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Abstract
Demand for Genetic Algorithms (GA) in research and market applications has been increasing considerably. This can be
explained through big data and the necessity of interpreting them in an automatic, efficient and intelligent way. In the case
of intelligent systems for unmanned vehicles there are two well-defined subsystems: autonomous and robotic navigation.
Despite the present day’s good development of the latter, taking the best decisions is an essential robot’s attribute that can
only be acquired with the former. This work presents a fully programmed GA for a robot to walk around a planar graph G

with the highest efficiency. Each robot’s action is one among five kinds of genes, and fourteen of them build a chromosome,
namely a sequence of actions for the robot to walk all around G. The efficiency of a chromosome is given by the number
of visited vertices and the amount of saved energy, which are both computed by a fitness function. Our GA returns near-
optimal chromosomes for the robot to clean the whole reflection pool with the least energy consumption. Our Coverage Path
Planning differs from others in the literature because they consider obtaining a near-optimal sequence of vertices for the
robot to follow in that order. Moreover, for such a sequence they do not allow vertex repetitions, whereas in our developed
algorithm the robot can pass more than once in a same vertex, with the objective of guaranteeing a lower energy consumption.
This objective already makes our best chromosomes avoid repeating vertices, as we have observed in our experiments.

Keywords Cleaning robot · Reflection pools · Optimisation · Genetic algorithm · Coverage path planning

1 Introduction

Cleaning robots have several applications such as in
housework [1], pool cleaning [2, 3] and sanitising of
industrial facilities [4] (pipes, tanks, warehouses, etc.)
These and many other tasks have several examples in the
literature: driverless cars and tractors [5, 6], fruit harvesting
robots [7] and autonomous glass cleaning machines [1], just
to mention a few. In this paper we deal with a cleaning
robot devoted to reflection pools, and since they typically
have a constant depth one can still work with a two-
dimensional approach. Here we present the implementation
of a genetic algorithm, which complements a previous work
[8] on the mathematics behind our strategies. Among other
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related works we cite Pichon et al. [9], Renaud et al. [10]
and van der Meijden et al. [11] but to the best of our
knowledge they all seem devoted to general pools. However,
cleaning reflection pools brings many simplifications for a
yet demanding task, hence it is worthwhile studying this
special case. Indeed, a typical reflection pool is shallow and
has a constant depth. If we project a 1m tall robot then its top
can carry non-waterproof equipment, which is inexpensive.
Moreover, our problem becomes 2D instead of 3D, and
Fig. 4 in Section 5 shows how the pool is mapped by the
robot itself.

Projecting a robot with autonomous navigation imposes
many challenges. One of the most intricate is the map-based
navigation. This navigation modulus involves planning
near-optimal routes for the robot to accomplish its task even
in the presence of obstacles. In the case of a cleaning robot
the whole area previously specified as being of interest
must be covered by the modulus. This one is sometimes
replaced with reactive navigation, as in the Roomba robot’s
case [12]. It is a vacuum cleaner that performs a random
move around a flat floor, hence without a mapped route
but reacting to any obstacle by either changing direction or
getting round it. After a long time one expects that the robot
will have covered the whole area of interest.
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The map-based navigation may include sensors and com-
puter vision in order to improve the robot’s performance.
For instance, by means of cameras and image processing a
pool cleaning robot can check and decide whether a given
spot needs scrubbing. This helps save energy. However, pro-
jecting and implementing this feature is highly non-trivial
due to computer methods. They still can neither distinguish
nuances nor make evaluations as efficiently as a human
cleaner does.

Our present work is inspired in the work of Mitchell
[13, Ch.9]. There the author presents a practical example of
Genetic Algorithms: Robby, the soda-can-collecting robot.
It is in a 10×10 array of cells, half of them empty and
the rest with only one soda-can per cell. The cans are
uniformly distributed. At each position Robby can check
only five cells for soda-cans: North, South, West, East and
Current Site. It does not know the environment and must
pick all cans with only 200 drill commands, among one cell
left/right/forward/backward, rest and pick.

Robby tries to maximise scores through a Reward-
Punishment Learning Strategy: bumping into the wall gives
−5 and picking a can gives +10, but trying it in an empty
cell gives −1. Namely, it can score 500 at most. By letting
Robby evolve in the Genetic Algorithm learning strategy,
after 10 thousand tries it scored 483 in average. We shall
resume Robby’s example in Section 4.

This paper is organised as follows: in Section 2 we
briefly explain our technique, which is compared to others
in Section 3. In Section 4 we summarise the resources and
overall strategies of our method. It consists of three main
steps that are explained in Section 5. There we give some
details but focus on Section 5.4, where the GA is applied
to a practical example and explained step-by-step. Section 6
presents three experiments with the GA and we finally draw
our conclusions in Section 7.

2 Technical Overview

In our present work we deal with map-based navigation
oriented by predefined routes. However, our approach does
not include computer vision yet, which will be left for
future developments. For any pool contour with obstacles
we obtain a corresponding map of its bottom given by an
almost grid graph G = (V , E). Here V and E stand for the
sets of vertices and edges, respectively. It is almost a grid in
the sense that most of the incident edges make an angle quite
close to either 90◦ or 180◦. Obtaining such G was the main
achievement of our previous work [8]. As explained there, it
is much easier to program the robot’s displacements within
a graph with these simplifications. By the way, throughout
this work we only consider connected graphs.

In previous work [8] we also mentioned that our robot
does not deal with heavy cleaning yet. This is because
of the simplifications of our present approach. In future,
computer vision will help decide whether a spot needs more
brushing or even none, whereas the amount of battery will
also depend on how long the reflection pool has been left
untidy. As one can see, heavy cleaning turns the problem
much more complicated, and therefore we shall only study
it in forthcoming works.

Our robot scrubs each v ∈ V but only once, namely at
the first time the vertex is accessed. The chosen e ∈ E

determine a route for the robot to pass all through the
set V . The robot works with two liftable soft brushes that
spread well beyond the limits of its base. This base is a
0.5×1m rectangle. Adjacent vertices in V are assured to be
35-45cm apart. Hence, each of the robot’s displacement is
just occasionally preceded by ±90◦ rotations before going
straight ahead.

It is much simpler to work with a fixed rotation angle.
In this case the fine-tuning of the robot’s position can be
just periodic. Namely, our robot does not turn by precise
arbitrary angles steadily. Turning by a precise angle happens
only when its move deviates from G within a tolerance
margin.

3 Related Works

Among other approaches found in the literature we cite
the works of Yang and Luo [14], Luo and Yang [15] and
Nedjati et al. [16] and choose the works of Erson and
Hu [17] and Giardini and Kalmár-Nagy [18] for specific
comparisons. Similarly to ours their navigation modulus
consists of planning the route in two main steps: to adopt
an a priori map with a route as obtained here, and to make
adjustments during execution. The second step works as
follows: by comparing the map with the actual topography,
whenever a relevant discrepancy is detected the modulus
must correct the route. In our case this second step is part of
a forthcoming work that will include tests with a toy robot
in a maquette.

In Erson and Hu [17] the authors present a solution based
on the network simplex method in order to find near-optimal
paths by solving the Minimum Cost Flow (MCF) problem.
They do not resort to any Genetic Algorithm (GA), as done
in our case and in Giardini and Kalmár-Nagy [18]. There
the authors developed a planner for autonomous systems
that they called subtour problem, a variant of the Travelling
Salesman Problem (TSP): by subdividing the whole area of
interest into n parts they consider k robots, 1 ≤ k ≤ n, so
that each one will follow a local solution of the TSP for the
cleaning procedure.
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As we have already mentioned, our robot rotates only
by right angles. Fine adjustments to G of both position and
direction occur just when a tolerance margin is exceeded.
This makes our work differ from all the others because their
routes can adopt any angles. Another important specialty is
that our robot does not endeavour to visit each vertex only
once. Passing at each vertex just once comes as a natural
consequence of our GA strategy: to clean the whole pool
with the least possible amount of energy.

Indeed, according to our experiments the best chromo-
somes visit all vertices once, and just a few of them are
visited twice or even three times. Hence, instead of impos-
ing a single visit to each vertex we naturally arrived close to
that through our GA strategy.

At this point we must fix a terminology for the reader not
to confuse with others in the literature, since they are not
unanimous. Ours is presented in Table 1. There the terms
“cannot” and “may repeat” both mean “besides start and end
vertices” for closed routes.

According to Table 1 the near-optimal chromosomes
obtained by our GA will make the robot perform a walk. Its
start vertex must be on a corner of the pool, as explained in
previous work [8], but the end vertex does not have to. See
Section 5 for details.

While the work of Giardini and Kalmár-Nagy [18] is
devoted to obtaining near-optimal cycles for the k robots, in
Erson and Hu [17] the authors seek for near-optimal paths.
As in our case, their robot does not finish cleaning at the
start point either.

4 Materials

For the time being, our main resources are the works of
Mitchell [13] and Driscoll and Trefethen [19], the softwares
Matlab, Surface Evolver and the programming language
C/C++11. Now we briefly describe each of them, and the
reasons that lead us to combine these resources within an
overall strategy to find the near-optimal cleaning procedure.

At the Introduction we mentioned the work of Mitchell
[13, Ch.9], where the author introduces Robby, the
soda-can-collecting robot. Section 5 explains some major

Table 1 Types of Route

Name Vertices Edges Open/Closed

Circuit may repeat cannot Closed

Cycle cannot cannot Closed

Path cannot cannot Open

Trail may repeat cannot Open

Walk may repeat may repeat Any

Fig. 1 A Euclidean (standard) quadrangulation; from [8, Fig.3]

adjustments we made in Robby’s example to obtain
our Genetic Algorithm (GA). For now we remark that
reflection pools can have pretty irregular shapes and include
obstacles. Hence a Euclidean quadrangulation causes many
inconveniences when we strive for optimising the cleaning
procedure. See Fig. 1 and [8] for details. That is why we
resort to non-Euclidean quadrangulations, which can be
obtained via [19]. See Fig. 2.

In general non-Euclidean quadrangulations are quite
irregular, as depicted in Fig. 2b and c. In order to
get an almost grid graph G we need to equalise the
quadrangulation. This procedure is shown in Fig. 3a-c,
which were obtained through the Surface Evolver. This is
a general-purpose simulator for implementing innumerous
physical experiments [20]. The Surface Evolver works with
command lines and scripts written in a built-in language
with a very accessible syntax. Since its first release in 1989
it has developed to a programming language. Nowadays the
scripts are called Evolver-programs. In Section 5 we give a
brief description of the equalisation procedure.

For the time being our robot is called Scrubbrushy. Its
rectangular base is 0.5×1 meter and it has two brushes that
rotate oppositely. They sweep dirty water into a suction
pipe, then into a dirt container where the water passes
through a filter (stiff gauze), and gets back clean to the
pool. Scrubbrushy gets a graph G = (V , E) from a
quadrangulation as shown in Fig. 3c. Here V corresponds to
Robby’s cells but with as few vertices as possible.

The Surface Evolver gives G as a list of vertex and edge
structures. Each edge structure has two pointers to vertex
structures. Namely, each edge e points to its extremes v1,
v2, which are neighbouring vertices. Moreover, G has the
property that any pair of neighbouring v1, v2 ∈ V has a
Euclidean distance d(v1, v2) ∈ [35, 45]cm. See Fig. 3c.

As mentioned in Section 2 the robot works with two
liftable soft brushes that spread well beyond its base. This
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a b c

Fig. 2 Pool with obstacles (left), non-Euclidean quadrangulations (centre, right); from [8, Fig.5]

guarantees that no trace of dirt will remain inside any cell.
Differently from Robby, Scrubbrushy starts with a credit
that corresponds to a full charged battery in Joules. Of
course, our first tests will be with a toy robot in a maquette.
Then the actions and scores are: cleaning a dirty spot gives
-4J, going forwards, sideways or backwards give -1J, -2J
and -3J, respectively.

It is known that a 1kg body accelerates 1m/s2 with
5J in 1s, with 10J in 2s, and so on. Hence our scores
are compatible with a toy, although the exact values will
only be adjusted in future. Scrubbrushy only stops when
either all spots have been cleaned or the battery is empty.
With our GA we find near-optimal chromosomes that make
Scrubbrushy stop before the second case happens. We have
chosen to programme the GA in C/C++11 in order to speed
up the selection of the best chromosomes, together with
some graphic visualisation.

5 Methods

As mentioned in Section 3, our robot does not endeavour
to visit each vertex only once. This is because we
have implemented a GA with the following setup: Each

chromosome consists of a sequence of actions (genes)
for the robot to pass through the vertices v ∈ V ⊂
G, and the arrangement of these actions represents the
chromosome’s efficiency. This one is computed by a double
fitness function f. For each chromosome f gives an ordered
pair where the 1st and 2nd coordinates indicate how many
vertices were cleaned and how much energy was saved,
respectively. Our GA returns near-optimal chromosomes for
the robot to clean the whole reflection pool with the least
energy consumption.

We also commented in Section 3 that the robot’s start
vertex must be on a corner of the pool, but the end vertex
does not have to. This is because the robot gets G = (V , E)

implemented for each (v, e) ∈ G to be a pair of structures
in our GA. These include a member that indicates whether
the element belongs to the pool contour. Once the whole
pool has been cleaned the robot can go straight to a contour
vertex up to getting round some obstacles. Figure 4a-b show
how the robot identifies these elements when it is going to
clean a pool for the first time (see details in [8]).

In this section we explain the three main parts of our
method. The first part consists of the GA preprocessing
in Sections 5.1 and 5.2, together with its logistics in
Section 5.3. The second part is the proper GA, which we

Fig. 3 Equalising and refining a
non-Euclidean quadrangulation a b c
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Fig. 4 Identification of main
contour (left) and obstacles
(right); from [8, Figs.1-2]

a b

illustrate with a practical example in Section 5.4. The third
part begins in Section 5.5, where we explain why the GA
is devoted to sequences of actions rather than of vertices.
Finally the structure of the code, and how to run it, are
detailed in Sections 5.6 and 5.7, respectively.

5.1 Non-Euclidean Quadrangulation

As explained in previous work [8] firstly Scrubbrushy maps
the contours of the reflection pool and of the obstacles
therein. The contour components are then processed by
the Schwarz-Christoffel Matlab Toolbox. See Driscoll and
Trefethen [19] for details. In previous work [8] we had
already obtained a user-friendly graphical interaction in
Matlab called quadr, devoted to drawing and saving pool
contours, including the user’s task of choosing strategic
points to quadrangulate the pool. This task is for now
the only part of quadr that remains semi-automatic. See
Fig. 2a-c.

That semi-automatic part is necessary because the
Schwarz-Christoffel Toolbox cannot handle multiply con-
nected regions. They arise when the pool has more than one
contour component. In future we shall make it automatic as
part of our GA.

The next subsections present the new features that have
been included in our program since the previous work [8].

5.2 Equalisation

In Section 4 we explained that Scrubbrushy gets a graph
G = (V , E) to move around the whole bottom of the
pool. However, G must have the property that any pair
of neighbouring v1, v2 ∈ V has a Euclidean distance
d(v1, v2) ∈ [35, 45]cm, quite close to the robot’s base
dimension 0.5×1m.

Figure 2b and c show two quadrangulations obtained
with quadr which do not have the sought after property
of G. Firstly because either of them has multiple parts

Fig. 5 Subgrids selected (left),
then fitted along borders
(centre) and equalised (right)

a b c
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that do not fit when they meet along the blue segments.
Secondly because the Schwarz-Christoffel mapping keeps
right angles but can change lengths drastically.

Hence, after running quadr the user must invoke an
Evolver-program called equalis. This one takes a subgrid
out of each component of a quadrangulation, fits the
subgrids along their junctions (represented in blue), and
then alternates between refining and adjusting cell lengths
to finally get neighbouring vertices apart by 40 ± 5 cm.
Figure 5a-c depict these three steps with an example.

The last step that resulted in Fig. 5c is detailed in Fig. 3a-
c, where equalis evolved another example that consisted
of a single component.

5.3 Path Optimisation

Similarly to Robby, Scrubbrushy will be placed on a corner
of the reflection pool and then walk all around its bottom
by following a sequence S of vertices in V ⊂ G = (V , E).
The set V can have a large number |V | = nv of vertices,
but surely E has ne edges such that ne < 2nv. This is
due to the Euler-Poincaré formula and the fact that, in our
case, ne is greater than twice the number of cells. Indeed,
in the Appendix we show all the possible types of cells of
our quadrangulations. Any of them has at least 4 edges,
hence ne> 2nc, where nc is the total number of cells. The
Euler-Poincaré formula is

2nv− 2ne+ 2nc = 4,

and therefore 2nv −4 > ne, which we simplify to ne <

2nv.
For a perfect cleaning S must comprise the whole V ,

but Scrubbrushy has to optimise energy consumption. This
is because it will use a battery in order to deal even with
large pools containing obstacles, whence one cannot attach
the robot to the mains. But S will not necessarily consist
of approximately nv elements, and we even expect |S| ∼=
1.25nv. This is because |S| close to nv might cause the
robot to spend too much battery with manœuvres.

Differently from Robby, whenever Scrubbrushy arrives
at a vertex the neighbouring ones cannot be named as the
cardinal points. Many of its displacements will not even be
in intercardinal directions. Hence we call the next vertex by
its position relative to the robot as if Scrubbrushy were a
person with stretched arms: Backmost, Leftmost, Frontmost
and Rightmost. In our GA code going to one of these
positions are actions identified with the integers 0, 1, 2 and
3, respectively.

Scrubbrushy takes an action whenever it gets to a vertex
v, but not similarly to Robby. This one does not always
catch the soda-can but in our case each v accessed for the
first time must be cleaned around. Otherwise the robot will
take some dirt while moving to the next vertex. For the time

being we assume that all vertices are dirty at the beginning,
but in future Scrubbrushy will use image analysis to decide
it. As mentioned in Section 2, we also consider that each v

must be cleaned just once because the robot will not deal
with heavy cleaning.

By looking at either Figs. 3c or 5c the reader will find
vertices with different degrees, namely 1 ≤ deg(v) ≤
4 ∀ v ∈ V . While cleaning the pool Scrubbrushy always
takes another direction after visiting v, but the number of
choices are d = deg(v). In the case d = 1 we say that v

is a spike. Hence, if v is a spike the robot will retreat to the
previous vertex. For that Scrubbrushy will turn 180◦ and go
forward by an edge length. Namely, we have not projected
it with a reverse gear.

If d > 1 then the robot has d + 1 choices: either to take
one of the d directions or to cast a virtual dice. This dice
corresponds to Robby’s random move, a useful choice when
it does not matter which direction to take (e.g. if around v

the neighbouring vertices are all clean or dirty). In our case
the virtual dice has d faces numbered from 0 to d − 1. As
we have just explained, the four directions are given by 0, 1,
2 and 3. We set as 4 the action of casting a dice. See Fig. 6.

Similarly to Robby, among the neighbouring vertices
Scrubbrushy can see which are clean and which are dirty.
In our GA code these two cases are C and D, respectively.
For deg(v) < 4 there is a third case given by N , namely
No Thoroughfare (NT), and this case happens to as many as
4 − deg(v) directions.

Before going ahead we need to discuss an important
detail. A zoomed crossing of Fig. 5c is shown in Fig 6,
where we added labels that represent a possible way the
robot will access it. Notice that coming from the backmost
to the frontmost direction will force the robot to make an
angle supplementary to θ ∼= 135◦, so that it will spend a
bit more than just 1J. As a matter of fact we could say that

Fig. 6 Zoom of a crossing in Fig. 5c, and one possible way for the
robot to access it
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Table 2 The GA strategy

Array Action Situation (D=dirty, C=clean, N=NT)

Entry incl. 0, 4 Leftmost Frontmost Rightmost

26 1, 2, 3 D D D
25 1, 2, 3 C D D
24 2, 3 N D D
23 1, 2, 3 D C D
22 1, 2, 3 C C D
21 2, 3 N C D
20 1, 3 D N D
19 1, 3 C N D
18 3 N N D
17 1, 2, 3 D D C
16 1, 2, 3 C D C
15 2, 3 N D C
14 1, 2, 3 D C C
13 1, 2, 3 C C C
12 2, 3 N C C
11 1, 3 D N C
10 1, 3 C N C
9 3 N N C
8 1, 2 D D N
7 1, 2 C D N
6 2 N D N
5 1, 2 D C N
4 1, 2 C C N
3 2 N C N
2 1 D N N
1 1 C N N
0 � N N N

the robot spends (2 + cos θ)J, and then replace this formula
with the standard values we fixed beforehand. But since we
are working with approximations our GA rounds 2 + cos θ

to the nearest integer.
With this formula we can shorten our chromosomes by

adopting the convention that any d > 1 will label directions
in the order Leftmost (L), Frontmost (F) and Rightmost (R).
For instance, a degree two has only the Leftmost direction
besides Backmost (B), with the subtlety that θ can assume
any value in ]0, π [. Hence, Leftmost with θ ∼= 180◦ means
“straight ahead” in practice.

Table 2 summarises all possible actions for each
situation. Right after the first move the robot’s backmost
vertex will always be clean. For this reason the column
“Backmost” was omitted from the table. Moreover, since
on each line actions 0 and 4 are always possible they were
considered implicitly. An exception is made for the situation
NNN , in which only 0 is possible. This case is indicated
by �. According to our convention the cells marked with
light grey can be omitted from our chromosomes, so that its
initial effective length 26 drops to only 14. In Table 2 we
also marked some actions in bold and considered 0 where
none is marked. They build a special chromosome,

chr := 333333333222100100222100100 (1)

that we shall discuss later. In our short notation we skip the
0th array entry and (1) becomes

chr = 33-33—-22-10—-22-10-10 (2)

Now we include two important exceptions E1 and E2 in
Table 2.

E1: Whenever the robot arrives at v ∈ V for the first time,
it will check for spikes connected to v. Spikes are then
cleaned prior to any other action.

E2: The robot will track its own trajectory, which will be
reversed from any point where action 0 occurs, and the
robot will track the reversed trajectory until encountering
a situation that includes D.

Because of E2 the action 0 means more than just a step
backwards. For instance, with chr the robot will take that
action as long as a situation does not include D. This fact
will be used in the Appendix to prove that chr makes the
robot visit all vertices.

We include E1 for the sake of efficiency, and E2 as a
choice of not letting the robot spend time when surrounded
by clean cells. Of course, even if some few dirty spots
are close to the robot, the exception E2 will send it away.
Hopefully the robot will access these dirty spots later. Of
course, E2 may cause some inefficiency but without it the
robot could spend all the rest of its battery wandering around
a large region of clean cells.

5.4 The Genetic Algorithm

Now we explain the GA with a very simple grid and a
robot’s trajectory generated by a chromosome named chr5,

Table 3 The chromosome chr5 in short notation

Entry 26 25 23 22 17 16 14 13 8 7 5 4 2 1

Action 0 1 4 3 2 0 1 0 4 4 1 0 1 4

Meaning B L C R F B L B C C L B L C
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described in Table 3. We recall that 4 is the action of Casting
(C) a dice.

Figure 7a shows the initial configuration with vertex id-
numbers in circles and edge id-numbers in rectangles. For
this grid we have nv = 14 and we shall let the robot take
at most 21 movements, namely 3nv/2. The general factor
3/2 is computed later in Eq. 3 but here we can already
give a brief explanation: For larger grids the robot might
abandon many vertices even with an unlimited number of
movements. This is because of Genes 0 and 4, which can
make it start a closed coming-and-going cycle.

The robot always starts by cleaning Vertex 1, and
then edges around it take the clockwise order depicted in
Fig. 6. Hence with respect to the robot Edges 1 and 2
are behind and on the left, respectively. This is Situation
DNN in Table 2, which corresponds to the 2nd entry of
a chromosome with 0, 1 or 4 as a possible action. In our
example we use Table 3, hence it is Action 1 and the robot
moves to Vertex 2, as shown in Fig. 7b.

Right after cleaning Vertex 2 the robot encounters
Situation DDN , and now the 8th entry of chr5 in Table 3 is

a

b c d e

ihgf

Fig. 7 Initial configuration (a) and some further steps (b-i)

4, namely “Cast a dice”. In our example the dice showed 0,
hence the robot turns 180◦ and goes back to Vertex 1 with
Situation DNN again. But this time it is Vertex 6 on the
“leftmost” direction. Indeed, as explained in Section 5.3 the
missing directions 2 and 3 of Fig. 6 leave denominations
only for 0 and 1. Hence, our convention is now to call Vertex
6 as the “leftmost” one. The robot goes there, cleans it and
again we have Situation DNN , as indicated in Fig. 7c. This
repetition makes the robot move to Vertices 4 and then 7,
where we have DDN again (see Fig. 7d).

But this time the dice showed 2. Now there is
not “rightmost”, whereas “frontmost” and “leftmost” are
Vertices 13 and 5, respectively. The next step is then Vertex
13, which has Vertex 10 as a spike. Because of E1 the
robot goes there to clean it (see Fig. 7e). Then it rotates
180◦, returns to Vertex 13 and takes the same position it
had before having found the spike. Namely, now the robot
encounters Situation DCC and since the 14th entry of chr5
is 1 then it goes to Vertex 11 (see Fig. 7f). There it meets
Situation DNN , and by the 2nd entry of chr5 the robot goes
further “leftwards” (in fact straight ahead since Vertex 11
has degree 2). Now at Vertex 14 we have the spike Vertex
12, which is then cleaned prior to any other neighbour. See
Fig. 7g.

Back to Vertex 14, at the same position it had arrived
there we find DCD. The 23rd entry of chr5 makes the robot
cast a dice, which this time shows 1. The robot goes to
Vertex 8 where the Situation is now CDN , so the 7th entry
makes it cast the dice again. It shows 2 and the robot goes
to Vertex 3 (see Fig. 7h).

At Vertex 3 we have DNN again, so the robot casts
the dice and gets 0. Because of E2 it rewinds the trajectory
back to Vertex 14, the first one with a dirty neighbour in the
reversing process. We still get the same Fig. 7h but now the
Situation is CDC, namely entry 16. Hence E2 applies again
until we are once more at Vertex 3 with DNN . This time
the dice showed 1, so the robot goes to Vertex 9 with DNN
again. Casting the dice once more gave 1, and so the robot
finally stops right after cleaning Vertex 5 (see Fig. 7i). In
this example we ended up with a total of 19 movements.

Of course, Gene 0 is necessary because some v are
spikes, and we have already discussed the importance of
Gene 4 in Section 5.3. However, this gene can make the
robot go round in circles. Hence, based on the wall follower
strategy we have introduced the special chromosome chr
in Eq. 1. Figure 8a-b show its output for the grids in Figs. 3c
and 5c, respectively. In the Appendix we give a theoretical
proof that chr assures the robot to visit all vertices. But there
we also show that this chromosome can require a number of
steps |S| greater than 2.27nv in some special cases.

On the one hand, the GA can terminate with selected
chromosomes containing Gene 4. Such chromosomes make
the robot’s trajectory non-deterministic, and it can even go
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Fig. 8 Graphical outputs of chr
for Fig. 3c (left) and Fig. 5c
(right)

a b

round in circles as we have just pointed out. On the other
hand, chr can be too expensive and the GA will discard it
rightly so. In order to resolve this deadlock the GA has to
include some trajectories produced by chromosomes in each
generation, so that eventually we shall have near-optimal
trajectories.

An optimal trajectory makes the robot visit all vertices
with a number of steps lesser than 1.25nv, as proved in
the Appendix. The optimal trajectory can consume much
battery, but of course we shall not be saving power if |S|
approaches 2.27nv. Hence we adopt a factor between 1.25
and 2.27 to set an upper bound for |S|/nv in our GA. Let
us then allow the robot to give some more steps than the
guaranteed 1.25nv, but with a certain good retreat from
2.27nv. For instance, weight 3 to the first and 1 to the
second. Therefore

3 · 1.25 + 1 · 2.27

3 + 1
∼= 1.5 (3)

is adopted for us to take 1.5nv as the upper bound of |S| in
our GA.

5.5 Sequence of Actions versus Sequence of Vertices

In our problem there exist as many as N = 58 · 412 · 36 ∼=
4.8 · 1015 chromosomes, or N = 58 · 44 · 32 = 9 · 108

in the short notation. On the one hand, if our chromosomes
were a sequence of vertices then Genes 0 and 4 would not
be necessary. On the other hand, for large nv they would be
an O(3nv) function, hence of much higher complexity than
our approach.

As already explained in Section 4 our work is inspired
in the can-collecting robot Robby from Mitchell [13, Ch.9].

There the author’s best chromosomes also include backward
and random moves, which in our case correspond to
precisely Genes 0 and 4. Hence our best chromosomes are
given by a sequence of actions as a first step. As a second
step these ones give near-optimal trajectories. Each of them
is a sequence of vertices and its length approaches 1.25nv,
much longer than the fixed chromosome size 14.

Of course, it is impossible to check the numerical perfor-
mance of all chromosomes, including the many trajectories
that each one can produce at casting the dice. Therefore
we are going to work with samples. Our first generation of
chromosomes will have a population size POPSIZE given
by Slovin’s formula. We remark that this formula is not rec-
ommendable except for special cases like ours (see Tejada
and Punzalan [21] for details). Of course, the members of
this generation are produced at random. In C++11 we use
the method uniform int distribution of the class
random device. If we want the first generation to repre-
sent all chromosomes with a margin of error ε = 10% then

POPSIZE = N

1 + 0.12N
∼= 100. (4)

This was already expected because Slovin’s formula
gives a sample size close to ε−2 when N is very large.

Now the question is: how many times should a
chromosome c be tested if it has Gene 4? First of
all, it can happen that the robot tracks along a certain
G = (V , E) according to c and accesses only Genes
0, 1 and 2. An example is a square grid G where
the robot starts on a corner with situation DDN .
Now, if c=444444444244144444244144140 the robot will
encounter only four situations besides that previous one:
DNN , DCN , DDC and DCC (we recall that it will stop
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as soon as all vertices have been cleaned). Hence it never
accesses any Gene 4 in c.

Because of that we shall focus on how the trajectories are
affected in the presence of Gene 4 regardless how frequently
it appears in the chromosome. Since the robot takes at most
four directions when it casts the dice we shall consider that
5 · 4 = 20 trajectories are enough to evaluate the fitness of
such chromosomes. The factor 5 is justified in Yates et al.
[22, p.734].

As mentioned in the Introduction, our fitness f of a
chromosome c consists of an ordered pair (nclnd,bttry)
where the 1st and 2nd coordinates indicate how many spots
were cleaned and how many Joules remain in the battery,
respectively. We recall that each vertex can be cleaned just
once. Hence the GA strives to find chromosomes c that give
f(c) = (nv,bttry), where bttry is as large as possible.
The battery must start with 13.5nv J, as explained in the
Appendix.

5.6 Structure of the Code

As explained in Section 5.2 we get a graph G = (V , E) as
the output of equalis. This graph is stored in a typical
Evolver-datafile graph.fe, where the FE-extension is
explained in Brakke [20, Ch. 2]. In our case graph.fe
consists of a list of vertices followed by a list of edges.
Each line begins with an identification number id, followed
by coordinates in the case of a vertex, and by two vertex
id-numbers in the case of edges. The code consists of
five CPP-files (main, ios, run ga, walk, graphs) and
also prototypes.h, this one to declare global variables,
structures and functions.

It starts by invoking a function defined in ios.cpp as
readf, which reads graph.fe and stores its data into
the structures vert[] and edge[], these ones defined
as prototypes. Right afterwards, the 1st generation is created
by genpp() defined in run ga.cpp, and from that point
on ppscr() performs a scrolling of the populations. That
function is defined in run ga.cpp, and it goes from the
1st to the final generation, which we establish as the one that
has just achieved at least 60% of members able to make the
robot visit all vertices.

While scrolling, ppscr() calls the subfunction
cft(). This one computes fitness f by making the robot
perform 20 walking sessions with each chromosome c, as
mentioned in Section 5.5. There we have also explained
that f(c) = (nclnd,bttry), but from the 20 sessions
cft() will only return the best f(c). Namely the great-
est bttry for the greatest nclnd. Hence the final gen-
eration will always have at least 60% of nclnd-values
equal to nv.

The subprogram walk.cpp includes walk() and
also 7 subfunctions, which altogether correspond to the
implementation of the strategies explained in Section 5.3.
Each new generation is created in ppscr() after
crossover and mutation performed by xov() and mut(),
respectively and in this order. Both belong to run ga.cpp
and now we give some details about them.

In any generation the members are ordered from best-to-
worst fitness right before invoking xov(). This function
performs a fitness-based roulette wheel selection that works
with a very simple strategy. In the ordered generation
suppose the position 1 + x·POPSIZE was chosen, where
x ∈ [0, 1 − 1/POPSIZE]. Take a positive power p ∈ N

and change this position as x ← xp. For instance, if p = 2
the 51st position is replaced with the 26th, the 41st with the
17th, and so on. Of course, in this case POPSIZE = 100
will make positions 1 to 10 all turn 1, 11 to 15 all turn
2, and so on. Hence one should take a relatively small
p, otherwise the roulette wheel approaches a purely elitist
selection (non-recommendable in GA theory, see Holland
[23] and Goldberg [24] for details). We have fixed p = 2
and also checked p = 1 to see that, in this case, the members
with nclnd = nv are always between 5% and 27% of the
population in each generation. Namely, p = 1 will never
result in a final generation.

We have fixed 10% of crossover rate, namely 20 children
always replace 20 members of each generation. These are
also chosen by a fitness-based survivor selection whose
strategy is quite similar to the one we have just mentioned.
Now take x ← xp(2 − x)p in order to increase the
chances of replacing the worst chromosomes, again with
p = 2 for the same reason. Mutation applies to 5% of
the chromosomes in the extended notation with 26 essential
entries. Since 12 genes never count for the short notation,
then in practice the mutation rate remains around 2.5% (very
small, as recommendable in GA theory, see Holland [23]
and Goldberg [24] for details).

5.7 Running the Code

As explained in Section 5.3 a success happens whenever we
find c with f(c) = (nv,bttry). As soon as the successes
in a population reach at least 60% the program draws a
cleaning session of the best chromosome and saves the
final generation in a file named example.txt, where the
chromosomes are listed in the best-to-worst order of fitness.

By opening example.txt the user will see a list of
POPSIZE items like the one shown in Table 4.

In Table 4 the 1st, 2nd, 3rd and 4th columns list the
chromosomes, nclnd, bttry and dev, respectively. The
variable dev is the deviation that corresponds to the
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Table 4 A typical example file
22 − 21 − − − −21 − 42 − − − −40 − 11 − 000 441 3649 -51

44 − 30 − − − −44 − 41 − − − −12 − 10 − 000 441 3236 -133

22 − 24 − − − −11 − 00 − − − −11 − 24 − 110 441 3045 -247
...

41 − 13 − − − −10 − 31 − − − −01 − 22 − 010 219 3002 -162

10 − 10 − − − −20 − 11 − − − −11 − 10 − 000 194 2934 -133

specific amount of energy consumed at rewinding (see E2 in
Section 5.3). The quantity bttry is already debited of dev
but just once. As explained in Section 5.3, this corresponds
to the case (2 + cos θ)J where θ ≡ 180◦.

In general example.txt has only non-deterministic
chromosomes, as named in Section 5.4. A few ones
without Gene 4 can appear, and also a couple of repeated
chromosomes, but always with distinct f(c).

The user can choose a candidate, normally the one on the
1st line, and run again the program by resetting POPSIZE to
1. In this case example.txt is overwritten with the best
score of 20 cleaning sessions for that single chromosome.
Vertex id-numbers are then stored in a file test.txt to
describe the sequence S mentioned in Section 5.3. If the user
wants to record the final generation, then a separate copy of
the initial example.txt must be kept in advance.

6 Results

As mentioned in Section 4, we took Robby’s example from
Mitchell [13, Ch.9] as an inspiration for this present work.
But in Mitchell [13, Ch.9] one sees that Robby can score at
most 500 points. The author used her GA and obtained 483
in average after 10 thousand tries. Now, our Scrubbrushy
gets an almost grid graph G = (V , E) to clean all vertices
and save as much battery as possible.

In Section 5.4 we explained why Scrubbrushy follows
a sequence S of vertices with |S| ≤ 1.5|V |. Formula (4)
in Section 5.5 justifies the choice POPSIZE =100. But
differently from Robby’s case, the maximum amount of
energy that Scrubbrushy can save is unknown. Surely it
spends at least |V | J, and in the Appendix we show why
it starts with 13.5|V | J. However, the optimal value would
only be known if we could check all the O(3|V |) trajectories,
as pointed out in Section 5.5, which is of course intractable.
We recall that |V | = nv, and the double notation is
explained in Section 5.3.

Hence we must rely on some experimental values. For
instance, the 60% mentioned in Section 5.6 was always
attained by our GA for the grids G = (V , E) inspected
until now. By changing the code for 65%, 70% or even

more we also get convergence. But on the one hand the
best chromosomes c never attain fitness values f(c) =
(nv,bttry) with higher bttry than in the 60% case. On
the other hand bttry of the best c starts falling for 55%,
50% and lower values.

That is why we chose 60%, and with this value we ran the
code 100 times for each grid. The bestc had values ofbttry
that did not differ very much, even considering the deviation
dev explained in Section 5.7. However, for each grid we took
the best values of bttry to discuss in the next subsections.

Of course, any GA is typically run much more than
just 100 times. However, we work with values that will
be adjusted after tests with a toy robot in a maquette, as
mentioned in Section 3. For instance, take the formula (2 +
cos θ)J of Section 5.3. There we explain that our GA uses
the integer approximations, and this is one of the reasons
that speed up our code: we do not work with floating-point
operations.

Such adjustments will be resumed with a real size robot
immersed in a reflection pool. Then we shall have to
consider the irregularities of the paving, and also slipping
caused by wind and water movement. Our GA code is going
to include parameters and values that correspond to the real
approach of a robot in a reflection pool. Once we have
adjusted the code, then it will be run multiple times in order
to get better and compelling results.

For the time being, still without the aforementioned
adjustments, the code runs relatively fast in our platform:
4GB of RAM, microprocessor Intel Core i5 3.2GHz,
operating system Linux Ubuntu 14.04 and NetBeans 8.0.2.

The next subsections describe experiments with three
different grids. They also show comparisons of the GA
performance, from which the best chromosomes were
selected. Three is of course a small number of grids but our
GA is relatively fast. Namely, for any given grid the user
can run our GA and then compare its best offsprings with
the performance of chr.

6.1 First Experiment

For the graph of Fig. 3c execution time varies between
1min28s and 3min35s in our platform. As explained in the
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Fig. 9 Graphical outputs of trj7a
(left) and trj7b (right) for Fig. 3c
(cf. Fig 8a)

a b

Appendix the battery should start with 13.5nv J. In our case
nv= 289 ∼= 300, hence we shall take 4050J.

Of course, any deterministic chromosome has constant
fitness and deviation, which are (289, 2201) and -288 for
chr in this case. Namely, chr makes the robot visit all
vertices and the battery will end up with an amount of
energy between 1973J and 2201J.

However, in this experiment another two chromosomes
were technically as good as chr, namely

chr7a = 12 − 13 − − − −23 − 40 − − − −14 − 24 − 140,

chr7b = 32 − 11 − − − −10 − 00 − − − −22 − 11 − 000.

With chr7a the robot performed a trajectory named trj7a
with bttry=2145 that saved at least 1924. See Fig. 9a for
an illustration of trj7a. It is now stored in a test-file to be
checked for a toy robot in a maquette.

Now notice that chr7b is deterministic, whence it makes
the robot always perform the same trajectory trj7b. In
this case bttry=1991 and dev=-296, so that it could
outperform chr of 18J. But this is a negligible difference of
1%, and it holds only for the improbable case θ ≡ 180◦ (see
Sections 5.3 and 5.7). In the next subsection we are going
to see that these two chromosomes have a poor performance
compared with another one that is non-deterministic.

6.2 Second Experiment

For the graph of Fig. 5c execution time varies between
1min4s and 1min48s in our platform. Now the battery starts
with 6100J because nv= 441 ∼= 450. Unlike chr we are
going to see that chr7b now makes the robot take a trajectory
trj8a that omits one v ∈ V . But since chr7b was comparable
to chr in the 1st experiment we shall always include it in

Fig. 10 Graphical outputs of
trj8a (left), trj8b (centre) and
trj8c (right) for Fig. 5c (cf.
Fig 8b)

a b c
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Fig. 11 Graphical outputs for
chr (left), chr7b (centre) and
trj9c (right)

a b c

our tests. The new performances are 3081(-440)J and 2070
(-661)J for chr and ch7b, respectively. However, this time
chr has scored a technical draw with

chr8b = 12 − 13 − − − −22 − 20 − − − −14 − 12 − 400,

which was able to produce a trajectory trj8b with 3100
(-285)J. See Figs. 10a-b and 8b for the graphical outputs.
We also included trj8c of chr 7a, which visited all vertices
but with a performance of 2880(-291)J.

6.3 Third Experiment

Now we take a subgraph of Fig. 3c with nv = 72, for which
execution time ranges from 10s to 18s and the battery starts
with 1020J. The performances of chr, chr7b and a new
chromosome

chr9a = 44 − 43 − − − −22 − 42 − − − −11 − 02 − 100

were 555(-71)J, 495(-81)J and 590(-28)J, respectively. This
last one was achieved for a trajectory named trj9c. See
Fig. 11 for their graphical outputs.

7 Conclusions

As mentioned in the Introduction, one of the greatest
challenges of projecting an autonomous robot is the
navigation modulus. This one includes the planning of near-
optimal routes that enable the robot to move all through the
area of interest by detouring from any obstacle.

In this work we presented a Genetic Algorithm that
yields near-optimal chromosomes in the following sense:
they represent a sequence of actions (genes) for the robot to
clean an arbitrary reflection pool as efficiently as possible.
For the Coverage Path Planning some works in the literature
consider obtaining a near-optimal sequence S of vertices.
The robot will follow S, as in the case of Giardini and
Kalmár-Nagy [18]. Differently from these works we search

for a sequence of actions that the robot will follow to
optimise the cleaning of a reflection pool.

As an input the robot gets a graph G = (V , E) where
V and E are the sets of vertices and edges, respectively.
Moreover, in G almost any angle from a pair of incident
edges is either right or straight within a tolerance margin.
Robotic displacements are quite simpler to program for a
graph with these characteristics, and in our previous work [8]
we showed how to obtain such G for arbitrary pool contours.

Our next work will include simulations with a maquette
of a pool and a toy robot, which we can build with a
kit like Lego NXT. The toy robot will follow a trajectory,
or even a deterministic chromosome, as exemplified by
our experiments in Section 6. We shall also implement
trajectories obtained with other strategies of Coverage Path
Planning in the literature to compare them with ours.
Finally, as a second future work we shall implement a real
size robot that will actually clean reflection pools. This part
includes computer vision to aid in the definition of routes and
in the identification of sites that have already been cleaned.
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Appendix

Here we prove some important results previously cited in
the text.

Preliminaries

In Section 5.2 we presented the equalisation procedure that
results in G = (V , E). Each closed polygonal v1 → v2 →
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· · · → vk → v1 =: P ⊂ E such that the interior of P

has at most one element (v, e) ∈ V × E is called a cell of
G. Without going into details, the equalisation will always
produce G with the following properties P1 − P3:

P1: 4 ≤ k ≤ 6.
P2: ∀ v ∈ V | deg(v) = 1, the unique w ∈ V | vw = e ∈

E ⇒ deg(w) = 4.
P3: if v, w and e are as in P2, then ∃ {w1, . . . w4} ⊂ V |

the polygonal w → w1 → . . . w4 → w has only v and e

in its interior.

In the next subsection we study the special chromosome
chr.

Visiting All Vertices

At the end of Section 5.3 we introduced two important
exceptions E1 and E2, which together with Table 2 will
guarantee that chr makes the robot visit all vertices in V .
The proof is by contradiction. If there is v ∈ V that the robot

never accesses, then take w ∈ V such that e = vw ∈ E.
Hence w is also never accessed, because E2 guarantees that
trajectories are rewound. Since G is connected then we
apply the same argument successive times until concluding
that the robot never accesses any element of V , which is
a contradiction. Therefore, the robot will indeed visit all
vertices with chr.

But this chromosome can be quite expensive. In Fig. 12
we show G = (V , E) with |V | = 76, and the robot follows
chr by starting at 1.

The robot surrounds the outer contour and reaches vertex
52 exactly at the 52nd step. Then it goes to the boundary
of the shaded region, an obstacle that the robot finally
surrounds completely at the 80th step. Namely, the robot
repeated 80 − 76 = 4 vertices until now. Vertex number 56
is the last one the robot visits without repetition, because
the 57th step is again vertex 55. The robot has not cleaned
many vertices yet, so it will rewind to vertex 47 at the
112th step (the next one is indicated as 113). The robot will
finish cleaning the whole pool at the 173rd step, which is
precisely the vertex between numbers 1 and 2. Hence it

Fig. 12 Example of |S| >

2.27nv
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takes a number of steps that is 173/76 ∼= 2.2763 times nv,
where nv= 76.

Optimal Trajectories

Now we prove that with an optimal trajectory the robot
visits all vertices with |S| < 1.25nv. Fig. 13 depicts
all topological kinds of cells that appear in G = (V , E)

due to the equalisation procedure explained in Section 5.2.
One of them is presented as a double-cell, two indicate
(v, e) contained in their interior. Black and white bullets
fit together, and one begins with either 4 or 6 vertices to
re-construct G by starting from one of its cells.

In Fig. 13 the top left cell needs 2 steps to be cleaned.
If we do not count the double-cell, then cleaning the others
will take 4 to 5 steps each. Hence, in the worst case we need
a number m of steps that is 5 times the number N of cells to
clean all vertices.

If we re-construct G by starting from one cell then
4(N − 1) vertices will be added to the initial 6 in the worst
case, so that nv= 4N + 2. Hence

m ≤ 5N = 5

4
· (4N + 2) − 5

2
< 1.25nv. (5)

However, this optimal trajectory can lead to a high
battery consumption. This is because each cell with its
interior (v, e) is completely cleaned before the robot goes
to the next one. According to our scores the robot spends
at most (2 + 4 + 3)J = 9J to go, clean and return from
a spot. Hence we set our battery to start with at least
9 · 1.5 ·nv J=13.5nv J, where the factor 1.5 is explained in

Section 5.4. But this starting value will be enough providing
dev> -13.5nv, where dev is defined in Section 5.7.
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