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Abstract
In this paper, a new single-output resistive sensor is proposed to enhance the dynamics estimation, slip elimination, stability
extraction and surface scanning of a ground UGV (wheeled-robot) in 2D and 3D spaces. The new sensor is based on the total
resistance of a circuit which contains a continuous resistive belt with high accuracy. The Lagrange method is implemented to
derive the stick-slip dynamics in both 2D and 3D spaces. Furthermore, the kinematics is solved using the Newton-Raphson
approach. The slipping characteristics of the robot with and without the new sensor are firstly shown in 2D space. To
demonstrate the abilities of the sensor in the real applications, the dynamic simulation is further extended to 3D space. A real
time torque optimization aided by the new sensor is applied to the dynamics of the robot to eliminate slip during locomotion.
Moreover, a stability measure is introduced and the real time stability margins are extracted during missions. The sensor
empowers the robot to scan the surface and consequently, extract the main properties of the surface. The simulation results
obtained for different case studies prove the ability of the new sensor in performing the above mentioned tasks.

Keywords Field robots · Torque optimization · Resistive belt sensor · Real time stability · Surface scanning

1 Introduction

The concept of field robotics has found great attention in
a wide range of engineering aspects such as rescuing [1],
exploring [2, 3] mining harvesting and adjustable explo-
ration platforms [4]. Real applications involve missions on
uneven surfaces including obstacles and hazards [5, 6],
holes and ramps and danger of slip. Indeed, finding the
surface characteristics becomes essential for these robots
to overcome severe conditions. By implementing ordinary
sensors, some researches focus mainly on the control and
localization process on the rough surfaces [7]. The stereo
vision techniques were also used for the wheel contact angle
[8]. These control algorithms not only are implemented in
mobile robots, but also control the manipulation processes
[9]. On the other hand, force sensors improve the perfor-
mance of the interactive missions by implementing the force
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effects [10]. Using force sensors empowers the systems
to act in the presence of minimum error of the dynamic
states estimation. Unfortunately, these sensors significantly
increase the computation cost. In addition, these sensors are
expensive to be implemented everywhere. The main issue
is that the force sensors are usually point detectors which
are unable to detect a regional force distribution. In such sit-
uations, usually an array or matrix of sensors are needed.
It means that numerous expensive force sensors have to be
implemented. When dynamics of a system can be known
in a control process only by using kinetic sensors such as
accelerometers and vision sensors, the force sensors can
be eliminated and consequently, the total cost is reduced.
In a recent research, a new shield sensor embedded in the
robotic wheels are implemented to detect the exact margin
of stability and to extract the complete kinematics of the
wheel-surface interaction [11].

A main issue of the rough surface locomotion is to
eliminate slips during motion. This problem encourages
researchers to find the required torque for slip reduction
of the wheeled mobile robots. Some instruments and
algorithms are required to overcome slipping and other
environmental issues. The conducted research in [12]
highlighted the necessity of modeling and control of
mechanical contacts which can also be considered in
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applications such as mobile robots moving on rough
surfaces. For this purpose, all parameters required to solve
kinematics and dynamics such as contact points have to
be detected. The analysis of mobile robot motion based on
the slip dynamics and the wheel-ground interaction require
estimation of the slip margins [13] and friction forces [14].
The torque of motors can be optimized to minimize the
undesired wheel slip [15]. One of the essential parameters
in slip reduction is the angle of contact. The work in
[16] presents a method for wheel-ground contact angle
measurement and a traction control strategy for minimizing
slip in rough terrain. However, in addition to the contact
angle, a coherent view of the kinematics and dynamics
of slip is required to reduce slip. The authors of [17,
18] considered kinematic and dynamic modeling method
for wheeled mobile robots with slip based on physical
principles in order to reduce slips. Slip dynamics includes
longitudinal and lateral slips. The structural issues such as
number of wheels or angle of the steering axis can cause
unrequired lateral slip which can be eliminated by some
mechanical modifications [19]. The control algorithms can
also be useful to tackle the modeling inadequacy that
arises when slip is neglected by including both longitudinal
and lateral slip dynamics into the overall dynamics of the
wheeled mobile robots [20]. The effect of slip reduction
(and especially the lateral slip) can be of great importance in
the stability analysis of mobile wheeled robots. The authors
of [21] showed that the slip reduction can be useful not only
in the slipping issue but also in the stability and overturning.
On the other hand, some researches showed that the slip
compensation can increase the performance of the trajectory
tracking [22, 23].

The efforts in reducing slip need to sense the environment
of the contact completely. Without sensing the contact
point or contact force distribution, the torque optimization
can destroy the natural stability or increase the slip
moments. Some of the resent researches considered sensing
interaction between the mobile robot and the trail [24]. The
usage of FSR sensors or touch sensors has to be widely
extended to the exploration rovers. A sensitive wheel can
make an alert about the risk of moving on some surfaces
[25]. The solution is to use a Built-in Force Sensor Array
(BFSA) wheel in order to determine the normal stress on a
wheel [26]. The BFSA advanced usage yields development
of an in-wheel sensor system for accurate measurement
of the wheel terrain interaction characteristics [27]. The
accuracy of the contact detection in the BFSA systems
depends on the number of segments implemented in the
sensor array. On the other hand, increasing the number
of segments yields high-cost wheels. The segmented array
cannot detect the exact position of the wheel contact
position which is the most essential parameter to find

dynamical parameters. The main question arises is how the
cost of contact detection can be reduced. How a new sensor
can be innovated in order to simultaneously reduce the cost
and keep the result accurate?

Besides the ordinary sensors implementation in unknown
environments [28], the contact sensors can solve a
significant part of stability, lateral and longitudinal slip
issues. Innovation of new sensors can considerably simplify
achievement of this goal. Displacement sensors, the distance
detectors such as ultrasonic and laser sensors [29, 30] and
accelerometers are examples of the mobile robot sensors.
As another type of sensors, tactile sensors detect the
robot-environment contact [31, 32]. In hard skins method
(bumper-based method), skins consist of sensors (three or
four sensors per panel) covered by a hard shell in the
shape of the robot body. This type is usually used in
industrial manipulators to avoid hard contacts [33]. In some
researches, Force Sensing Resistors (FSR) are utilized under
a flexible skin [34]. ”Robovie” series of humanoid robots
have used such sensors [35]. Multi-modal tactile sensors
embedded in silicone make the Huggable robot interactive.
Some applications of FSR rely on a technology which uses
variable resistance to measure pressure applied to different
points of foot. This technology is very reliable and can
be incorporated into thin and flexible applications [36,
37]. The extra number of input terminals of these sensors
requires a powerful data acquisition (DAQ) card and a fast
computer. Touch screens consist of a group of resistors or
capacitors. The idea of a sensitive wheel aided by touch
sensors which can sense each obstacle and contact point
at the same time is a promising and novel concept which
has not been paid enough attention before. However, there
are some limitations in using cheap sensors which still can
be strong and easily to be connected to DAQ cards. The
resistive touch path is one of the common types of touch
screens which consists of a group of resistors assembled in
a network.

Some important researches considering flat terrains
found out that the rovers with uncertain systems can be
perfectly controlled and robustly stabilized by control algo-
rithms without a new sensor [38, 39]. Accordingly, the
finite-time tracking control problem has been discussed
for extended nonholonomic systems with parametric uncer-
tainty, unmolded nonlinear dynamics and external uncertain
time-varying disturbances implementing ordinary sensors
and data [40]. In these researches, the level of model
uncertainty and the amplitude of external disturbances are
restricted. On the other hand, on the rough terrains, using
new control algorithms can significantly improve the effi-
ciency of locomotion as it is effective on flat surfaces
[38–40]. Using the new sensors empowers detection meth-
ods to improve the efficiency of these control processes and
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other methods on rough terrains by forming more reliable
dynamic model of the UGV. The present research empha-
sizes that the complete kinematics of a mobile robot facing
rough surfaces can extract the complete dynamic states
without force sensors. This paper combines the concept of
resistive touch paths with a sensitive wheel to make the
robotic wheels sensitive by means of a novel resistive belt
sensor. This sensor is composed of a resistive belt, a conduc-
tive metal belt and a direct voltage source. All these parts
will be grouped together as a simple resistive single-output
circuit. This new sensor can be embedded in some mobile
robots whose duty is to simultaneously sense the location
and map the environment (SLAM) [41]. The novelty and
major contribution of the present study is to embed a single-
output resistive belt in the UGV wheels which is totally
different from the existent concepts such as the vision-
based methods, BFSAs, flexi forces and contact switches.
This idea has some main advantages including reduction

in the number of sensor outputs, continuous contact angle
detection as compared with BFSA arrays, efficient compu-
tation and detection of the contact angle for kinematics and
dynamics evaluation of the UGVs, and low cost of produc-
tion. The next part of this paper focuses on expanding and
defining the new idea. The mathematic base of this idea is
explored in the following sections. The remainder of the
paper explains the abilities of the new single-output sensor
in detecting multipoint contact, surface scanning, dynamic
estimation, slip elimination and extracting the stability mar-
gins.

2 Definition of the New Idea

The advanced rovers and ground UGVs are equipped by
BFSA sensors in order to detect wheel-terrain interaction
[10, 27]. This detection method includes an array of FSR

Fig. 1 Continuous resistive belt and FBSA sensor. a The FBSA sensor [27], b the force distribution beneath the wheel [27], c The concept of
continuous resistive belt
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Fig. 2 Continuous resistive belt on a wheel

sensors embedded in the wheels (Fig. 1a). The discrete
result of the force distribution beneath the wheel in Fig. 1b
implies the accuracy of this force estimation method [27].

As it was pointed out in the introduction, the high cost
of computation and detection of this method for a wide
area and the discrete output yield the current research idea.
A continuous resistive belt which yields a resistive belt
detecting only one-point or two-point contact situations is
the main idea of this paper. It can be embedded under the
exterior rubber of the wheel, see Fig. 2. High accuracy
can be achieved by using a new continuous resistive belt.
Figure 1c shows the promoted continuous resistive belt in
which a person pushes a point of the resistive belt. The
contact of the upper resistive belt with the lower conductive
belt closes the circuit. Parameter Rb is the resistance of
that part of the upper resistive belt which conveys current.
Therefore, this resistance is directly calculated from the

length Lb of this part of the upper resistive belt. By
considering the total resistance Rt and total length Lt , the
resistive belt produces a resistance Rb as Rb = RtL

−1
t Lb.

The voltage Vs is then obtained from Vs = V (RtL
−1
t Lb +

R0)−1R0.

3 Kinematics

There are some approaches for modeling the interaction
between wheel and terrain based on the multibody dynamics
formulations [42]. The contact points of the wheel and
surface have to be detected during a virtual locomotion.
The iterative Newton-Raphson method is implemented to
solve kinematics. Figure 3 illustrates a planar model of a
four-wheeled mobile robot equipped by an accelerometer to
detect the coordinates of the CG of the robot. The objective
of the kinematic solver is to find the position of contact
points as well as some essential parameters including the
relative angles of the front and rear wheels with respect to
the robot body (ϑf and ϑr), and the parameters yb and θb .
The parameters Lband Rw are respectively the half of the
length of the robot and the wheel radius. The parameters θi

and βi (i = r , f ) are respectively the encoder angle and
the angle detected by the continuous resistive belt sensor of
the wheel i. Furthermore, the parameters Ni and Ti (i =
r , f ) denote the normal and tangent vectors of the wheel i,
respectively. The coordinate system XjYj of accelerometer
is fixed to the CG of the robot body. The accelerometer is
aligned with Xj direction. Therefore, aj shows the absolute
acceleration vector of the robot body expressed in the body-
fixed coordinate frame XbYb. To solve the kinematics, the

Fig. 3 Kinematics of a planar
model of a four-wheeled mobile
robot
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first step is to obtain the unknown parameters (ϑf , ϑr , yb

and θb) from the accelerometer and gyroscope outputs (aj ,
θb).

In order to express the velocity vector Vo
b of the robot

body in the inertial coordinate frame XY, the acceleration aj

is integrated to find the velocity vector Vj in the body-fixed
coordinate frame yielding

Vo
b = Rθb

Vj , Vj =
∫ t

0
aj dt, Vj = [vx

j v
y
j ]T (1)

where Rθb
denotes the rotation matrix of the body-fixed

coordinate frame. The acceleration of the robot body in the
inertial coordinate frame can be found by differentiating (2)
as

ao
b = d

dt
(Rθb

)Vj + Rθb
aj , aj = [ax

j a
y
j ]T (2)

which yields the following expanded form

ao
b =

[
-sin(θb) vx

j θ̇b − cos(θb) v
y
j θ̇b + cos(θb) ax

j − sin(θb) a
y
j

cos(θb) vx
j θ̇b − sin(θb) v

y
j θ̇b + sin(θb) ax

j + cos(θb) a
y
j

]
(3)

The vectors Vo
b and Xo

b can then be obtained from

Vo
b = [ẋb ẏb]T =

t∫

0

ao
bdt , Xo

b = [xb yb]T =
t∫

0

Vo
bdt (4)

If we consider time as the independent variable, xb can
be directly defined as a prescribed function of time.
The unknown variables can then be obtained based on
the current value of xb using the iterative Newton-
Raphson algorithm, which in turns requires definition of
the mechanical constraint equations. In this example, there
are four constraints: two constraints for contact point
positions between surface and wheels, and two constraints
for imposing the tangency constraints. Equation 5 expresses

the estimated contact points for the rear and front wheels in
terms of the unknown parameters as

pc
r =

[
xc
r

yc
r

]
=

[
xb − Lbcos(θb) -Rwcos(θb+ϑr )
yb − Lbsin(θb)-Rwsin(θb+ϑr )

]
,

pc
f =

[
xc
f

yc
f

]
=

[
xb + Lbcos(θb) +Rwcos(θb+ϑf )
yb + Lbsin(θb)+Rwsin(θb+ϑf )

]
(5)

where xc
i and yc

i (i = r , f ) specify the coordinates of the
contact points in the inertial frame. The first two constraints
for contact points can be obtained by inserting the xc

i

coordinate of the contact points in the path function and
subtracting from the yc

i coordinate of the contact points
yielding

C1 = yb − Lbsin(θb) − Rwsin(θb+ϑr ) − path(xb

− Lbcos(θb) − Rwcos(θb+ϑr ))
C2 = yb + Lbsin(θb)+Rwsin(θb+ϑf ) − path(xb

+ Lbcos(θb) +Rwcos(θb+ϑf ))

(6)

The function y = path(x) defines the specified path
function of the surface. The tangent vector of the sur-
face at contact points can be obtained from Ti =[
dx/dx d path(x)/dx

]T
x=xc

i
for any infinitesimal displace-

ment. The vector from the contact point towards the wheel

center can be written as Ni = [
xo
i − xc

i yo
i − yc

i

]T
. The

parameters xo
i and yo

i (i = r , f ) denote the coordinates of
the wheel center in the inertial frame. To obtain a feasible
contact between each wheel and surface, one has to impose
two tangency constraints as C3 = NT

r Tr , C4 = NT
fTf .

The final form of the constraints vector can be written as
C = [C1 C2 C3 C4]T. The constraint Jacobian matrix Cq is
driven by taking the partial derivatives of C with respect to
the unknown parameters, U = [ϑr ϑf θb yb]T according to
the equation

[
Cq

]
(j,k) = ∂Cj /∂Uk . The iterative Newton-

Raphson algorithm is shown in Fig. 4 for approximating the
unknown parameters vector U based on the current value of
xb coming from dynamic results and by imposing the above
constraints.

Fig. 4 The iterative
Newton-Raphson approach
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Fig. 5 The stability diagram

The total angle of each wheel θ t
i (i = r, f ) can be

considered as the sum of the encoder angle θi of the wheel
and the robot body angle θb. As a result, the total angular
velocity of the wheel can be written as θ̇ t

i = θ̇i + θ̇b. The
velocity of the wheel center can be considered as vi =
Rwθ̇ t

i The encoder angle can then be obtained by integrating
the encoder angular velocity as. Furthermore, according to
Fig. 3, the angle of the continuous resistive belt sensor is
given by βi = ϑi − θi which can be substituted into the
following relation for the effective length of the belt of both
wheels as Lbi

= 0.5π−1βiLti . The voltages of both wheels
are detected in order to estimate βi, (i = r, f ).

4 Real Time Stability Analysis

The stability and balancing of robots without exact
estimation of contact angle have been already considered
in some researches [43]. A mobile robot equipped by
an accelerometer and a gyroscope can only detect its
position and orientation. In this case, the stability margins
during motion are not usually known, as they require the
exact position of the contact points during locomotion on
unknown surfaces. By implementing the new sensor, this
issue can be properly treated by detecting the contact points
and obtaining the required parameters. Figure 5 shows
the stability parameters. According to the D’Alembert’s
principle, the inertial force mCGaCG of the CG of the
robot can be exerted in its opposite direction as an external
force. Therefore, according to Fig. 5, the total external
force applied to the robot body at its CG can be shown
by Ft = [Fx

t F
y
t ]T. Direction of this force is defined

as line Lf . In addition, by connecting two contact points
another line denoted by Ls in Fig. 16 is considered. The
intersection of these two lines is defined by point pi =
[px

i p
y
i ]T. The vectors Sr=[Sx

r S
y
r ]T and Sf =[Sx

f S
y
f ]T

pointing respectively from the contact points of the rear and

front wheels to the intersection point define the stability
margins.

If Sx
r is negative, the normal force applied to the front

wheel at the contact point is zero meaning that the front
wheel loses its contact with surface and the current position
is out of the stability range. This situation happens for the
front wheel when Sx

f becomes positive. On the other hand,
the robot is stable when the components of Sx

r and −Sx
f

became positive. The stability measure ψ can be defined
based on the minimum of −Sx

f and Sx
r as ψ = min(Sx

r , −
Sx

f ) which represents that if ψ (or equivalently one of −Sx
f

and Sx
r ) approaches zero, one of the wheel starts to leave

the surface. For the positive values of ψ , both wheels lie on
the surface. One of the wheels leaves the surface and robot
overturns when ψ is negative. The components Sx

r and Sx
f

can be written as

Sx
r = (xc

r yc
f −xc

f yc
r )Fx

t xb+(xc
r −xc

f )(Fx
t yb−F

y
t xb)

F
y
t (xc

r −xc
f )−(yc

r −yc
f )Fx

t

− xc
r

Sx
f = (xc

r yc
f −xc

f yc
r )Fx

t xb+(xc
r −xc

f )(Fx
t yb−F

y
t xb)

F
y
t (xc

r −xc
f )−(yc

r −yc
f )Fx

t

− xc
f

(7)

One may assume that the inertial forces are negligible and
the total external force only includes the gravity effect. If Fx

t

is assigned zero value, the equation of stability is simplified
and is written as the following equation

ψ = min(xb − xc
r , xc

f − xb) (8)

Defining the stability margins, Eq. 8 requires calculating
angles βr and βf . These angles can be measured by using
the resistive sensor proposed here. Therefore, the stability
margins can be completely calculated during motion. It is
important to notice that the aim of the real time stability
analysis presented above is to evaluate the accuracy of the
stability margins by using the new sensor data. The results
of the stability analysis can then be implemented in a self-
balancing process to adjust the positions and torque of
mechanisms and robotic actuators.
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5 Real Time Dynamics Analysis

The Lagrange method is implemented to derive the dynamic
equations. The position and orientation vectors of the main
body and two wheels are written as

Pt
b =

⎡
⎣ xb

yb

θb

⎤
⎦ , Pt

wr =
⎡
⎣ xb − Lbcos(θb)

yb − Lbsin(θb)
θb + θr

⎤
⎦ ,

Pt
wf =

⎡
⎣ xb + Lbcos(θb)

yb + Lbsin(θb)
θb + θf

⎤
⎦ (9)

The parameters (.)wf , (.)wf and (.)b respectively denote the
front wheel, the rear wheel and the body. The first step to
derive dynamic equations is to find the Jacobian matrix of
the positions and orientations in terms of the generalized
coordinates vector vd = [xb yb θb θf θr ]T in the following
manner[
Jt
k

]
ij

= ∂
[
Pt

k

]
i
/∂ [vd ]j , (k = wr ,wf ,b) (10)

The closed-form expression of these Jacobian matrices can
be represented as

Jt
b = [

I3×3 O3×2
]
, Jt

wf =
⎡
⎣ 1 0 -0.5 L sin(θb) 0 0

0 1 0.5 L cos(θb) 0 0
0 0 1 1 0

⎤
⎦ ,

Jt
wr =

⎡
⎣ 1 0 0.5 L sin(θb) 0 0

0 1 -0.5 L cos(θb) 0 0
0 0 1 0 1

⎤
⎦ (11)

The inertia matrix D and the Christoffel symbol Cchr

(Centrifugal and Coriolis forces) of the dynamics of the
robot are calculated as

D5×5 =
∑

i=(b,wf,wr)

JvT
i miJv

i + JωT
i IiJω

i ,

Jv
i =

[
1 0 0
0 1 0

]
Jt
i , Jω

i = [
0 0 1

]
Jt
i

[Cchr ]k = 1

2

5∑
i=1

5∑
j=1

(
∂ [D]kj
∂ [vd ]i

+ ∂ [D]ki

∂ [vd ]j
− ∂ [D]ij

∂ [vd ]k

)
[v̇d ]i [v̇d ]j

(12)

which can be written in the expanded form as

D5×5 =

⎡
⎢⎢⎢⎣

mb + 2 mw 0 0 0 0
0 mb + 2 mw 0 0 0
0 0 Ib + 2 Iw + 0.5L2mw Iw Iw

0 0 Iw Iw 0
0 0 Iw 0 Iw

⎤
⎥⎥⎥⎦ ,

Cchr =

⎡
⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎦ (13)

The parameters m(.) and I(.) respectively denote the mass
and moment of inertia, and the parameters (.)w and (.)b

respectively define the wheel and the body. The gravity
effects associated with the components of vd is given as
the vector G=[ 0 g (mb + 2mw) 0 0 0 ]T. The constant g

denotes the gravity acceleration. The contact forces FX
i and

FY
i in the absolute coordinate system XY are externally

applied to the rear and front wheels. These forces can be
represented in terms of the friction and normal contact
forces (FT

i and FN
i ) in the form of

[
FX

i

FY
i

]
=

[
cos(λi) -sin(λi)
sin(λi) cos(λi)

] [
FT

i

FN
i

]
= Rλ

i

[
FT

i

FN
i

]
,

λi = θb + θi + βi + 0.5 π (14)

which after pre-multiplication by the transposed Jacobian
matrix of the contact points position results the generalized
external forces. The position of the contact points is
provided in Eq. 7. The associated Jacobian matrix of these
points are given by
[
Jc
r

]
ij

= ∂
[
Pc

r

]
i
/∂ [vd ]j ,

[
Jc
f

]
ij

= ∂
[
Pc

f

]
i
/∂ [vd ]j (15)

which finally yields the generalized external forces as

Fi = JcT
i

[
FX

i FY
i

]T = JcT
i Rλ

i

[
FT

i FN
i

]T
, (i = r, f )

(16)

The dynamic equations of motion of the robot can be
described by the following equation

D v̈d + Cchr + G = Fr + Ff + τ (17)

which has to be solved for obtaining the contact forces and
the generalized accelerations in terms of the generalized

torques vector τ = [
0 0 − (

τf + τr

)
τf τr

]T
. The

unknown parameters of the above equation can be collected
in a vector as

χD � = χ τ , � =
[
(v̈d )T FT

f FN
f FT

r FN
r

]T

9×1

χD =
[
D −JcT

f Rλ
f −JcT

r Rλ
r

]
5×9

, χ τ = [ τ - (Cchr+G)]
5×1

(18)

Equation 18 contains five relations and nine unknown
parameters, which means that four more equations are
required to calculate all unknowns. In the sticking
condition, these required equations can be derived from the
accelerations of the wheels center. On the other hand, for
each wheel undergoing slip condition, one of the required
equations can be derived from the sliding friction. The
velocity vector of the wheel center point in the absolute
coordinate system can be represented in terms of its tangent
and normal components as
[

ẋo
i

ẏo
i

]
= Jv

i v̇d =
[

cos(λi) -sin(λi)
sin(λi) cos(λi)

] [
vT
i

vN
i

]
(19)
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which can also be rewritten in the following form
[

vT
i

vN
i

]
=

[
cos(λi ) sin(λi )
-sin(λi ) cos(λi )

]
Jv
i v̇d = [

Rλ
i

]T
Jv
i v̇d , (i = r, f ) (20)

On the other hand, the parameters vT
i and vN

i can also be
geometrically obtained by considering the robot kinematics
as shown in Fig. 3.[

vT
f

vN
f

]
=

[ −r
(
θ̇b + θ̇f

)
0

]
=

[
0 0 −r −r 0
0 0 0 0 0

]
v̇d = Wf v̇d

[
vT
r

vN
r

]
=

[ −r
(
θ̇b + θ̇r

)
0

]
=

[
0 0 −r 0 −r
0 0 0 0 0

]
v̇d = Wr v̇d

(21)

which upon equating its components from Eqs. 20 and 21

yields
(
Wi − [

Rλ
i

]T
Jv
i

)
v̇d = 0 whose differentiation with

respect to time yields

(
Wi − [

Rλ
i

]T
Jv
i

)
v̈d +

d
(
Wi − [

Rλ
i

]T
Jv
i

)

dt
v̇d = 0 (22)

Equation (22) can be modified to include all unknowns in
the following manner[

Wi − [
Rλ

i

]T
Jv
i 02×2 02×2

]
2×9

[
(v̈d )T FT

f FN
f FT

r FN
r

]T

9×1

= −
d

(
Wi − [

Rλ
i

]T
Jv
i

)

dt
v̇d (23)

This equation provides the required relations of each wheel
in the sticking condition. On the other hand, in the slipping
condition, the first line of (23) should be replaced by the
sliding friction relation as FT

i = μkF
N
i . The parameter μk

denotes the dynamic coefficient of friction. To express more

clearly, Eq. 23 can be written in an expanded form for both
the sticking and slipping cases separately. It yields

χ1
i � = χ2

i , χ1
i =

[
Wi − [

Rλ
i

]T
Jv
i 02×2 02×2

]
2×9

, χ2
i

= −
d

(
Wi − [

Rλ
i

]T
Jv
i

)

dt
v̇d (24)

for sticking condition, and

χ3
i � = χ4

i

χ3
i =

⎡
⎣

Si[
0
1

]T [
Wi − [

Rλ
i

]T
Jv
i 02×2 02×2

]
⎤
⎦ , χ4

i

=
⎡
⎣

0

−
[

0
1

]T
d
(
Wi−

[
Rλ

i

]T
Jv
i

)
dt

v̇d

⎤
⎦

Sf = [
0 0 0 0 0 1 −μk 0 0

]
, Sr

= [
0 0 0 0 0 0 0 1 −μk

]
(25)

for slipping condition. The final form of the conditional
stick-slip dynamic equations is obtained by combining (18),
(24) and (25) in Eq. 26. The coefficient matrices on the left
hand sides of each equation are square matrices of the size
9×9. Therefore, they can be inverted to obtain the unknown
parameters of vector �. The stick condition happens when
FT

i ≤ μsF
N
i and it switches to the slipping condition

when Eq. 26 violates. The computational scheme for solving
conditional dynamic equations is shown in Fig. 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ [
χD

]T
[
χ1

f

]T [
χ1

r

]T
]

� =
[ [

χ τ

]T
[
χ2

f

]T [
χ2

f

]T
]T

→ Front sticking, Rear sticking (k=1)
[ [

χD

]T
[
χ1

f

]T [
χ3

r

]T
]

� =
[ [

χ τ

]T
[
χ2

f

]T [
χ4

f

]T
]T

→ Front sticking, Rear sticking (k=2)
[ [

χD

]T
[
χ3

f

]T [
χ1

r

]T
]

� =
[ [

χ τ

]T
[
χ4

f

]T [
χ2

f

]T
]T

→ Front sticking, Rear sticking (k=3)
[ [

χD

]T
[
χ3

f

]T [
χ3

r

]T
]

� =
[ [

χ τ

]T
[
χ4

f

]T [
χ4

f

]T
]T

→ Front sticking, Rear sticking (k=4)

(26)

6 3D Dynamics Analysis

2D simulation only considers proper definition of the sensor
application. The motion of robot cannot be simplified as a
2D motion in most of contact situations. Some environment
obstacles compel the robot to rotate about roll axis which
yields 3D motion. The performance of this sensor in 2D
space was previously investigated. Also, to complete the
investigation, the 3D motion such as rotating about roll

axis has to be considered. These situations can be seen
when facing large non-symmetric obstacles in which the
left and right wheels height become different and rotation
about roll axis causes 3D motion. The 3D slip dynamics can
be considered to achieve the semi-real virtual locomotion
process. Figure 7 shows the 3D view of a three wheeled
mobile robot and the related parameters. According to this
figure, the independent dynamic parameters are the position

and orientation of the CG, Pt
b = [

xb yb zb θx θy θL
z

]T
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Fig. 6 Dynamics solver
flowchart

and the relative orientations of three wheels
[

θe
f l θe

f r θe
r

]
measured from the encoder data. In addition to the dynamic
parameters and similar to the 2D model, the new sensor
outputs

[
βf l βf r βr

]
are essential to geometrically set the

robot on the surface using the Newton-Raphson method.
By Imposing tangency constraints and using the lon-

gitudinal and lateral tangential vectors (TA
i and TL

i (i =
r , f l, f r)) of each wheel at the contact point and the nor-
mal vector from the contact point to the wheel center (Ni ),
feasible contact can be assured. The contact points, the
center of each wheel and the CG are the most essential
points which are illustrated in Fig. 7 and denoted by pc

i ,
pt

wi(i = r, f ) and pt
b respectively. The Jacobian matrices

of these points in terms of the dynamic parameters (sys-
tem generalized coordinates) can be calculated from their
corresponding relations (11) and (15). The mass matrix and
Christoffel index can be calculated using Eq. 12.

The effect of the gravity can be obtained in the following
manner as

G =
∂ g

(
pt

b + ∑
i=(b,wf,wr)

mipt
wi

) [
0 1 0

]

∂vd

(27)

where vd collects the dynamic parameters. The dynamic
equations can be derived similar to Eq. 17 by some
modifications which can be written as

D v̈d + Cchr + G = Ff l + Ff r + Fr + τ (28)

Additional kinematic equations have to be added to the
dynamic equations to solve the dynamic problem. By setting
the velocity of contact points to zero for non-slipping
condition and by differentiating with respect to time, one
obtains

Jc
r v̈d + J̇

c

r v̇d = 0 ⇒ Jc
r v̈d = −J̇

c

r v̇d (29)

For the slipping case, additional kinematic equations have to
be considered (similar to Eq. 26 obtained for the 2D robot).
Since the general form of the equations for the 3D mobile
robot is similar to the 2D case, they are not rewritten here
for the sake of briefness. In the 3D wheeled mobile robot,
turning without slipping is impossible. When the axis of
the front wheels can be steered, the slip-less turning during
motion becomes possible. However, in this paper, this axis
is fixed and the robot can slip laterally during turning.
Therefore, the slip elimination process considers only the
longitudinal slips. Figure 8 shows the slip direction during
turning.

Fig. 7 Parameters of the 3D
dynamic model
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Fig. 8 Control parameters

7 Torque Optimization and Control

In this section, a control strategy is considered for
proper navigation of the non-holonomic UGVs and rovers
base on the model-based methods or uncertain-dynamics
control models [39, 40]. Non-holonomic UGVs moving
on flat surfaces do not require the new contact detection
sensor because their terrains are completely defined. For
these rovers, the ordinary sensors can be efficiently
used in stabilizing, navigation, state estimation and slip
reduction. Indeed, the contact angles are equal to 0.5 π

and consequently, the contact point position can be easily
calculated without this sensor. Therefore, this paper focuses
mainly on the case studies wherein the contact angles have
to be detected by the new sensor. This method can be
further extended to non-holonomic UGVs moving on rough
terrains. Using this sensor for the holonomic rovers and
UGVs depends on the platform of the rover. Indeed, when
the wheel structure is non-holonomic but the platform of
UGV laterally moves by steering all wheels, the new sensor
can be used to properly detect the contact points. This sensor

cannot be exploited for the rovers with holonomic wheels
such as holonomic omni-direction models.

The first step of torque optimization is to propose a
control method to produce the desired angular and linear
velocity vectors of the rover. Figure 8 illustrates the control
parameters of a simple vector-based control method.

The desired point coordinates Pd are projected onto the
rover plane SR to obtain the projected desired point Pp

d . The
vector VCGD pointing from CG to Pp

d is projected onto the
head vector HR to yield Vp. The required linear velocity
vector VR and angular velocity vector ωR are respectively
equal to KvVp and Kω

(
VCGD ‖VCGD‖-1) × (HR). The

constants Kv and Kω are the controller coefficients. These
velocity vectors result the desired angular velocity of
the wheels. Furthermore, the angular velocity of the rear
wheel is equal to ωr

d = R-1
w ‖VR‖ (VR .HR) ‖VR .HR‖−1.

Finally, the desired angular velocity of the front
wheels ω

f l
d and ω

f r
d can now be defined as

R-1
w (VR .HR) ‖VR .HR‖−1 -0.5w (ωR .z) ‖ωR .z‖−1 and

R-1
w (VR .HR) ‖VR .HR‖−1 +0.5w (ωR .z) ‖ωR .z‖−1, respec-

tively. In order to accurately solve the dynamic equations,

Fig. 9 Slips during turning
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Fig. 10 Optimization algorithm

the new sensor data including the angles λ i and βi are
required. For slip elimination, the motor torques can be
obtained and applied during the real time dynamic analysis.
For this purpose, a direct search method illustrated in Fig. 10
is implemented to find the optimal torques whereby the
robot moves without slip. The angle λi = θb + θi+βi+0.5π

is considered for the robot equipped with the new sensor,
and it is set on λi = θb + θi+1.5π+0.5π for the case of
without sensor. The notice is that in the 3D space the cri-
terion of the torque selection is limited to the longitudinal
slips. Lateral slips are out of this investigation (see Fig. 9).

The algorithm of Fig. 10 has to be modified in
order to optimize the torques in the 3D model of slip-
stick dynamics. At the beginning, the algorithm receives
(ẍb, ÿb, z̈b, θ̈x, θ̈y, θ̈

L
z , θe

f l, θ
e
f r , θ

e
r ) from the accelerometer

and encoders and (βf l, βf r , βr) from the new sensors. The
main states of the body including (xb, yb, zb, θx, θy, θ

L
z ) are

obtained from time integration of (ẍb, ÿb, z̈b, θ̈x, θ̈y, θ̈
L
z ).

All received parameters undergo noises in order to simulate
more real detection process. All updated noisy parameters
are implemented in the stick-slip dynamic equations.
A similar method of the torque selection according to
Fig. 10 is applied to select (τf l , τf r , τr) Parameters
Ri

min and Ri
max in optimization algorithm define the

range of possible torques which are respectively equal
to min

(
Kτ

(
ωi

d -θ̇ e
i

)
, 0

)
and max

(
Kτ

(
ωi

d -θ̇ e
i

)
, 0

)
. The

constant Kτ defines the torque coefficient parameter of the
control and optimization method.

8 Numerical Simulations

Case Study 1: Finding the Contact Point Position by the
New Sensor The mass and moment of inertia of the body
are respectively 6 kg and 1.1kg m2. The mass and mass
moment of inertia of the wheel are respectively 0.5 kg and

Fig. 11 The hole crossing
process



1010 J Intell Robot Syst (2019) 95:999–1019

Fig. 12 Variation of the angles
βr and βf
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Fig. 13 The obstacle climbing
up process

Fig. 14 The stability measure
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Fig. 15 The scanning result by
stick-slip dynamics
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Fig. 16 The slip and stick
moments by stick-slip dynamics
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0.04kg m2. The length of the body and the radius of the
wheel are 0.5 m and 0.1 m. In the first simulation, a resistive
belt is embedded in a 2D mobile platform with two wheels
undergoing a motion toward a hole on an uneven surface as
shown in Fig. 11 and written in (30) as

y = path(x) = −0.1e−40
(
x2) − 0.12e−120

(
x2) + 0.3 (30)

Variation of the angles βr and βf detected by the resistive
belts of both wheels are shown in Fig. 12. Considering the
front wheel, a drastic decrease at t =0.2 sec can be seen
from angle 6.28 rad to 0 rad. It means that the end point
B (see Fig. 1) of the resistive belt of the wheel had contact
with surface before this time. After an infinitesimal rotation,
the first point A comes into contact. The robot wheel faces
the deepest point of the hole at t =0.38 s. At this moment,
the wheel contact point drastically moves from a side of
the wheel to it’s another side which clearly implies that the
sensor detects drastic change in the contact point position.

Case Study 2: Simultaneously Scanning, Stability Margin
Extraction and Torque Optimization Facing Obstacle The
main simulation considers simultaneously torque optimiza-
tion, slip elimination, surface scanning and stability margin
extraction. The robot faces an obstacle illustrated in Fig. 13
and is given by
y = path(x) = 0.15 (atan (20 (x − 1)) − atan (20 (x − 2))) (31)

The robot moves in three different cases. According
to the first case, the robot uses the new sensor. In the
second case, the robot only uses common sensors containing
accelerometer, encoder and gyroscope to optimize the
torques, and in the third case, the robot moves by
constant torque without optimization. Figure 13 shows
the obstacle climbing up process. The stability measure
in both cases is shown in Fig. 14. It can be obviously
seen that the accuracy of the robot with the new sensor
in stability estimation is more than the robot without the
new sensor. The surface scanning result is provided in
Fig. 15 which clearly shows the higher accuracy of the
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Fig. 17 Torque result
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Fig. 18 The simulation process
by stick-slip dynamics

robot with the new sensor in compared to the other cases.
Figure 16 shows the slip-stick process for three cases.
The first case considers torque optimization of the robot with
the new sensor. The second case is the torque optimization
results for the robot without the new sensor and the third
case considers the case of torque exertion with constant
value -2 Nm. Value 1 represents the stick moments and value
0 denotes the slip moments. It can obviously be seen that
the torque optimization based on the data detected from
the new sensor can approximately eliminate all slips during
locomotion. Other cases have a lot of slips in the climbing
up and down process.

Figure 17 illustrates the resulting optimized torque for
the first and the second cases. The torques are limited
between -2 Nm and 2 Nm.

Case Study 3: Extension to the Three Dimension Space To
conduct more actual process, the sensor efficiency has to be
investigated in a 3D space. The robot moves on a 3D surface
with a non-symmetric obstacle generated as

z = ((atan(4(-x+6))+0.5π )/π )(step1+step2)
step1 = 0.2 ((atan(5 (x-3))+0.5π )/π) ((15(y))+0.5π )/π)
step2 = 0.5 ((atan(5 (x-3))+0.5π )/π) ((15(y+2))+0.5π )/π)

(32)

The 3D surface and the trail of the robot wheels are shown
in Fig. 18. The result of the locomotion shows that the robot
passes the obstacle. Figure 19 shows that the robot equipped
with the new sensor eliminates successfully the slipping
moments, while the robot without this sensor fails to
reach this goal. The resulting optimized and non-optimized
torques (with and without the new sensor, respectively) are
shown in Fig. 20 for both the rear and front wheels.

As it was pointed out previously, the result of this case
study illustrates the obvious influence of the new sensor
output on the slip reduction. Implementing the sensor output
βi in the dynamic equation, a more realistic estimation
of the results investigated through the case studies can
be achieved. On the other hand, an appropriate variation
of motor torques can change the contact forces in such
a way that yields the slip reduction. In other words, the
possible slip-less movement is obtained for the next step
of simulation by using the optimized torque. Accordingly,
opting user-defined motor torque according to the torque
optimization algorithms (Fig. 10) empowers this sensor-
based estimation to reduce the slip moments (Fig. 20). The
results in Figs. 16 and 19 show this influence of the new
sensor.

Fig. 19 The slip moments
record; Top: without sensor,
Below: equipped with the new
sensor
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Fig. 20 The motor torques
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On the other hand, when using ordinary wheels in
slip reduction algorithms, a user-defined contact angle,βi ,
instead of the sensor output has to be assumed which
consequently yields errors in the next step of the dynamics
estimation. According to Fig. 19, the slip in the first plot
shows the less performance of the ordinary wheels as
compared to the wheels empowered by the new sensor.
Moreover, the proper performance of the new sensor
facing 3D non-symmetric obstacle in Fig. 18 has implied
that the sensor implementation can also reduce the slip
when the robot rotates about roll axis. As it has been
mentioned previously, in some contact situations, the non-
slip movement is impossible when turning or climbing over
large obstacles which yields slip reduction and accordingly
incompletes slip elimination.

Case Study 4: Long-Term Simulation In a long-term sim-
ulation, the rover moves on a wide and complex surface
including small and large obstacles, surface fluctuations,

Fig. 21 Long-term simulation

and hills ranging from 0 to 100 m. The surface equation is
considered as:

z1 = 9e−0.01(x−30)2
e−0.01((y−3)2

z2 = 21e−0.001(x−40)2
e−0.001(y−1)2

-15e−0.04(x−40)2
e−0.04(y−2)2

z3 = 30e−0.04(x−50)2
e−0.04(y−3)2

+2sin(0.25x)cos(0.33y)
z4 = (atan(0.3(x-5))+(π /2))/π) (atan(0.3y)+(π /2)/π)

z5=z4 (z1+z2 + z3)

z=0.3z5+0.05sin(3(x + y))

(33)

This more-realistic unknown environment is composed
of three type of surfaces. The first type contains small-
size and distributed obstacles and stones which can
be represented in Eq. 33 as 0.05sin(3(x + y)). The
second type simulates the large hills which can be seen
in Eq. 33 as Ae−b(x−x0)

2
e−b((y−y0)

2
wherein multipliers

(a)

(b)

Fig. 22 a Torques of the motors, b the slip index
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Fig. 23 2D ramp climbing: a
motor torques and contact
forces, b free body diagram of
the main body

A, b and parameters [x0 y0] define height, sharpness
and center of hills. The third type defines the level
of the terrain and simulates gentle cliffs formulated
as (atan(0.3(x-5))+(π /2))/π) (atan(0.3y)+(π /2)/π). Other
sharp-rising obstacles and surfaces were independently
simulated in the previous case studies. The trajectory of
the rover is shown in Fig. 21 as a black line. As it can
be seen, the UGV has passed three mentioned types of
surfaces including hill, distributed small-size obstacles and
gentle cliffs. This simulation implies that the rover can
overcome more-realistic unknown surfaces. The result of
motor torques and slip index are respectively illustrated
in Fig. 22a and b. As it can obviously be seen, the slip
index remains zero during the simulation. It means that the
detected data from the new sensor exploited in the dynamic
formulations enhance the ability of the slip less motion, and
approves the efficiency of the new sensor.

Figure 22a illustrates the motor torques. Between the
seconds 0 and 60, that rover moves from x = 0m to
x = 40 m, the torques are positive due to positive
ramp slope. During the remainder of simulation, the
rover moves on a negative-slope ramp. It logically has

to yield negative torques to avoid undesired accelerating
on the ramp. The results show that the slip elimination
algorithm aided by the new sensor data keeps the torques
negative to simultaneously avoid acceleration and to
reduce slip. The fluctuation in the resulting torques is
caused of the distributed small-size obstacles simulated as
0.05sin(3(x+y)) and 0.1sin(0.25x)cos(0.33y). The effect of
these obstacles obviously appears in the resulting torque.

9 Validation Strategy of the Stick-Slip
Dynamics and Sensor Performance

In this section, the proposed formulation and the effi-
ciency of the sensor is validated. Ramp climbing is the
first case investigated here. Figure 23a shows a simpli-
fied model of the rover during ramp climbing. The friction
force TA

i applied to each wheel is equal to τir
−1 when

the stick condition is assumed at the first step. Neglecting
the inertia and mass of the wheels and adding the mass
of the wheels to the CG of the rover body, the forces
and torques of the main body are simplified according

Table 1 Ramp climbing validation

θsurf Input
[
τf r , τf l , τr

]
Output (stick-slip dynamics approach) Output (validation approach)

0 [0, 0 , 0] Nm

[
ẍb ÿb z̈b

]
=

[
0 0 0

]
(m s-2)[

θ̈x θ̈y θ̈L
z

]
=

[
0 0 0

]
(s-2)[

Nf l Nf r Nr

]
=

[
18.75 18.75 37.5

]
(N)

[
ẍb ÿb

]
=

[
0 0

]
(m s-2)

θ̈y = 0(m s)[
Nf l Nf r Nr

]
=

[
18.75 18.75 37.5

]
(N)

0 [1, 1, 1] Nmfor 1 sec
aCG = 4.03(m s-2), dxb = 1.53 (m)

stick condition

aCG = 4(m s-2), dxb = 1.52 (m)

stick condition

0 [2, 2, 2] Nmfor 1 sec

aCG = 4.564(m s-2)[
Nr Nf i

] = [49.43 12.81] (N)

slip condition

aCG = 4.57(m s-2)[
Nr Nf i

] = [49.5 12.75] (N)

slip condition

asin(0.5) [2, 2, 2] Nmfor 1 sec

aCG = -0.798(m s-2)[
Nr Nf i

] = [44.481 10.228] (N)

slip condition

aCG = -0.804(m s-2)[
Nr Nf i

] = [44.476 10.238] (N)

slip condition
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Fig. 24 Dynamics validation: a
Stick-slip dynamics model, b
SolidWorks model, c Horizontal
displacement of CG

(a) (b) 

(c)

to Fig. 23b. The resultant reaction torque of the motors
applied to the body is equal to−τr − τf l − τf r . Further-
more, the normal force of the rear wheel can be obtained
by writing the Euler equation with respect to the center of
the front wheel as Nr = 0.5g (Mb + 3Mw) cos(θsurf ) +(
τr + τf l + τf r

)
L-1 and also, the normal force of

each front wheel can be subsequently obtained as
Nf i = 0.5

(
g (Mb + 3Mw) cos(θsurf )-Nr

)
, (i = r, l).

The stick assumption may only be violated when

the resultant friction force TA
i exceeds the maxi-

mum allowable static friction μsNi which means the
slip occurs and TA

i = μkNi . The acceleration is
equal to(Mb + 3Mw)-1 (∑

TA
i -g (Mb + 3Mw) sin(θsurf )

)
.

Table 1 compares the results of the ramp climbing for
various situations obtained from the stick-slip dynamics for-
mulations presented in Sections 5 and 6, and the above
simple relations (validation approach). A good agreement
between the results of both approaches can be seen.

Fig. 25 Validation process
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Fig. 26 Variation trend of xb
during simulation

(a)

(b)

Stage 1-time=0s Stage 2-time=0.7s

Stage 3-time=1.1s Stage 4-time=2.5s

The validations tabulated in Table 1 start from the
simplest case study (zero torque and flat surface). In the
second and the third case studies, the torques increase to
show typical stick and slip conditions on the flat surface.
Finally, the slope of the surface increases to simulate the
actuated rover on the ramp. Parameters aCG and dxb in
Table 1 and Fig 23a are respectively the acceleration and the
total horizontal displacement of the rover.

In another case study the rover is moved freely on a curve
without applying any torque. For validation of the stick-slip
dynamics formulations for this case, the motion studio part
of SolidWorks software (motion and contact analysis part)

is used to simulate the rover on the surface z=0.4(x − 0.5)2.
The code-based dynamic model of the rover (Fig. 24a) is
compared with its model in SolidWorks (Fig. 24b) while the
motor torques are set to zero. The horizontal displacement
of the CG of the rover is illustrated in Fig. 24c, which clearly
shows that both approaches lead to a similar oscillating
movement of the rover.

In the last validation study it is intended to simulate
the rover when climbing an obstacle formulated as z =
0.4 (atan(10(x-0.7))+(π /2))/π) without slip by exploiting
the torques obtained from the stick-slip dynamics and using
the new sensor. For this purpose, the stick-slip dynamic

Fig. 27 Connecting the sensor
to an ARDUINO UNO
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Fig. 28 Wiper usage

simulation of the rover based on our approach is carried
out. Then, the motor torques obtained from this analysis
are used as the inputs to the same model of the rover
built in SolidWorks. It is maybe important to notice that
the amounts of motor torques are relied on the new
sensor data as well as the stick-slip dynamics formulation
presented before. Finally, the obstacle climbing of the rover
is simulated in SolidWorks and the variation of xb is
obtained as the output of this analysis. Figure 25 shows
the required steps to conduct this validation. Furthermore,
Fig. 26a shows schematically the rover in some certain
times of the simulation in SolidWorks. Figure 26b compares
the variation trend of xb during simulation from both
approaches, which clearly shows that they coincide well for
most of the simulation times. This important result confirms
the correctness and reliability of the proposed formulation
as well as the efficiency of the new sensor.

10 Hardware Implementation of the New
Sensor

In this section, the hardware implementation of the new
sensor is presented briefly to prove the new concept of using
this sensor in real applications. The equation obtained in
Section 2 for Vs can be adequately used during simulation.
However, in real applications the resistor R0 is embedded
in DAQ cards (such as ARDUINO cards) to directly detect
the voltages from the analog input terminals. Therefore,
it makes it possible to utilize a linear potentiometer (a
voltage divider) instead of a circuit for this sensor. Figure 27
shows how the sensor is connected to an ARDUION UNO.
The accuracy and delay of the sensor is equal to the
UNO properties (“http://memoir.okno.be/physcomptutorial/
ribbon4/ribbon4.htm”). The output voltage Vout of the
voltage divider can be calculated as Vout = VDDRtR

−1
L

wherein the parameters Rt and RL are respectively the
resistance of the pushed part of the circuit and the resistance
of the resistive tape. Accordingly, the output voltage is equal
to Vout = VDDLi

bL
−1
t = 0.5 VDDπ−1βi . The sensitivity

of the output voltage Sv with respect to the variation of the
contact angle βi is equal to ∂Vout/∂βi = 0.5 VDDπ−1 which
has a linear relationship with the supply voltage.

Another important issue in hardware implementation of
the sensor and wrapping over the wheel is related to the
connection part for the wires. Indeed, the sensor data is
detected from the wheel surface and then transmitted to the
main body of the rover for further process. It means that
the sensor wires cross over the wheel axis and go to the
main body which can yield twisting of the wires during
the wheel rotation. To solve this problem, a wiper can be
implemented in the same way as it is always utilized in the
circular potentiometers. Figure 28 shows how a wiper can
be used in a rover to transmit data from the wheel to the
main body.

11 Conclusion

In this paper, a new simple and cheap single-output sensor
was proposed to detect the contact point of a typical robotic
wheel. The derived formulations and the results showed that
adding this sensor to a mobile robot completes the required
data to extract the real time stability margins and all required
dynamic terms. The results of the first case study proved
that the robot detects the drastic contact changes. Also, the
robot was empowered to scan the surface without camera or
laser. The results showed that the new sensor scanned the
surface properly. On the other hand, the error of the stability
margin extraction with the new sensor case was lower than
other cases. By monitoring the stability margin results, the
danger of overturning was reduced. This margin guarantees

http://memoir.okno.be/physcomptutorial/ribbon4/ribbon4.htm
http://memoir.okno.be/physcomptutorial/ribbon4/ribbon4.htm
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the stable locomotion which is the base of complete contact
of the wheels and consequently, establishes the essential
condition of the slip reduction. As the most important
result of this paper, the optimized torques of the wheels
obtained from the new sensor data were able to significantly
eliminate the slips as compared to other cases in both 2D and
3D dynamic simulations. A long-term simulation showed
the ability of the sensor to overcome complex motions.
Finally, validation data of the proposed stick-slip dynamics
based on various situations implied the reliability of the
equations.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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