the center of the quadrotor.

3) The mass of the payload is much smaller than
quadrotor, which means its motion has little impacts on
the quadrotor.

4) Only “quadrotor-with-load” subsystem is considered
and the trajectory is optimized, while “quadrotor”
subsystem is very straight forward and its details are
neglected.

5) The locations of both the quadrotor and the payload are
provided by an indoor localisation system.

2.2 2D Planar Model for Window Passing

In the task of passing the narrow window, the quadrotor and
load are both considered only moving in a vertical plane.
Thus the model in Fig. 1 could be further simplified from
3-dimensional Cartesian coordinate into a 2-dimensional
coordiante , which is shown in Fig. 2.

The positions of quadrotor and payload in the planar
plane are given as

ξQ = yQey + zQez

ξP = (yQ − ye)ey + (zQ − ze)ez (1)

where, {ey, ez} is the basis unit vector in ygzg plane, ze =√
L2 − y2

e .
Thus, the Lagrangian of the payload is

T = 1

2
mP ξ̇P · ξ̇P

U = mP gξP · ez

L = T − U

= 1

2
mP ξ̇P · ξ̇P − mP gξP · ez (2)

Then, the Euler-Lagrange equation is

d

dt

(
∂L

∂ẏe

)
− ∂L

∂ye

= 0 (3)

where, ye is chosen as the generalized coordinate and its
generalized force is equal to 0.

Furthermore, we can get

⇒ Mÿe + f (ye, ẏe, ξ̈Q) = 0 (4)

Fig. 2 Simplified 2-dimensional (ygzg plane) model, including
position of quadrotor (yQ, zQ), position of payload with respect to
quadrotor (ye, ze), position of payload in ygzg frame (yP , zP ), roll
angle of quadrotor φ, where, ye = yP − yQ, ze = zQ − zP
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where,

M = L2

L2 − y2
e

f (ye, ẏe, ξ̈Q) = ÿQ + ye

(
L2ẏ2

e

(L2 − y2
e )2

+ g + z̈Q√
L2 − y2

e

)

(5)

After taking Eq. 5 into Eq. 4, we get

− Mÿe = ÿQ+ ye√
L2 − y2

e

z̈Q+
(

yeL
2ẏ2

e

(L2 − y2
e )2

+ yeg√
L2 − y2

e

)

⇒ ÿe = fy(ye)ÿQ + fz(ye)z̈Q + fn(ye, ẏe) (6)

As a result, the non-linear 2D model is given in Eq. 7, where[
ÿQ, z̈Q

]T is the control input and
[
yQ, dyQ, zQ, dzQ,

ye, dye]T is the control state. (dyQ denotes the first
derivation of yQ, similarly hereafter)

ẏQ = dyQ

ḋyQ = ÿQ

żQ = dzQ

ḋzQ = z̈Q

ẏe = dye

ḋye = fy(ye)ÿQ + fz(ye)z̈Q + fn(ye, ẏe) (7)

This non-linear dynamic model is built based on the
first principle where some practical limitations, such as
air resistance, geometric errors, etc, are not considered.
This actually makes the model quite different from the
real system. For example, if given a pulse signal of ÿQ

to this system, the simulated output of ye will be a
continuous oscillation without any damp, which is not real
in fact due to the existence of the air drag. Also some
vehicle parameters are actually difficult to obtain, such as
aerodynamic coefficients of the propellers. This makes the
system difficult to control. Finally, the desired trajectory in
this task is generated by an optimization algorithm based
on the dynamic model. Thus, the difference between the
model and the practical system has a significant impact on
the control performance.

In order to minimise the impact caused by the first
principle model, we have to identify the dynamic model via
experimental data. To do so, a so-called low order equivalent
system (LOES), a linear transfer function, is adopted here
to represent the dynamic model and is to be identified next.

As the desired altitude of the quadrotor is fixed, the
effect of its acceleration z̈Q is much smaller compared with
ÿQ and can be regarded as a disturbance. The model is
further simplified as a single input and single output one.
Linearizing the equation using Taylor series and then taking
Laplace transform, we can get the low order equivalent

system as follows, where all the high-order terms are
removed.

ye(s)

ÿQ(s)
= K

s2 + 2ωnζs + ω2
n

(8)

where, K , ωn, and ζ are the unknown parameters to
determine. ye(s) and ÿQ(s) are the input and output data
respectively.

Thus, the non-linear dynamic model (Eq. 7) is simplified
by following linearized form.

d

dt

⎡

⎢⎢
⎣

yQ

ẏQ

ye

ẏe

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 −ω2

n −2ωnζ

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

yQ

ẏQ

ye

ẏe

⎤

⎥⎥
⎦+

⎡

⎢⎢
⎣

0
1
0
K

⎤

⎥⎥
⎦ÿQ (9)

where, the control input u is (ÿQ) and the control state x is
(yQ, ẏQ, ye, ẏe)

T .

2.3 Model Identification

Once given the transfer function (Eq. 8) as the model
to be identified, the system identification has now been
transformed into the estimation of unknown parameters
based on experimental data. A frequency based recursive
least square technique is introduced as follows.

With Discrete Time Fourier Transform (DTFT) seen
in Eq. 10, the discrete samplings {ye[i], ÿQ[i]} can be
transformed into a continuous functions of jω, namely,
{ỹe(ω), ˜̈yQ(ω)}.

x̃(jω) =
N−1∑

i=0

x[i]e−jωi (10)

where N is the total number of sampled data.
As a result, the transfer function (Eq. 8) is transformed

from Laplace domain s to frequency domain ω seen in
Eq. 11, where the variables are denoted with tilde .̃

(jω)2ỹe(ω) =
[
(jω)ỹe(ω), ỹe(ω), ˜̈yQ(ω)

]
⎡

⎣
−2ωnζ

−ω2
n

K

⎤

⎦ (11)

However, in order to implement a least square estimation,
Eq. 11 should be discretized on a series of given frequencies,
which starts from ω1 (minimum) to ωm (maximum) with
a fixed frequency resolution 	ω. Usually, ω1, ωm and 	ω

are determined based on the sampling information, e.g.
sampling frequency, total sampling number and frequency
of interest.
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After discretization, the system can be arranged as a
standard form for the least square estimation seen in Eq. 12,
where Ỹ and X̃ are appropriate vector or matrix in terms of
the discrete frequencies, namely, {ω1, ω2, . . . , ωm}.

Ỹ=X̃θ + ε

Ỹ=

⎡

⎢⎢⎢
⎣

(jω1)
2ỹe (ω1)

(jω2)
2ỹe (ω2)
...

(jωm)2ỹe (ωm)

⎤

⎥⎥⎥
⎦
, θ =

⎡

⎣
−2ωnζ

−ω2
n

K

⎤

⎦

X̃=

⎡

⎢⎢⎢
⎣

(jω1) ỹe (ω1) ỹe (ω1) ˜̈yQ (ω1)

(jω2) ỹe (ω2) ỹe (ω2) ˜̈yQ (ω2)
...

...
...

(jωm) ỹe (ωm)ỹe (ωm) ˜̈yQ (ωm)

⎤

⎥⎥⎥
⎦

(12)

where, θ and ε denote the unknown parameters and
disturbances, respectively.

In practice, DTFT is not suitable for real time calculation,
as it requires to save all the samples beforehand. Thus,
a recursive DFT is utilized here, which can update the
frequency spectrum recursively. Detailed derivation of
Eq. 14 is available in the author’s previous publication [36].

The DFT and recursive DFT are given in Eqs. 13 and 14

respectively, where WN = e−j 2π
N and 0 ≤ k ≤ N − 1.

x̃[k] =
N−1∑

i=0

x[i] · Wki
N (13)

⇒
{

x̃k[n] = x[n] + W−k
N · x̃k[n − 1]

x̃[k] = x̃k [n]|n=N

(14)

Applying Eq. 14, the frequency spectrum of ỹe[k] and ˜̈yQ[k]
is updated and therefore Ỹ and X̃ can be restated in the
following form.

Ỹ =

⎡

⎢⎢⎢
⎣

(j	ω)2ỹe [1]
(2j	ω)2ỹe [2]

...
(mj	ω)2ỹe [m]

⎤

⎥⎥⎥
⎦

X̃=

⎡

⎢⎢⎢
⎣

(j	ω) ỹ [1] ỹ [1] (j	ω) ũ [1]
(2j	ω) ỹ [2] ỹ [2] (2j	ω) ũ [2]

...
...

...
(mj	ω) ỹ [m] ỹ [m] (mj	ω) ũ [m]

ũ [1]
ũ [2]
...

ũ [m]

⎤

⎥⎥⎥
⎦

Moreover, once given the sampling frequency Fs(Hz),
the frequency resolution in terms of Hertz is defined as

	f =Fs
/
N and thus the corresponding angular frequency

is defined as 	ω=	f (2π/Fs).
Thus the frequency of interest [ω1, ωm] is determined as

follows.

ω1 = 	ω

ωm = m	ω (15)

where, m =
⌊
fmax

/
	f

⌋
(rounding down the quotient)

and fmax is a user-defined maximum value which is much
smaller than Fs.

When the recursive updating of the spectrum of Ỹ and X̃
is done, a batch least square estimation is implemented to
estimate θ , as seen in Eq. 16.

J = 1

2

(
Ỹ − X̃θ

)† (
Ỹ − X̃θ

)
(16)

Oθ =
[
Re

(
X̃†X̃

)]−1
Re

(
X̃†Ỹ

)
(17)

where, † denotes conjugate transpose.
In this way, the unknown parameters in Eq. 9 are

determined. The main benefit of frequency based estimation
is that the information on high frequency band could be
removed which mainly is uncertainty and noise.

2.4 Controller Design

Before we start to generate the trajectory, it is necessary to
introduce the tracking controller that will be utilized in our
practical experiment. Briefly speaking, a cascade controller
is adopted here. Firstly, a PD controller is running on the
PC tracking the reference trajectory and calculating the
desired thrust and attitudes. Meanwhile, there is another
PD controller on the quadrotor receiving and tracking those
out-loop commands. In this task, the system is assumed to
move mainly in yg direction, the reference trajectory is then
considered to be {yr

Q, ẏr
Q, ÿr

Q}. Thus, the controller on PC
can be summarized in following equations.

ÿdes
Q = ÿr

Q + Kp,y

(
yr
Q − yQ

) + Kd,y

(
ẏr
Q − ẏQ

)
(18)

The desired trajectories in the other two directions are all set
to be zero.

ẍdes
Q = 0 + Kp,x

(
0 − xQ

) + Kd,x

(
0 − ẋQ

)

z̈des
Q = 0 + Kp,z

(
0 − zQ

) + Kd,y

(
0 − żQ

)
(19)
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The desired accelerations are transformed into the desired
thrust and attitudes which will be sent to quadrotor
afterwards.

Fdes
z = m(g + z̈des

Q )

φdes = Kp,φ

(
ẍdes
Q sinψr − ÿdes

Q cosψT

)
/g

θdes = Kp,θ

(
ẍdes
Q cosψr + ÿdes

Q sinψr

)
/g

ψdes = ψr (20)

where, {Fdes
z , φdes, θdes, ψdes} are the control inputs of

inner-loop controller. The parameters Kp,φ and Kp,θ are
scale factors. They are all determined by the API functions
of Astec Hummingbird quadrotor [37].

In the next section, we will show how to generate the
reference trajectory {yr

Q, ẏr
Q, ÿr

Q}.

3 Aggressive Trajectory Generation

3.1 Trajectory Optimization Problem

A trajectory optimization problem is to find a feasible
trajectory {t0, tF , u∗(t), x∗(t)} for a dynamic system that
satisfies a set of constraints while minimizing a cost
function. A general framework for a trajectory optimization
problem is illustrated in Eq. 21 [38].

min
t0,tF ,x(t),u(t)

J = JB(t0, tF , x(t0), x(tF ))

+
∫ tF

t0

JP (τ, x(τ ), u(τ))dτ

s.t. ẋ(t) = f (t, x(t), u(t))

CP (t, x(t), u(t)) ≤ 0

CB(t0, tF , x(t0), x(tF )) ≤ 0

x− ≤ x(t) ≤ x+

u− ≤ u(t) ≤ u+

t−0 ≤ t0 ≤ t+0
t0 < tF

t−F ≤ tF ≤ t+F
x−
0 ≤ x(t0) ≤ x+

0

x−
F ≤ x(tF ) ≤ x+

F

(21)

The minimum target, J , is the user-defined objective
function in terms of boundary (JB) and whole trajectory
(JP ).

The group of functions {f,CP , CB} denotes the dynamic
model, the trajectory constraint function and the bound-
ary constraint function, respectively. All the functions
{JB, JP , f, CP , CB} are assumed to be smooth from t0 to
tF .

Apart from that, the constant low bounds for the
trajectory are given in {x−, u−, t−0 , t−F , x−

0 , u−
0 , x−

F , u−
F }

and similarly {x+, u+, t+0 , t+F , x+
0 , u+

0 , x+
F , u+

F } are the
upper bounds. Specifically, if a low bound − is equal to its
upper bound +, the inequality constraint will then become
an equality.

3.2 Cost Functions and Boundary Constraints

Like the minimum snap trajectory [39], we would like to set
JB to be 0 and only introduce the minimum acceleration as
the objective function seen in Eq. 22.

JB(t0, tF , x(t0), x(tF )) = 0

JP (τ, x(τ ), u(τ)) = ÿ2
Q(τ) (22)

As for the constraints, the dynamic model is determined
by the identified result in Eq. 9. In this task, there
are no complicated constraint functions in terms of
CP (t, x(t), u(t)) or CB(t0, tF , x(t0), x(tF )).

Theoretically, the initial position ({x−
0 , x+

0 }) for the
system could be chosen at any appropriate places. Without
loss of generality, we will choose three different places
as the starting points and analyze their effects. As for the
constraints for terminal states ({x−

F , x+
F }), however, they

have to be carefully chosen. Specificaly, the quadrotor will
swing up the load to the highest point with some velocity.
In this way, the quadrotor and load can both fly through
the window. The exact values are presented in Section
slowromancapiv@-B.

Meanwhile, the whole trajectory should be limited in
an appropriate range, namely, the boundary constraints
{x−, u−, x+, u+}.

3.3 Choosing tF

Without loss of generality, the starting time of the desired
manoeuvre could be set as 0, which means t−0 = t+0 = 0.
Nowwe need to determine the last two parameters t−F and t+F
before we start to solve the trajectory optimization problem.

Generally, if tF is too short the desired trajectory
would become too aggressive or even infeasible because
the quadrotor might not be able to generate such a big
acceleration. If tF is too long, the generated trajectory will
experience a long beginning period to adjust the load status
by moving it back and forth for too many times.

Actually, tF can be set as a free variable and determined
by the algorithm automatically. However, this will results in
a more complicated cost function and accordingly lead to a
greater computational burden on the computer. So as far as
current work is concerned, we would like to choose the t−F
and t+F by the trial and error method.
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Fig. 3 Diagram of the hardware
platform, including a desktop
computer running with the
control algorithm, quadrotor-
payload system with onboard
inner loop stablization system,
motion capture system (VICON)

3.4 Solving the Optimization Problem

Generally, there are three types of algorithms for solving
optimal control problems: dynamic programming, indirect
methods and direct methods. In this paper, we utilize a
so-called transcription method to solve this problem by
converting the continuous problem into a non-linear pro-
gramming problem. Specifically, an orthogonal collocation
method is utilized here by using orthogonal polynomials to
approximate the state and control functions. Once in this
form, the problem can be passed to a commercial solver,
such as SNOPT, IPOPT, or FMINCON. Because of space
constraints, more details of calculation can be found in
[38, 40].

4 Practical Experiment

In order to validate the proposed approach, a practical
experiment is presented here.

The hardware platform consists of three main parts
seen in Fig. 3. The first part is the desktop computer
with a real-time algorithm running on it. It receives the
position information from the Vicon Server, calculates the
desired thrust and attitude and finally sends them to the
quadrotor every 0.02s via the Zigbee module. The second
part is the quadrotor (Astec HummingBird) as well as its
cable-suspended load and both of them are labeled with
appropriate reflective markers. The last part is the motion
capture system (VICON) which updates the information of
the attitude and position of the quadrotor and the load at
the frequency of 100Hz. The fast and high-precision 3D
position data makes it possible for the HummingBird to
track an aggressive trajectory.

The optimization problem is sloved offline using Matlab
on 2.0GHz Intel Core i7 laptop and the runtime for solving
the optimization problem is around 100s. In real time,
as a low order equivalent system is utilized instead of a
complicated nonlinear one, the computation load for the real
time part is acceptable.

4.1 System Identification

The model identification is a preparation step for the
experiment. In this stage we choose some specific
references {yr

Q, ẏr
Q, ÿr

Q} to excite the system. A so-called
chirp signal is designed as the position reference yr

Q for
quadrotor which lasts for tmax long and its frequency
linearly increases from 0 up to fmax(Hz) seen in Eq. 23.
In this way, the system could be sufficiently excited in the
frequency band, namely, [0, fmax].

yr
Q = Asin

(∫ t

0
λτdτ

)
= Asin

(
1

2
λt2

)

λ = 2πfmax

tmax

(23)

where, 0 ≤ t ≤ tmax , A = −0.2m, fmax = 0.7Hz,
tmax = 20s, λ = 0.2199(rad/s2).

Based on the PD controller in Eq. 18, the quadrotor is
controlled to follow {yr

Q, ẏr
Q, ÿr

Q} and it will fly back and
forth in yg directionwith a faster and faster velocity as well as
a bigger and bigger swing angle. The time lapse snapshot is
shown in Fig. 4 and the relevant results are plotted in Fig. 5.

As seen in Fig. 5a, the measured position (red solid line)
of the quadrotor has an obvious decline in the magnitude
while the desired trajectory (black dashed line) becomes
more aggressive. It matches well with the frequency
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Fig. 4 Time-lapse snapshot of
the manoeuvre for model
identification

characteristic of a practical system that the magnitude gain
decreases while the frequency increases. In (b) and (c),

the measurements of velocity and acceleration of quadrotor
are obtained by calculating the first and second derivation

Fig. 5 Practical test for model identification. a black dashed line: a
user-defined trajectory for quadrotor to track which is a chirp signal,
red line: practical position of quadrotor yQ measured by VICON. b red
solid line: velocity of quadrotor ẏQ obtained by calculating the first

derivative of yQ. c red solid line: acceleration of quadrotor ÿQ obtained
by calculating the second derivative of yQ. d red solid line: ye, posi-
tion of payload with respect to quadrotor. blue dashed line: estimated
ye based on the identified low order equivalent system
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Fig. 6 Boundary constraints at
t0 and tF for trajectory tracking
phase

of yQ, respectively. In (d), the measurement of ye is the
difference between the positions of quadrotor and load.

Then, choosing ÿQ and ye as the input and output
sequences respectively, the frequency based recursive least

Fig. 7 Numerical simulated trajectories under different conditions,
namely, different starting points: 1.0m(red), 0.0m(green), -1.0m(blue),
different tF : 3s(dotted), 5s(dashed), 7s(solid). a trajectory of load

in ygzg plane. b position of quadrotor (yQ vs. time). c velocity of
quadrotor (ẏQ vs. time). d acceleration of quadrotor (ÿQ vs. time)
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Fig. 8 Desired (red solid) and practical (blue dashed) trajectory. a position of quadrotor yQ. b velocity of quadrotor ẏQ. c acceleration of quadrotor
ÿQ. d position of payload with respect to quadrotor ye

Fig. 9 3D animation of the flight based on VICON data. blue dotted line: trajectory of the quadrotor. green dotted line: trajectory of the load. The
animation video is available on https://www.youtube.com/watch?v=0xjwftBTVWM
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Fig. 10 Time-lapse snapshots of
the flying manoeuvre. The video
is available on https://www.
youtube.com/watch?
v= 0LmyNKiCg4

square estimation technique is applied and the identified
parameters are acquired in Eq. 24.

K = −1.3477

ω = 4.1268, ζ = 0.0634 (24)

Thus, the state space equation in Eq. 9 is now available. In
order to check its effectiveness, the estimation of ye based
on the identified model is also plotted in Fig. 5d (blue
dashed line) and it is very close to the measured one.

4.2 Trajectory Generation

As seen in Fig. 6, the window locates in y = 2.0m and the
height of the gap is 1.0m. The total height of “quadrotor
and load” system is larger than that, which means it cannot
pass the window without swinging. In order to solve this
problem, the “passing window” strategy consists of three
phases. In the first phase, the quadrotor takes off with the
cable-suspended load, then moves to a starting position and

maintains hovering. The second phase is also illustrated
in Fig. 6 where the quadrotor starts to track a pre-defined
trajectory from t0 to tF so that the load will be swung up to
an appropriate height and be able to pass the window. In the
last phase, the quadrotor switches to tracking the load and
then the whole system will fly through the gap. Among all
three phases, generating a feasible trajectory for the second
phase is the most important and challenging problem. With
the identified model Eqs. 9, 24, the trajectory generation
problem is solved under the general framework of Eq. 21.

At initial moment in Fig. 6, the system maintains
hovering, so ẏQ(t0), ye(t0) and ẏe(t0) are all equal to 0.
In order to analyse the impact of flight distance, yQ(t0) is
given three different values (−1m, 0m, 1m). As a result, the
constraints at t0 are as follows.

x−
0 = x+

0 = ({−1m, 0m, 1m}, 0m/s, 0m, 0m/s) (25)

The constraint of the states at tF is set to be the same for
trajectories with different starting positions. Specifically,

Fig. 11 Time-lapse snapshots of
the trajectory through the
window

J Intell Robot Syst (2020) 98:387–401 397

https://www.youtube.com/watch?v=_0LmyNKiCg4
https://www.youtube.com/watch?v=_0LmyNKiCg4
https://www.youtube.com/watch?v=_0LmyNKiCg4


yQ(tF ) and ye(tF ) are given to make sure that the quadrotor
can swing the load up to an appropriate height, which is also
the highest position where ẏe(tF ) is equal to 0m/s. At that
moment, there will be enough space for quadrotor and load
to pass through the gap and the velocity ẏQ(tF ) is set as
0.6m/s.

x−
F = x+

F = (1.2m, 2.0m/s, 0.6m, 0m/s) (26)

For the sake of safety, the trajectory should respect the
following boundary constraints in terms of distance and
velocity from t0 to tF .

x− = (−2.0m, −4.0m/s, −0.7m, −4m/s)

x+ = (2.0m, 4.0m/s, 0.7m, 4m/s) (27)

Considering the trajectory’s feasibility, the limitation of the
control inputs are considered as follows.

u− = −6m/s2, u+ = 6m/s2 (28)

Without loss of generality, starting time t0 is equal to 0s.
In order to analyze the impact of different flying time, the
terminal time tF is given as three values.

t−F = t+F = {3s, 5s, 7s} (29)

Based on different sets of boundary constraints from
Eqs. 25–29, several trajectories are generated by the
optimization algorithm and are illustrated in Fig. 7.

As seen in Fig. 7a and b, all the trajectories start from
moving left to nearly the same position and then moving
right again, which is viewed as the initial adjustment. After
that, all the trajectories nearly have the same segment where
the quadrotor suddenly moves right and starts to swing up
the load, which is determined by the constraints in Eq. 26.
Meanwhile, in Fig. 7c and d, it can be seen that when the
simulation time is shorter the generated acceleration will
be bigger which means the trajectory will become more
aggressive. On the contrary, when the simulation time is
longer it will generate a trajectory with smaller acceleration
but more oscillations.

4.3 Tracking Result

The complete flying process consists of three stages (Fig. 8).
The first stage is to position the system. The second stage is
the tracking stage where the generated trajectory is tracked.
The third stage is the final one where the quadrotor and the
payload is separated and the tension of the cable becomes
zero. The detailed behavior is described as follows:

In stage slowromancapi@ (0s-25s), the quadrotor takes
off with the load, moves to the initial position, keeps
hovering and waits for the command to step into the next
stage.

In stage slowromancapii@ (25s-30s), the quadrotor
begins to track the generated trajectory {ÿr

Q, ẏr
Q, yr

Q}.

Firstly, it starts to move back and forth in order to gradually
increase the swing angle of the load. At the same time,
it adjusts its distance to the window so that it is feasible
to swing up for passing. After that, the quadrotor starts
the “final shot”. It speeds up from position A in order to
increase the kinematic energy of the load and then decreases
the speed until position B waiting for the load to swing up to
an ideal height and pass the center of the window, position
C. In this stage the tension of the cable keeps non-zero. At
the end of stage slowromancapii@, the load is in position C
and the quadrotor is in position B. In order to keep passing
through the window, the load’s position in y direction is
automatically given as the set-point for the quadrotor, which
is stage slowromancapiii@ (after 30s). This is the reason
why there are some specific pulse signals at the very first
beginning.

In stage slowromancapiii@ (after 30s), the quadrotor
starts to immediately speed up from position B and fly
through position C just following the load. Meanwhile, the
load undergoes a projectile motion from position C as the
cable tension becomes zero. The system then goes back to
hovering situation when the quadrotor and load pass through
the gap. The result shows the quadrotor is able to carry the
load to track the desired trajectory.

However, considering the time delay from wireless
communication, there are some discrepancies between the
practical test and simulation results. In Fig. 8a, the set-point
for stage III is set for several sampling periods earlier which
begins at around 29.6s. Meanwhile, the measurements of
stage II might end later than 30s, where ye at this moment
is around 0.6m and ẏQ is around 2m/s.

The trajectory that calculated under the condition (0m,
5s) is then chosen as the set-points (yr

Q, ẏr
Q, ÿr

Q) for
the quadrotor to track in real experiment. By using the
PD controller in Eq. 18, the quadrotor is able to track
the generated optimal trajectory. The trajectories of both
quadrotor and load are measured with the VICON system
and thus a 3D animation is shown in Fig. 9. Additionally
two time-lapse snapshots of the tracking result are shown
in Figs. 10 and 11. The comparison between the desired
trajectory and the measured one is shown in in Fig. 8.

5 Conclusions

In this paper, we have presented a solution to the problem
- a quadrotor to carry a payload flying through a narrow
window with the assumption that its complicated dynamic
model derived from the First Principle is unavailable.
Our solution includes three parts, namely the system
identification, the trajectory generation and the trajectory
tracking controller. The system is assumed to conduct
the window passing behaviour in the vertical plane and
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then a 2D planar model of this system is developed. To
take the practical environmental factors into consideration,
the system model is identified through experimental data.
The identified model is then used for the trajectory
generation and the tracking controller. The identified
system is simplified as a low order equivalent system
(LOES) with a single input and single output. And a least
square estimation in frequency domain is employed to
estimate the system parameters. The trajectory generation
is turned into an optimization problem with appropriate
constraints. The generated trajectory is aggressive, which
means the quadrotor has to swing the load to acquire
sufficient kinematic energy to pass the window. Finally,
a practical demonstration is implemented which validates
the proposed approach. In the future, we would like to
choose a more complicated model for system identification
to generate the corresponding trajectory. The corresponding
trajectory optimization problem would be imposed with
more constraints.
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