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Abstract
This paper proposes a stabilization method for dynamic walking of a bipedal robot with real-time optimization of capture
point trajectories. We used the capture point trajectories to generate the control input, which is the desired zero moment
point (ZMP) with a sliding-mode ZMP controller to follow the desired ZMP. This method enables the robot to implement
various dynamic walking commands, such as forward stride, lateral stride, walking direction, single support time, and double
support time. We also adopted enhanced dynamics with the three mass linear inverted pendulum model (3M-LIPM). First,
the compensated ZMP is calculated by both walking commands and kinematic configuration of the robot in closed form.
Then, the walking pattern is obtained by using initial and boundary conditions of the 3M-LIPM, which satisfies the walking
commands. The capture point (CP) trajectory is optimized in real time to control the walking stability and a capture point
tracking controller is used for tracking the optimized CP trajectory, which generates an optimal control input that is near the
center of the support polygon. The performance of the proposed stabilization method was verified by a dynamics simulator,
Webots, and comparison with the original capture point controller-based walking algorithm is presented.

Keywords Three mass inverted pendulum model · Walking pattern generation · Capture point dynamics-based walking ·
Divergent component of motion · Real-time walking optimization

1 Introduction

HUMANOID robots have attracted many researchers in
the field of robotics for more than 20 years as human-
like flexible mobility is expected to be possible with a
bipedal mechanism. Walking stability has been considered
one of the important aspects of bipedal walking as it is
related to the flexible mobility of humanoid robots. As a
stability criterion of walking, zero moment point (ZMP)
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has been used as it is simple to measure and calculate
[1]. The ZMP is the point on the foot at which horizontal
components of the resultant moment generated by active
forces and moments acting on humanoid robot are equal
to zero. If the ZMP is on the edge in the support polygon
of the supporting foot, the robot starts tilting and losing
its stability. To keep the ZMP stable while the robot is
walking, the walking pattern generation method based on
the linear inverted pendulum model (LIPM) is widely used.
LIPM-based walking pattern generation makes it possible to
implement dynamic walking of bipedal robot and it is easy
to analyze the dynamic behavior of the model. The LIPM
dynamics can be decoupled in sagittal and lateral planes and
this property of the model is useful for generating walking
patterns [2–4]. Many variations of this approach have been
studied [5–10]. One of the drawbacks of this approach is the
lack of accuracy of the dynamics model of the robot, which
can lead to walking instability. Many efforts have been made
to overcome this problem by adding more masses, like in the
gravity compensated inverted pendulum model (GCIPM)
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Fig. 1 The robot DARwIn-OP configuration (left) and the kinematic
configuration of the lower part of the robot needed to implement
walking (right)

[11] and the three mass inverted pendulum model [12].
There have also been stabilization approaches with LIPM-
based walking pattern generation to enhance the walking
stability [13–15].

One of the widely used walking stability controls is the
capture point (CP) based walking method. The CP is the
point the robot has to step to in order to stop at a particular
point [16, 17]. Some researchers used this property to derive
walking controllers [18–22]. The walking algorithms use
the CP trajectory to generate a control input which is used
to get walking patterns. This type of walking algorithm
uses the property that the control input and the center of
mass (CM) trajectory is coupled in cascade form. The LIPM

Fig. 2 The three mass inverted pendulum model depicted in 3D space.
xc is the CM of the robot, x1 is the position of the mass attached on
the right knee, and x2 is the position of the mass attached on the left
knee

t
0

Fig. 3 The cZMP to generate the walking pattern with the 3M-LIPM.
pcx is the sagittal cZMP and pcy is the lateral cZMP

dynamics can be decomposed into stable and unstable terms
that are closely related to the CP [23, 24]. The walking
stability can be improved, and the planning process becomes
easier with CP control methods.

This paper proposes a stabilization method for the robot
to implement dynamic walking commands with real-time
CP trajectory optimization to generate an optimal control
input that is the desired ZMP (dZMP) given to the robot
to follow the optimized CP trajectory. To work in dynamic
environments that have many dynamic moving obstacles,
the humanoid robot must implement dynamic walking
commands to avoid collisions. Widely used conventional
CP controllers have a drawback that the control input,
dZMP, can be generated at the edge of the support polygon
which can tilt the robot and make the robot fall down, and
this makes dynamic walking commands be infeasible. The
stabilization method proposed in this paper minimizes this
problem and makes the optimal control input, dZMP, near
the center of the support polygon. This makes it possible for
the robot to perform various dynamic walking commands
composed of wide frontal and lateral strides with short
single support and double support times. The wide range
of the walking commands can be assured to be feasible by
using proposed method.

This paper is organized as follows: Section 2 describes
the capture point trajectory optimization approach to
implement dynamic walking of the bipedal robot. First,
the kinematic analysis of the robot is described. Then, the
walking pattern generation method with the three mass
inverted pendulum model (3M-LIPM) is derived and real-
time optimization of capture point trajectory to generate
optimal control input based on particle swarm optimization
(PSO) is derived. Finally, the ZMP controller using a
sliding-mode controller to perform control is described.
Section 3 shows simulation results of the proposed methods
using a dynamics simulator, Webots, with comparisons to
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Fig. 4 a rZMP trajectory in
sagittal and lateral directions. b
rZMP trajectory on the coronal
plane

Fig. 5 CM trajectory in the SSP
and the DSP

Fig. 6 A flow chart of walking
pattern generation using the
3M-LIPM
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Table 1 PSO optimization variables

Variables Initial Position Initial Velocity

px (−0.045, 0.045) (−0.05, 0.05)

py (−0.045,0.045) (−0.04, 0.04)

ξ0,x (−0.1, 0.1) (−0.05, 0.05)

ξ0,y (−0.155,0.155) (−0.04, 0.04)

CP tracking controller-based walking. Section 4 concludes
the paper with possibilities and future work of the proposed
approach.

2 Capture Point Trajectory
Optimization-based Stability Control for
Dynamic Bipedal Walking

The proposed stabilization method for dynamic walking of
bipedal robot is composed of three stages. First, the walking
pattern is generated using the 3M-LIPM which satisfies
the walking commands with walking primitives. Secondly,
the CP trajectory is optimized in real-time using a PSO
algorithm to make the optimal control input, dZMP. Then,
a ZMP controller modifies the CM trajectory to control the

ZMP and follow the optimized CP trajectory in a position
controlled robot platform DARwIn-OP.

2.1 Robot Kinematics Analysis

The DARwIn-OP, shown in Fig. 1, was used to verify
the performance of the proposed stabilization method.
The kinematics are solved by homogeneous transformation
matrices from the base (supporting foot) to the CM and to
the end of the link (swing foot) as follows:

RCOG
1 =

∏5

i=1
Ri+1

i ,Rend
1 =

∏11

i=1
Ri+1

i (1)

A 6x1 vector composed of positions and orientations is
obtained by Eq. 1. The inverse kinematics are solved by
an iterative method using Jacobian transpose matrices with
roll-pitch-yaw (RPY) conventions as follows:

ẋCOG
1 = JCOG

1 θ̇6×1, ẋ
end
1 = Jend

1 θ̇12×1 (2)

where xCOG
1 is a 6x1 matrix, θ6×1 is a 6×1 matrix and

θ12×1 is a 12×1 matrix composed of joint angles, JCOG
1 is a

6×6 matrix and J end
1 is a 6×12 matrix. Inverse kinematics

are easily analyzed by using the transpose of Eq. 2, which

Fig. 7 Objective function values
after PSO optimization with
every control sampling time in
one of the walking commands
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Fig. 8 An example of
computation time for the PSO
optimization with every control
sampling time in one of the
walking commands

is the pseudo-inverse iterative approach to solving inverse
kinematics.

2.2Walking Pattern Generation with a ThreeMass
Model

A walking pattern is generated with the three mass inverted
pendulum model as shown in Fig. 2. Unlike widely used
walking pattern generation based on multiple mass models,
we used the original LIPM dynamics which is single mass
model to represent dynamics of the robot and adopted a
compensated ZMP that is derived from two masses attached
on the right and left knees as it can be used in real-
time pattern generation due to computational simplicity.
The dynamics of the LIPM are derived by using the ZMP
equation as follows [2, 3]:

ẍc = g

Zc

(xc − p) (3)

where xc is the position of the CM with respect to support
origin, p is the ZMP vector with respect to the support
polygon’s origin, Zc is the height of the CM, and g is the

gravity constant. As we can decouple sagittal and lateral
dynamics with LIPM, xc in Eq. 3 is either sagittal or
lateral position of CM and p in Eq. 3 is also either sagittal
or lateral ZMP. The explicit solution of the differential
equation (Eq. 3) decoupled in sagittal and lateral directions
in the time domain is easily obtained by using the Laplace
transform as follows:

[
xc(t)

ẋc(t)

]
=

⎡

⎣ cosh
(

t
Tc

)
Tc sinh

(
t
Tc

)

1
Tc

sinh
(

t
Tc

)
cosh

(
t
Tc

)

⎤

⎦
[

x0
ẋ0

]

+
⎡

⎣ 1 − cosh
(

t
Tc

)

− 1
Tc

sinh
(

t
Tc

)

⎤

⎦p (4)

where Tc is
√

g/Zc. Conventional walking pattern gener-
ation methods use the CM trajectory obtained from Eq. 3
with p = 0, which means that the resulting ZMP is assured
to be at the center of the support polygon when the robot
tracks the generated CM trajectory. Although it is simple
and reasonable to use a walking pattern generated with p =

Fig. 9 Overall real-time capture point trajectory optimization based stability control method for dynamic walking of bipedal robot
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0, modeling error is sometimes too significant, especially
when drastic walking commands are needed. Therefore, in
order for the robot to perform stable walking we used the
concept of the compensated ZMP (cZMP) to compensate
this modeling errors by adding two masses on both sides of
the knees. The idea is simple. First, the walking pattern sat-
isfying the walking command is obtained using the LIPM
dynamics. Then the trajectory of the additional masses is
obtained by similar triangles formulated to a proportional
expression when the CM tracks the previously obtained
walking pattern that satisfies the walking command. Then,
the ZMP acting on the support foot due to the motion of the
additional masses can be computed by the ZMP equation as
follows:

pc =
∑2

i=1 mi {(z̈i + g) xi − (zi − p) ẍi}∑2
i=1 mi (z̈i + g)

(5)

where pc is a ZMP caused by motion of the mass and xi ,
zi are position components of the mass. The mean of the
cZMP is obtained by integrating Eq. 5 from 0 to single
support time, T SS and dividing it by T SS . The cZMP can
compensate the modeling error of the LIPM. As the ZMP
caused by the additional masses are cZMP, if we put the
opposite of cZMP, −cZMP into Eq. 4, we can cancel this
effects out. The resulting scalar values −pcx or −pcy are
used to generate a walking pattern as an input p to Eq. 4
to compensate the effects of additional masses. Therefore,
the walking pattern generator generates CM trajectory that
compensates the effects of supporting leg and swing leg by
substitution of the opposite sign of cZMP. The cZMP has
a form of scaled step function from t = 0 to t = T SS as
shown in Fig. 3. There are possible regions for sagittal and
lateral cZMPs that are the sizes of the foot in the sagittal
(pcx,min,pcx,max) and lateral (pcy,min,pcy,max) directions.
This method is useful as it is simple to calculate, which
makes it possible to generate real-time walking patterns and
as many additional masses as possible can be attached if
needed.

The walking pattern generation method proposed in this
paper can make the bipedal robot perform various walking
motions following walking commands which are sent to the
robot by some kind of footstep planners or path planners,
which are a layer above pattern generation and the control
layer. The walking command is defined as follows:

ci = [SF
i , SL

i , θi, T
SS
i , T DS

i ]T

where the subscript is the sequence number of the walking
command, SF is sagittal step length (frontal stride), SL is
lateral step length (lateral stride), θ is a direction of walking
(walking angle), T SS is single support time during the single
support phase (SSP), and T DS is double support time during
the double support phase (DSP). To generate the walking
pattern satisfying the walking command, a reference ZMP

(rZMP) needs to be planned and this rZMP is used to
calculate the next foot position, which is the position of
the swing foot when it lands on the ground with respect to
the supporting foot. This rZMP is also used to generate the
reference walking pattern and this is used to calculate the
cZMP generated by the motion of reference walking pattern.
The rZMP is planned in world coordinates as follows:

[
dpi+1
dqi+1

]
=

[
dpi

dqi

]
+

[
cosθi −sinθi

sinθi cosθi

] [
SF

i

(−1)i (SL
i + Loff set )

]
(6)

where dp is sagittal rZMP, dq is lateral rZMP, and Loff set

is a constant the same as the size of the pelvis of the robot.
An example of planning the rZMP is shown in Fig. 4. The
walking primitives (WP) are defined as the initial and final
positions of CM in the SSP as follows:

WP i =
[
x

cog,i
i , y

cog,i
i , x

cog,f
i , y

cog,f
i

]T

where x
cog,i
i , y

cog,i
i is the initial position of the CM and

x
cog,f
i , y

cog,f
i is the final position of the CM. The final

position of the CM in the SSP becomes the initial position
of the CM in the DSP and the final position of the CM in
the DSP with WP i becomes the initial position of the CM
with WP i+1. WP is a boundary condition for the CM and
is calculated as follows:
[

x
cog,i
i

y
cog,i
i

]
= diag(kF , kL)

[
−SF

i−1

(−1)i(S
L

i−1 + Loff set )

]
(7)

[
x

cog,f
i

y
cog,f
i

]
=

[
cosθi −sinθi

sinθi cosθi

]

diag(kF , kL)

[
SF

i

(−1)i(S
L

i + Loff set )

]

where kF is the sagittal primitive factor and kL is the lateral
primitive factor. Both of these primitive factors range from 0
to 1/2. If the primitive factors are 1/2, there is no DSP in the
walking pattern. The CM trajectory in the DSP is affected
by primitive factors and it gets longer if the primitive factor
becomes close to zero. We used 1/4 for kF and kL. Figure 5
shows the CM trajectory in both the SSP and the DSP
when the primitive factors are 1/4. In the DSP, the CM
trajectory is obtained by linear interpolation that satisfies
the boundary condition defined by the WP . In the SSP, the
walking pattern satisfying Eq. 7 is obtained by solving the
initial velocity of the CM in Eq. 4 with mean of Eq. 5 as
p. The trajectories for the swing leg is obtained by using
Cycloid function to minimize the impact of landing foot.
The overall process for generating the walking pattern is
depicted in Fig. 6. In the view point of state transition, the
walking pattern is generated as shown in Fig. 6. It changes
to the swing leg flight off state and becomes SSP state then
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changes to swing leg landing state, and then DSP state. In
the end of DSP, the process repeats and the robot walks the
next step.

2.3 Capture Point Trajectory Optimization

The CP is the point where the robot has to land its swing
leg to make it stop at a point. The CP is easily derived
by decoupling the LIPM dynamics and the robot can walk
more stably by tracking the CP trajectory with a CP tracking
(CPT) controller. There are two types of advantage of using
a CP for walking control. First, the walking pattern of the
CM is obtained without considering WP and the boundary
conditions as the CM trajectory satisfying the predesigned
dZMP is automatically obtained by the CPT controller.
Second, the unstable component of motion, which is the so-
called divergent component of motion, can be suppressed
while walking. The CP dynamics are defined as follows [18,
19]:

ξ̇ = ẋc + ẍc

w
(8)

where ξ is the CP and w = 1/T c. The solution of Eq. 8 is
as follows [19, 20]:

ξ(t) = ewtξ0 + (1 − ewt )p (9)

ξ0 = xc,0 + ẋc,0

w

where xc,0 is the nominal initial CM position and ẋc,0 is the
nominal initial CM velocity. The nominal CP trajectory is
planned as follows:
[

ξd,x

ξd,y

]
=

[
cosθi −sinθi

sinθi cosθi

] [
ewt ξ0,x + (

1 − ewt
)
px

ewt ξ0,y + (
1 − ewt

)
py

]

(10)

where ξd is the desired nominal CP trajectory to be planned,
ξ0 is the initial CP defined by xc,0 + ẋc,0/w, and p is
the initial ZMP. We can derive a control law to follow the
desired CP trajectory as follows [19]:

pd=ξ ref −ewdT ξ

1−ewdT
(11)

where ξ ref is the reference CP trajectory and it is obtained
by changing wt to w(t + dT ) in Eq. 10, and dT is control
sampling time. To track the reference CP trajectory Eq. 11
is used as a control input to the CPT controller [19]. This
method has a drawback that the dZMP obtained from Eq. 11
can be outside of the support polygon and some kinds of
projection method was proposed to deal with this issue [20].
We solved this problem and generated an optimal dZMP
by optimizing the CP trajectory, which makes the robot
walk more stably with the dZMP being near the center of
the support polygon. This can be interpreted as optimizing
the CP offset by adjusting the dZMP and initial CP to

match the measured CP to the real CP obtained from the
LIPM dynamics. Furthermore, there was no rule to make a
reasonable reference to the CP trajectory in the conventional
CPT controller, but it was heuristically determined using
some offset from the center of the footsteps, which is the
predesigned center of the dZMP region, or by using a
backwards iteration to set the CP offset [20].

With an optimization approach we can deal with the
uncertainties in this problem and obtain an optimal CP
offset to generate the optimal control input for the CPT
controller. In addition, a backwards iteration is no longer
needed to set the CP offset as the optimization automatically
generates a CP trajectory. PSO is a popular optimization
method for solving global optimization problems as it will
nearly always assure a global optimum in solution sets and
it is very simple to implement the optimization process. The
optimization problem with PSO is formulated to minimize
the following objective function:

f =ξ ref −ewdT ξ

1−ewdT
· (C1x̂sup+C2ŷsup

) +penalty (12)

where x̂sup and ŷsup are the unit vector of the supporting
foot’s orientation and the penalty is to ensure that the end of
the CP is in the next supporting polygon. The optimization
variables are ξ0 and p in the reference CP trajectory, ξ ref .
We used 300 particles for PSO optimization with randomly
selected initial position and velocity of the particle as shown
in Table 1. For the stop criterion of the optimization, we
decomposed objective function (12) into sagittal and lateral
direction with sagittal component smaller than C1 = 0.015
and lateral component smaller than C2 = 0.002. The stop
criterion of the optimization is Eq. 12 smaller than 0.017.
With these C1 and C2, we can assure that the dZMP is
generated near the center of the supporting foot because
the size of supporting foot of the DARwIn-OP is (-0.04,
0.04) in sagittal direction and (-0.027, 0.027) in lateral
direction. With this optimized control input, dZMP (pd,opt ),
CP can track the optimized CP trajectory by the CPT
controller. We can see that the optimization is performed
well in every control sampling time as shown in Fig. 7.
This method makes the robot implement various dynamic
walking commands as the control input is feasible even
if the walking commands are drastic as the limitation of
the control input is enlarged. This optimization process is
implemented in the control sampling time and we used 8ms
to optimize the CP trajectory. An example of computation
time for the optimization is shown in Fig. 8 and we can
conclude that PSO optimization finds the solutions within
the control sampling time (8ms) with the given parameters
in Table 1. We need a ZMP controller for tracking the
optimized control input, pd,opt that makes the current CP
track the optimized CP trajectory.
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Table 2 Dynamic walking simulation cases

Case Forward
stride

Lateral
stride

Rotation Time

Drastic Dynamic
Walking

Dynamic Dynamic Fixed Drastic,
Dynamic

Rotational Walking Fixed Dynamic Dynamic Fixed

Fast Walking Fixed Dynamic Fixed Short,
Dynamic

2.4 ZMP Controller

We used a ZMP controller for the position-controlled robot,
DARwIn-OP. We adopted the ZMP controller based on
sliding mode control (SMC) to minimize model uncertainty
with robustness to disturbances. In the position-controlled
robot, the ZMP can be controlled as follows [15, 20]:

ẍd= −K
Fz

Zc

e−λ
Fz

Zc

sign(σ ) (13)

where K is the state feedback gain, σ is the sliding
manifold, λ is control gain, and e is (pd −p). This controller
uses a dynamics property that relates the CM acceleration
to the ZMP. The ZMP has a property of being shifted in
the opposite direction to the CM acceleration. The desired
CM position for the ZMP control is obtained from Eq. (13)
by integration and the robot CM trajectory is modified by
adding this value.

2.5 Overall CP Optimization-BasedWalking Stability
Control

The overall proposed walking stability control method is
depicted in Fig. 9. First, the sequence of walking commands
ci is converted to a walking primitive WP i and then
fed to the walking pattern generator. The walking pattern
generator calculates the CM trajectory with the dZMP at
the center of the support polygon, and then calculates
cZMP using the 3M-LIPM method. The generated walking
patterns are used as the nominal CM trajectory. Then the
reference CP trajectory is planned by using Eq. (10). PSO
is applied before generating a control input in the CPT
controller in real-time which means that the optimized
solution is obtained within a control sampling time, for
which we used 8ms. Then the ZMP controller modifies
the CM trajectory to track the dZMP, pd,opt , which makes
the CP follow the optimized CP trajectory. This process is
repeated until the current walking command ends. The next
step is then optimized and controlled in the same manner.
In the viewpoint of control, the optimized control input,
pd,opt is ensured to be continuous in every states including
the moment of state change from SSP to DSP as the CPT
controller generates continuous control input. The stability

in SSP is ensured by tracking desired ZMP generated in the
center of support polygon by CPT controller. The stability in
the moment of state transition from SSP to DSP is ensured
by 3M-LIPM model as the CM trajectory is planned ending
in the support polygon which is a convex hull of two feet.
The stability in DSP is ensured as the overall walking
stability control shown in Fig. 9 is used, which makes
ZMP follows dZMP in the support polygon. Therefore, the
stability in all of the states is ensured with proposed walking
stability control method with CPT optimization.

3 Simulations

The performance of the proposed stabilization method is
verified through simulation using a dynamics simulator,
Webots. We categorized the simulation cases of dynamic
walking as shown in Table 2. A drastic dynamic walking
case is composed of drastic walking commands, which
means that the forward strides, lateral strides, and support
time are changed in every step. This drastic dynamic
walking is very hard for the robot to implement due to the
modeling inaccuracy. The rotational walking case is tested
to confirm that a general walking command is possible
and that the rotational motion is more stable and feasible
with the proposed method. The fast walking case, which is
normally hard to implement as the robot loses its stability
due to modeling inaccuracy, is tested to confirm that the
robot can implement fast walking commands with the
proposed method. The conventional CPT controller-based
walking cases are compared to the proposed stabilization
method for all of the simulation cases.

We first tested drastic dynamic walking commands.
The robot should implement various dynamic walking

Table 3 Drastic dynamic walking commands

Walking
commands

Forward
stride
[m]

Lateral
stride
[m]

Rotation
[deg]

SSP
Time [s]

DSP
Time [s]

c1 0.04 0.0 0.0 0.6 0.2

c2 0.06 0.0 0.0 0.7 0.2

c3 0.065 0.035 0.0 0.55 0.2

c4 0.06 0.0 0.0 0.45 0.2

c5 0.0 0.0 0.0 0.5 0.2

c6 0.05 0.025 0.0 0.35 0.2

c7 0.025 0.0 0.0 0.5 0.2

c8 0.05 0.055 0.0 0.35 0.2

c9 0.07 0.0 0.0 0.4 0.2

c10 0.01 0.0 0.0 0.5 0.2

c11 0.03 0.0 0.0 0.35 0.2

c12 0.07 0.0 0.0 0.75 0.2
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(a) (b)

Fig. 10 Implementing drastic dynamic walking c1 to c12 with a the conventional CPT controller and b the proposed stabilization method

Fig. 11 The measured ZMP in
both the sagittal and lateral
directions (conventional CPT)

Fig. 12 The measured ZMP in
both the sagittal and lateral
directions (proposed
stabilization method)
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Fig. 13 CP tracking in the
sagittal and lateral directions
(conventional CPT controller)

commands to cope with dynamic moving obstacles, such as
avoiding moving obstacles, stopping suddenly, accelerating
suddenly, or a large movement. The proposed stabilization
method makes it possible for the robot to perform these
tasks as the robot can stably implement drastic dynamic
walking commands. The tested walking commands are
shown in Table 3. It was noticed that the robot loses its
stability with the conventional CPT controller while the

proposed method with a CPT controller can implement all
of the drastic dynamic walking commands without losing
walking stability, as shown in Fig. 10. The conventional
CPT controller-based walking is infeasible for c9 to c12, as
shown in Fig. 11, which is represented by the red box, while
the proposed stabilization method can implement these
dynamic walking commands stably, as shown in Fig. 12.
The ZMP is saturated at the edge of the support polygon

Fig. 14 CP tracking in the
sagittal and lateral directions
(proposed stabilization method)
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Fig. 15 CM trajectory in the
SSP and the DSP (conventional
CPT controller)

in CPT controller-based walking and the control input is
generated near the edge of the support polygon, which
means that it is not feasible to follow the drastic dynamic
walking commands. On the other hand, the proposed
stabilization method makes the system stable, as shown in

Fig. 12. There is no saturation of the control input and the
measured ZMP shows that it recovers the walking stability
in a short period of time. In addition, both the control input
and the measured ZMP are generated nearer the center of the
support polygon than in conventional CPT controller-based

Fig. 16 CM trajectory in the
SSP and the DSP (proposed
stabilization method)
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Table 4 Rotational dynamic walking commands

Walking
commands

Forward
stride
[m]

Lateral
stride
[m]

Rotation
[deg]

SSP
Time [s]

DSP
Time [s]

c1 0.05 0.0 0.0 0.6 0.2

c2 0.05 0.0 5.0 0.6 0.2

c3 0.05 0.0 5.0 0.6 0.2

c4 0.05 0.0 5.0 0.6 0.2

c5 0.05 0.0 5.0 0.6 0.2

c6 0.05 0.0 0.0 0.6 0.2

c7 0.05 0.0 0.0 0.6 0.2

c8 0.05 0.0 −5.0 0.6 0.2

c9 0.05 0.0 −5.0 0.6 0.2

c10 0.05 0.0 −5.0 0.6 0.2

c11 0.05 0.0 −5.0 0.6 0.2

c12 0.05 0.0 0.0 0.6 0.2

walking, which comes from the 3M-LIPM-based walking
pattern generation and an optimal control input by CP
trajectory optimization. Figures 13 and 14 show the sagittal
and lateral CP tracking results by the CPT controller without
and with the proposed CP optimization, respectively. The
optimization-based CP result scale is shorter than the
conventional CP as the control input should be generated
near the support polygon. These variations of the CP offset
can make the drastic dynamic commands feasible. It can
also be seen that the CP ends at the landed foot (the next
support foot), which means that CP-based walking still
holds. Figures 15 and 16 show the CM trajectory without
and with CP optimization, respectively. The proposed
optimization-based stabilization method is shown in Fig. 16
and the CM in the SSP shifts more to the support

polygon due to the stability control than conventional CPT-
based walking. In the proposed stabilization method, the
control input is generated optimally near the center of the
support polygon and the ZMP controller shifts the CM to
the center of the support polygon to follow the control
input.

The second dynamic walking simulation case is the
dynamic rotational walking case. This rotational command
is tested to confirm that the proposed stabilization method
is more stably implemented for rotational motions and that
general walking commands including rotational motion are
feasible. The tested rotational walking commands are shown
in Table 4. It can be seen that the robot can implement
rotational motions as shown in Fig. 17. Although it is hard
to notice that slips occur during walking with conventional
CPT controller-based walking, the proposed stabilization
method with a CPT controller shows that it does not
have slip motions during rotational motions. The ZMP is
measured nearer to the center of the support polygon with
the proposed method than conventional CPT controller-
based walking, as shown in Figs. 18 and 19, and this means
that the proposed optimization-based stabilization method is
more stable in general cases, including rotational motions.

The third dynamic walking simulation is the fast walking
case. Fast walking dynamic commands are tested to confirm
that the proposed stabilization method is feasible and
more stable in fast walking, which is characterized by
short periods of single support and double support time.
The tested fast dynamic walking commands are shown in
Table 5. It is usually very hard for conventional approaches
to make these kinds of commands feasible due to the
modeling inaccuracy. However, it was noticed that the robot
can stably walk very fast with the proposed stabilization
method, whereas it tilts and falls down after losing its

(a)

(b)

Fig. 17 a Implementing c1 to c12 with the conventional CPT controller b Implementing c1 to c12 with the proposed stabilization method
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Fig. 18 The measured ZMP in
both sagittal and lateral
directions (conventional CPT
controller)

walking stability with conventional CPT-based walking,
as shown in Fig. 20. Conventional CPT controller-based
walking is infeasible as the control input is generated
near the edge of the support foot, as shown in Fig. 21
The robot starts losing its walking stability from c9 and
starts falling down at c11 with the conventional approach.
The measured ZMP, shown in Fig. 21, shows that the
measured ZMP and the control input are generated at

the edge of the support polygon, and the conventional
approach cannot recover the stability, and therefore, fails
to implement walking commands from c9 to c15. On the
other hand, the proposed stabilization method with a CPT
controller makes the system recover its instability in a
short period of time, as shown in Fig. 22, with the optimal
control input generated near the center of the support
polygon.

Fig. 19 The measured ZMP in
both the sagittal and lateral
directions (proposed
stabilization method)
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(a)

(b)

Fig. 20 a Implementing c1 to c12 with the conventional CPT controller b Implementing c1 to c12 with the proposed stabilization method

In all of the dynamic walking cases tested with the
dynamics simulator, Webots, the proposed stabilization
method with a CPT controller is confirmed to be much
more stable than the conventional CPT controller-based

walking algorithm. In addition, the feasibility of the walking
commands is assured as the optimization makes the control
input feasible, which means that the control input is
generated near the center of the support polygon. This

Fig. 21 The measured ZMP in
both sagittal and lateral
directions (conventional CPT
controller)
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Fig. 22 The measured ZMP in
both the sagittal and lateral
directions (proposed
stabilization method)

optimization makes the robot implement various dynamic
walking commands. As it is essential for the robot to
implement a large and flexible range of walking commands,
we conclude that the simulation results are very promising
for dynamic walking from the view point of stability and
feasibility.

Table 5 Fast dynamic walking commands

Walking
Commands

Forward
Stride
[m]

Lateral
Stride
[m]

Rotation
[deg]

SSP
Time [s]

DSP
Time [s]

c1 0.05 0.0 0.0 0.4 0.15.

c2 0.05 0.0 0.0 0.3 0.15

c3 0.05 0.03 0.0 0.3 0.15

c4 0.05 0.0 0.0 0.3 0.15

c5 0.05 0.0 0.0 0.3 0.15

c6 0.05 0.03 0.0 0.3 0.15

c7 0.05 0.0 0.0 0.25 0.13

c8 0.05 0.0 0.0 0.22 0.13

c9 0.05 0.03 0.0 0.22 0.13

c10 0.05 0.0 0.0 0.22 0.13

c11 0.05 0.0 0.0 0.22 0.13

c12 0.05 0.0 0.0 0.3 0.13

c13 0.05 0.0 0.0 0.35 0.15

c14 0.05 0.0 0.0 0.35 0.15

c15 0.05 0.0 0.0 0.35 0.15

4 Conclusions

The real-time stabilization method, which optimizes the
capture point trajectory with a CPT controller, was proved to
be very effective when the robot has to implement dynamic
walking commands, such as drastic dynamic walking,
rotational dynamic walking, and fast dynamic walking
commands. The drastic dynamic walking commands are
characterized by short SSP times, short DSP times, large
sagittal strides, and large lateral strides, and it was
confirmed that the robot recovers its instability in a short
period of time and implements all of the commands stably.
The feasibility of these types of drastic dynamic walking
commands is essential for the robot to work in environments
where humans live with many dynamic moving obstacles.
The stabilization method proposed here makes it possible
for the robot to cope with dynamic environments. Rotational
dynamic walking commands include rotational motions and
it was confirmed that the system is more stable with the
proposed stabilization method with a CPT controller than
the conventional CPT controller-based walking algorithm.
The fast dynamic walking commands have a very short SSP
time and DSP time. Although it is very difficult to make
these kinds of walking commands feasible, it was confirmed
that the robot can walk fast and stably with the proposed
stabilization method, whereas the conventional approach
fails and the robot falls down.

The feasibility of implementing dynamic walking com-
mands can be assured by optimizing the CP trajectory in
every sampling time. The CP optimization generates the
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optimal CP offset which was set by heuristically or by back-
ward iteration method before. It can be seen that CP-based
walking still holds when the optimization is applied, as
shown in Fig. 14. This is because a CPT controller layer
works to follow the optimal CP trajectory with an opti-
mal control input generated near the support polygon. This
assures that the robot recovers any instability as soon as the
ZMP becomes unstable. In addition, the feasibility of the
control input is assured without the projection method as the
control input is generated inside the support polygon. We
used 8ms for the control sampling time and the optimization
was performed under 5ms even at worst cases and the aver-
age of the optimization time was 2.5ms. Thus, we think that
the proposed method can also be used to bigger robots with
control sampling time of 4˜5ms.

Our future work will be to reduce computation time
for the proposed method by refining objective function,
optimization variables, and search spaces as shorter control
sampling time is advisable for the control performances.
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