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Abstract
This paper presents a Tracking-Error Learning Control (TELC) algorithm for precise mobile robot path tracking in off-road
terrain. In traditional tracking error-based control approaches, feedback and feedforward controllers are designed based on
the nominal model which cannot capture the uncertainties, disturbances and changing working conditions so that they cannot
ensure precise path tracking performance in the outdoor environment. In TELC algorithm, the feedforward control actions
are updated by using the tracking error dynamics and the plant-model mismatch problem is thus discarded. Therefore, the
feedforward controller gradually eliminates the feedback controller from the control of the system once the mobile robot has
been on-track. In addition to the proof of the stability, it is proven that the cost functions do not have local minima so that
the coefficients in TELC algorithm guarantee that the global minimum is reached. The experimental results show that the
TELC algorithm results in better path tracking performance than the traditional tracking error-based control method. The
mobile robot controlled by TELC algorithm can track a target path precisely with less than 10 cm error in off-road terrain.

Keywords Learning control · Mobile robot · Path tracking · Tracking error

1 Introduction

Mobile robots in off-road terrain are increasingly used in
wide range of nonindustrial applications such as agriculture,
search and rescue, military, forestry, mining and security
[12, 17]. However, guidance, navigation, and control of
mobile robots require advanced control methods to alleviate
the effects of unmodeled surface and soil conditions
(e.g., snow, sand, grass), terrain topography (e.g., side-
slopes, inclines), and complex robot dynamics. In the
outdoor environment, it is sometimes arduous and/or almost
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impossible to obtain a priori model for such effects (i)
modeling of robot-terrain interactions is challenging, (ii) the
soil condition is often not known ahead of time, and (iii)
the identification of system parameters is a cumbersome
process and must be re-carried out for different terrains [3,
8, 10, 15, 22].

The initial studies on autonomous mobile robots used
traditional controllers, e.g., proportional-integral-derivative,
optimal, and model predictive controllers (MPCs) [1, 5, 6,
21]. Proportional-integral-derivative controllers are conve-
nient only for single-input-single-output systems; however,
mobile robots are multi-input-multi-output systems. As
alternative methods, linear quadratic regulators and linear
MPCs, which can be designed readily for multi-input-multi-
output systems, were proposed for autonomous navigation
of mobile robots in literatur [18, 23, 26]. Since these meth-
ods require a linear system model to be designed, tracking
error-based control algorithms were developed [16, 24] in
which the system model is linearized around the target
path, and the total control input is obtained by the sum
of feedback and feedforward control inputs [2]. The feed-
back control law is designed based on a nominal model,
which is a priori model and cannot capture all the effects
of uncertainties that are summarized in the previous para-
graph. Moreover, the feedforward control law is derived
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taking the target path and nominal model into account so
that it also cannot contain the effects of uncertainties. Since
tracking error-based models might not represent real-time
systems behavior accurately, the traditional tracking error-
based control methods cannot ensure precise path tracking
performance in the outdoor environment. Therefore, it can
be concluded that a prerequisite for accurate tracking per-
formance of model-based controllers is the achievement of
a precise mathematical model of the system to be controlled
[13]. This shows that traditional approaches are not always
inherently robust. Moreover, an amplitude-saturated output
feedback control approach was proposed in [25]. In this
approach, the output of the control input is limited by upper
and lower bounds; however, the input rate cannot be lim-
ited. Furthermore, this approach requires to know the direct
relation between the input and output, which is known in
tracking error-based control methods. In this paper, since
traditional tracking error-based controllers use an MPC as
a feedback controller, we also use an MPC controller for a
fair comparison with the previous works in literature.

To cope up with restrictions on traditional controllers,
adaptive control approaches and MPC scheme with friction
compensation were respectively proposed in [19, 20], and
successful results were reported for indoor applications.
However, there is no evidence that these methods work well
for outdoor applications where the uncertainty is so high,
and soil conditions are changing. Robust trajectory tracking
error model-based predictive controller was designed for
unmanned ground vehicles to overcome the limitations
of the tracking error-based controllers [14]. Although it
exhibited robust control performance, it could not ensure
precise path tracking performance, e.g., the tracking error
was more than 20 cm. Moreover, learning-based nonlinear
MPC algorithms were proposed in which online parameters
estimators were used to update the system parameters in the
system model for an articulated unmanned ground vehicle
[7, 9, 11]. Although precise path tracking performance was
reported in these studies, the required computation times is
large, especially for embedded applications. Therefore, the
purpose of this paper is to develop a high precision control
algorithm for mobile robots, which must be computationally
efficient and can learn the mobile robot dynamics by
utilizing longitudinal and lateral error dynamics. Thus, the
feedforward control action will be in charge of the overall
control of the mobile robot in steady-state behavior.

The main contribution of this study beyond state of
the art is that a novel Tracking Error Learning Control
(TELC) scheme is developed and implemented in real-time
for the first time in literature. The first contribution of
this paper is that the cost functions consisting of tracking
error dynamics of the mobile robot are used to update the
coefficients in the feedforward control law. Hence, TELC
can learn mobile robot dynamics, and the feedback control

action is removed from the overall control signal when
the robot is on-track. Therefore, the model-plant mismatch
problem for outdoor applications cannot deteriorate the path
tracking performance in the TELC scheme. The second
contribution is that the stability of the TELC algorithm is
proven that the TELC algorithm is asymptotically stable.
The stability analysis shows the longitudinal and lateral
error dynamics converge to zero if the learning coefficients
are large enough. The third contribution is that it is proven
that the TELC algorithm does not have any local minima so
that it can reach the global minima. Moreover, it is shown
that the feedforward control actions are bounded for a finite
value for the coefficients in steady-state. Along with the
theoretical results, this paper also presents path tracking-
test results of the presented TELC algorithm on a mobile
robot. TELC algorithm results in precise mobile robot path
tracking performance when compared to the traditional
tracking error-based control method.

This paper is organized as follows: The tracking error-
based model is derived in Section 2. The traditional tracking
error-based control method is given in Section 3. The TELC
algorithm is formulated in Section 4 while the update
rules for the linear and angular velocity references are
respectively derived in Sections 4.1 and 4.2, and the stability
analysis is given in Section 4.3. Experimental results on
a mobile robot are presented in Section 5. Finally, a brief
conclusion of the study is given in Section 6.

2 Tracking Error-Based SystemModel

In this paper, the mobile robot is illustrated in Fig. 1. The
velocities of two driven wheels result in linear velocity
ν = (νl + νr)/2 and angular velocity ω = (νl − νr)/L with
the distance between wheelsL, which are two control inputs
of the mobile robot, u = [ν, ω]. The traditional unicycle
model is written for a mobile robot as follows:

⎡
⎣

ẋ

ẏ

θ̇

⎤
⎦ =

⎡
⎣

ν cos (θ)

ν sin (θ)

ω

⎤
⎦ (1)

where x and y are the position, θ is the heading angle, ν is
the linear velocity, ω is the angular velocity of the mobile
robot.

The target path with respect to the inertial reference
frame fixed to the motion ground is defined by a reference
state vector qr = (xr , yr , θr )

T and a reference control
vector ur = (νr , ωr)

T . The error state e = [e1, e2, e3]T
expressed in the frames on the mobile robot is written as:

e = T(θ) × [qr − q] (2)
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Fig. 1 Schematic illustration of the mobile robot

where T(θ) is the transformation matrix formulated as
below:

T(θ) =
⎡
⎣

cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

⎤
⎦

The tracking error-based model is derived by taking the
time-derivative of the error state in (2) and the unicycle
model in (1) into account as follows:

ė1 = ωe2 − ν + νr cos (e3)

ė2 = −ωe1 + νr sin (e3)

ė3 = ωr − ω (3)

where e1 is the longitudinal error, e2 is the lateral error and
e3 is the heading angle error.

The tracking error-based model (3) is linearized around
the target path (e1 = e2 = e3 = 0 ) as follows:

ė1 = ωre2 − ν + νr

ė2 = −ωre1 + νre3

ė3 = ωr − ω (4)

Finally, it can be written in the state-space form as follows:

ė = Ae + Bue

ė =
⎡
⎣

0 ωr 0
−ωr 0 vr

0 0 0

⎤
⎦ e +

⎡
⎣

−1 0
0 0
0 −1

⎤
⎦ue (5)

where the state and control vectors are written as

e = [
e1 e2 e3

]T
(6)

ue = [
νe ωe

]T
(7)

where νe = ν − νr and ωe = ω − ωr .

Remark 1 The tracking error-based system model is fully
controllable when either the linear velocity reference νr or
the angular velocity reference ωr is nonzero, which is a
sufficient condition.

3 Traditional Tracking Error-Based Control

The traditional tracking-error-based control algorithm for
a mobile robot is formulated in this section. The total
control input applied to the mobile robot is calculated as
the summation of the feedback control action ub and the
feedforward control action uf as follows:

u = ub + uf (8)

The feedback controller generates the differences between
the actual and reference control inputs while the feedfor-
ward control actions are the reference control inputs. The
traditional feedback and feedforward control actions are
formulated in following subsections.

3.1 Feedback Control Action: Model Predictive
Control

Amobile robot can be described by a linear continuous-time
model:

ė(t) = Ae(t) + Bue(t) (9)

where e ∈ R
3 is the state vector and ue(k) ∈ R

2 is the
control input vector. The matrices A and B are found from
the tracking error-based system model in (5).

The input constraints for the mobile robot are defined for
all t ≥ 0 as follows:

− 0.1 m/s ≤ νe(t) ≤ 0.1 m/s (10)

−0.1 rad/s ≤ ωe(t) ≤ 0.1 rad/s (11)

The cost function is written as follows:

J
(
�U, e

) = 1

2

{ k+Np∑
i=k+1

‖e(ti)‖2Q +
k+Nc∑
i=k+1

‖�ue(ti)‖2R
}

(12)

where Np = 20 and Nc = 5 represent the prediction
and control horizons, �ue is the input change, and �U =
[�uT

e (tk), ..., �uT
e (tk+Nc)]T is the matrix of the input vec-

tors from sampling instant tk to sampling instant tk+Nc .
Since the sampling time of the experiments is equal to 200
millisecond, the prediction and control horizons are respec-
tively equal to 4 second and 1 second. The positive-definite
weighting matrices Q3×3 and R2×2 are defined as follows:

Q = diag(1, 1, 1) and R = diag(1, 1) (13)
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The following plant objective function is solved at each
sampling time for the MPC:

min
e(.),ue(.)

1

2

{ k+Np∑
i=k+1

‖e(ti)‖2Q +
k+Nc∑
i=k+1

‖�ue(ti)‖2R
}

subject to e(tk) = ê(tk)

ė(t) = Ae(t) + Bue(t) t ∈ [tk+1, tk+Np ]
− 0.1 ≤ νe(t) ≤ 0.1 t ∈ [tk+1, tk+Nc ]
− 0.1 ≤ ωe(t) ≤ 0.1 t ∈ [tk+1, tk+Nc ]

(14)

The convex optimization problem in (14) is solved for the
current error state information ê(tk) in a receding horizon
fashion. The steps for the implementation of the MPC
algorithm are summarized as below:

1. Measure or estimate the current error states ê(t).
2. Obtain �U∗ = [�u∗

e (tk+1), . . . , �u∗
e (tk+Nc)]T by

solving the optimization problem in (14).
3. Calculate the feedback control action u∗

e (tk+1) =
�u∗

e (tk+1) + u∗
e (tk)

The MPC problem is thereafter solved for the next sampling
instant over shifted prediction and control horizons. The
control input generated by the MPC u∗

e is the feedback
control action ub:

ub = u∗
e (15)

In tracking error control scheme, the designed MPC
minimizes the tracking error between the target path and
the measured position of the mobile robot, and finds the
differences between the actual and reference control inputs.
Therefore, the feedback control inputs generated by the
MPC are not the actual control inputs, which are sent to
the mobile robot. We will formulate traditional feedforward
control actions in the next Section 3.2.

3.2 Feedforward Control Action

In open-loop control, the feedforward control laws can only
drive a mobile robot on a target path if there exist no
uncertainties, and initial state errors. Feedforward control
inputs νr and ωr are derived for a given target path (xr , yr )
by using the unicycle model (1).

The linear velocity reference, i.e., νr , for a mobile robot
is derived for a target path (xr , yr ) defined in a time interval
t ∈ [0, T ] as follows:

νr = ±
√

(ẋr )2 + (ẏr )2 (16)

where the sign ± is the desired driving direction of the
mobile robot (+ for forward, − for reverse).

The heading angle reference is derived from (1) as follows:

θr = arctan 2(yr , xr) + γπ (17)

where γ = 0, 1 is the desired driving direction of the
mobile robot (0 for forward, 1 for reverse) and the function
arctan 2 is a four-quadrant inverse tangent function. The
angular velocity reference, ωr , for a mobile robot is derived
by taking the time-derivative of (17) for a given target path
(xr , yr ) defined in a time interval t ∈ [0, T ] as follows:

ωr = ẋr ÿr − ẏr ẍr

(ẋr )2 + (ẏr )2
(18)

Remark 2 The necessary condition in the path generation
is that the target path must be twice-differentiable, and the
linear velocity reference must be nonzero, i.e., νr �= 0.

4 Tracking Error Learning Control

The tracking error-based model is linearized around a target
path by assuming that the longitudinal, lateral and heading
angle errors are around zero. Therefore, the mismatch
between the tracking error-based model and real system
might result in unsatisfactory control performance when the
mobile robot is not on-track. Moreover, there always exist
uncertainties and unmodeled dynamics, which cannot be
modeled, in outdoor applications.

In the TELC, the longitudinal and lateral error dynamics
are used to train the learning algorithm, which is required
to learn the uncertainties and unmodelled dynamics and to
keep the system on track. The learning algorithm generates
the references for the control inputs. In other words, it learns
the dynamics of the real system.

Like (8), the control inputs consisting of the feedback and
feedforward control actions are written as follows:

ν = νb + νf (19)

ω = ωb + ωf (20)

where νb and ωb are the traditional feedback control
actions formulated in Section 3.1, while νf and ωf are
new feedforward control actions that are updated by the
tracking error learning algorithm. The new feedforward
control actions are formulated as follows:

νf = νrkν,1 + kν,0 (21)

ωf = ωrkω,1 + kω,0 (22)

where νr and ωr are the traditional feedforward control
actions formulated in (16) and (18), respectively. kν,1

and kν,0 are the coefficients to update the linear velocity
reference and kω,1 and kω,0 are the coefficients to update
the angular velocity reference. TELC structure for a mobile
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Fig. 2 Tracking error learning control structure for a mobile robot

robot is shown in Fig. 2. In the next subsection, we will
formulate the update rules for these coefficients.

4.1 Linear Velocity

The requirement for the Lyapunov stability, i.e., e1 = 0,
is satisfied for the selection of the coefficients for the
linear velocity in (21). As can be seen from (5), the linear
velocity appears in the channel of the longitudinal error
e1. Therefore, we use the following squared first-order
longitudinal error dynamics as the cost function:

Eν = 1

2
(ė1 + λνe1)

2 (23)

where λν is a positive constant, i.e., λν > 0. It is implied
that if the cost function converges to zero, i.e., Eν = 0, then
the robust control performance condition ė1 + λve1 = 0 is
satisfied so that the longitudinal error converges to zero.

Gradient descent, which is a first-order iterative opti-
mization algorithm for finding the minimum of a function,
is used to minimize the cost function Eν . In this approach,
steps are taken proportional to the negative of the gradient
of the closed-loop error function, i.e., Eν , to find the mini-
mum of the cost function. The cost function is minimized to
decide the coefficients in (21) as follows:

k̇ν,1 = −αν

∂Eν

∂kν,1
(24)

where αν is the learning coefficient and positive, i.e., αν >

0. It is re-written by using the chain rule

k̇ν,1 = −αν

∂Eν

∂ν

∂ν

∂kν,1
(25)

Equation 23 is inserted into the equation above, it is then
obtained as

k̇ν,1 = −αν(ė1 + λνe1)
∂(ė1 + λνe1)

∂ν

∂ν

∂kν,1
(26)

Considering (4), ∂(ė1+λνe1)
∂ν

= −1 is obtained and inserted
into the equation above, it is obtained as

k̇ν,1 = αν(ė1 + λνe1)
∂ν

∂kν,1
(27)

If total control input for the linear velocity applied to the
mobile robot (19) and the feedforward control action for the

linear velocity (21) are inserted into (27), the adaptation of
the coefficient for the linear velocity is written as follows:

k̇ν,1 = αν(ė1 + λνe1)
∂(νb + νrkν,1 + kν,0)

∂kν,1︸ ︷︷ ︸
νr

k̇ν,1 = αννr(ė1 + λνe1) (28)

The bias term kν,0 for the linear velocity is computed by
using the same procedure and found as:

k̇ν,0 = αν(ė1 + λνe1) (29)

4.2 Angular Velocity

First we take the time-derivative of the lateral error e2 so that
the angular velocity ω can appear in the same channel with
the lateral error e2. It is obtained considering (4) as follows:

ë2 = −(ωr)
2e2 + ωrν − νrω (30)

The requirement for the Lyapunov stability, i.e., e2 = 0,
is satisfied for the selection of the coefficients for the
angular velocity in (22). Therefore, we use the following
squared second-order lateral error dynamics as the same
cost function as follows:

Eω = 1

2
(ë2 + 2λωė2 + λ2ωe2)

2 (31)

where λω is a positive constant, i.e., λω > 0. It is implied
that if the cost function converges to zero, i.e., Eω = 0,
then the robust control performance condition ë2 +2λωė2 +
λ2ωe2 = 0 is satisfied so that the lateral error converges to
zero.

As explained in Section 4.1, the gradient descent method
is used to find the minimum of the cost function Eω and to
decide the coefficients in (22) as follows:

k̇ω,1 = −αω

∂Eω

∂kω,1
(32)

where αω is the learning coefficient and positive, i.e., αω >

0. It is re-written by using the chain rule

k̇ω,1 = −αω

∂Eω

∂ω

∂ω

∂kω,1
(33)
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Eq. 31 is inserted into the equation above, it is then obtained
as

k̇ω,1=−αω(ë2+2λωė2+λ2ωe2)
∂(ë2+2λωė2+λ2ωe2)

∂ω

∂ω

∂kω,1

(34)

Considering (4) and (30), ∂(ë2+2λωė2+λ2ωe2)

∂ω
= −νr is

obtained and inserted into the equation above, it is obtained
as

k̇ω,1 = αωνr(ë2 + 2λωė2 + λ2ωe2)
∂ω

∂kω,1
(35)

If total control input for the angular velocity applied to
the mobile robot (20) is inserted into (35) considering the
feedforward control action for the angular velocity (22),
the adaptation of the coefficient for the angular velocity is
written as follows:

k̇ω,1 = αωνr(ë2 + 2λωė2 + λ2ωe2)
∂(ωb + ωrkω,1 + kω,0)

∂kω,1︸ ︷︷ ︸
ωr

k̇ω,1 = αωνrωr(ë2 + 2λωė2 + λ2ωe2) (36)

The bias term k̇ω,0 for the angular velocity is computed
by using the same procedure and found as:

k̇ω,0 = αωνr(ë2 + 2λė2 + λ2e2) (37)

4.3 Stability Analysis

The summation of the cost functions used for the linear
and angular velocities is used to formulate the Lyapunov
function as follows:

V = Eν + Eω (38)

The Lyapunov function is positive semi-definite, i.e., V ≥
0. To check the stability of the tracking-error learning
algorithm, the time-derivative of the Lyapunov function
above is taken as follows:

V̇ = ∂Eν

∂t
+ ∂Eω

∂t
(39)

It is re-written by using the chain rule as follows:

V̇ = ∂Eν

∂kν,1

∂kν,1

∂t
+ ∂Eν

∂kν,0

∂kν,0

∂t

+ ∂Eω

∂kω,1

∂kω,1

∂t
+ ∂Eω

∂kω,0

∂kω,0

∂t
+ g(γ ) (40)

where, g(γ ) represents the derivative of the Lyapunov function
V with respect to the variables other than the coefficients in
the formulations of the linear and angular velocities.

The time-derivatives of the coefficienting terms in (24),
(29), (32) and (37) are inserted into the aforementioned

equation, then the time-derivative of the Lyapunov function
is obtained as follows:

V̇ = −αν

[
(

∂Eν

∂kν,1
)2

︸ ︷︷ ︸
≥0

+ (
∂Eν

∂kν,0
)2

︸ ︷︷ ︸
≥0

]

−αw

[
(

∂Eω

∂kω,1
)2

︸ ︷︷ ︸
≥0

+ (
∂Eω

∂kω,0
)2

︸ ︷︷ ︸
≥0

]
+ g(γ ) (41)

If the learning coefficients for the linear and angular
velocity references are large enough, the time-derivative of
the Lyapunov function is negative, i.e., V̇ < 0. This implies
asymptotically stability of the learning algorithm.

4.4 Global Minima

The most important concern in the tracking error learning
algorithm is that the system might reach some local minima
and stay in these local minima. In this section, we will show
that there are no local minima for the formulation of the
tracking-error learning algorithm. If the second derivatives
of the cost functions with respect to variables have the
same sign, then the cost functions do not have a change in
the curvature sign through the variables. This implies that
the cost functions do not have local minima through these
variables.

4.4.1 Linear Velocity

If we take the second derivative of the cost function Eν

for the linear velocity with respect to kν,1, it is obtained as
follows:

∂2Eν

∂k2ν,1

= −ανvr

∂(ė1 + λνe1)

∂kν,1
(42)

The chain rule is applied to the equation above

∂2Eν

∂k2ν,1

= −αννr

∂(ė1 + λνe1)

∂ν

∂ν

∂kν,1
(43)

First ∂(ė1+λνe1)
∂ν

= −1 is obtained considering (4) and
inserted into the equation above. Also, total control input for
the linear velocity applied to the mobile robot (19) and the
feedforward control action for the linear velocity (21) are
inserted into the equation above. Then, (43) is obtained as
follows:

∂2Eν

∂k2ν,1

= αννr

∂(νb + νrkν,1 + kν,0)

∂kν,1︸ ︷︷ ︸
νr

∂2Eν

∂k2ν,1

= αν(νr)
2 (44)
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The second derivative of the cost function with respect
to the bias coefficient kν,0 is computed by using the same
procedure as follows:

∂2Eν

∂k2ν,0

= αν (45)

Equations 44 and (45) show that the sign of the curvature
of the cost function for the linear velocity (23) is always
positive; therefore, there are no local minima, which
indicate that the system reaches to the global minimum.
After reaching the global minimum, since αv is a constant
and vr is bounded, the coefficient update algorithms (28)
and (29) show that coefficients converge to a finite value.
A finite value for the coefficients in steady-state results in a
bounded feedforward control action (21).

4.4.2 Angular Velocity

If we take the second derivative of the cost function Eω for
the angular velocity with respect to kω,1, it is obtained as
follows:

∂2Eω

∂k2ω,1

= −αωνrωr

∂(ë2 + 2λωė2 + λ2ωe2)

∂kω,1
(46)

The chain rule is applied to the equation above

∂2Eω

∂k2ω,1

= −αωνrωr

∂(ë2 + 2λωė2 + λ2ωe2)

∂ω

∂ω

∂kω,1
(47)

First ∂(ë2+2λωė2+λ2ωe2)

∂ω
= −νr is obtained considering (4)

and (30) and inserted into the equation above. Then, total
control input for the angular velocity applied to the mobile
robot (20) and the feedforward control action for the angular
velocity (22) are inserted into the equation above. Then, (47)
is obtained as follows:

∂2Eω

∂k2ω,1

= αω(νr)
2ωr

∂(ωb + ωrkω,1 + kω,0)

∂kω,1︸ ︷︷ ︸
ωr

= αω(νr)
2(ωr)

2 (48)

The second derivative of the cost function Eω with respect
to the bias coefficient kω,0 is computed by using the same
procedure as follows:

∂2Eω

∂k2ω,0

= αω(νr)
2 (49)

Equations 48 and (49) show that the sign of the curvature
of the cost function for the angular velocity (31) is always

positive; therefore, there are no local minima, which
indicate that the system reaches to the global minimum.
After reaching the global minimum, since αω is a constant,
vr and ωr are bounded, the coefficient update algorithms
(36) and (37) show that coefficients converge to a finite
value. A finite value for the coefficients in steady-state
results in a bounded feedforward control action (22).

5 Experimental Validation

5.1 Mobile Robot

The mobile robot, termed TerraSentia, is constructed
entirely out of 3D printed construction as shown in Figs. 3
and 4, which leads to an extremely light-weight robot (14.5
lbs) and has been proven to be structurally resilient to field
conditions during an entire season of heavy operation in
Corn, Sorghum, and Soybean farms in Illinois [15]. We
posit that this robot is an example of the potential of
additive manufacturing (3D printing) in creating a new class
of agricultural equipment that works in teams to replace,
minimize, or augment traditional heavy farm equipment. In
addition, lightweight equipment has several benefits, it is
easier to manage, has better endurance, safer to operate in
general, and leads to lower ownership cost. On the other
hand, the ultralight robot described here mitigates many
of these challenges, yet, it leads to a uniquely challenging
control problem in uneven and soil terrain in crop fields.
The difficulties in control arise from complex and unknown
wheel-terrain interaction and wheel slip.

The placement of hardware is illustrated in Fig. 5.
One Global Navigation Satellite System (GNSS) antenna
has been mounted straight up the center of TerraSentia,

Fig. 3 The mobile robot, termed TerraSentia in off-road terrain
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Fig. 4 CAD drawing of the ultra-compact 3D printed robot with a suite
of sensors

and the dual-frequency GPS-capable real-time kinematic
differential GNSS module (Piksi Multi, Swift Navigation,
USA) has been used to acquire centimeter-level accurate
positional information at a rate of 5 Hz. Another antenna
and module have been used as a portable base station
and has transmitted differential corrections. There are four
brushed 12V DC motors with a 131.25:1 metal gearbox
(Pololu Corporation, USA), which are capable of driving an
attached wheel at 80 revolutions per minute. A two-channel
Hall-effect encoder (Pololu Corporation, USA) for each DC
motor is attached to measure velocities of the wheels. The

2 3 4 5

6

7891011

1

Fig. 5 Interior of the ultra-compact 3D printed robot. 1. Raspberry
Pi, 2. Lithium Ion Batteries, 3. Tegra, 4. Heat sink, 5. Cooling
Fan, 6. Kangaroo/Sabertooth, 7. Regulator, 8. 3-axis gyroscope, 9.
Breadboard, 10. Raspberry Pi, 11. 3-axis accelerometer

Sabertooth motor driver (Dimension engineering, USA) is a
two-channel motor driver that uses digital control signals to
drive twomotors per channel (left and right channel) and has
a nominal supply current of 12 A per channel. An onboard
computer (1.2GHz, 64bit, quad-core Raspberry Pi 3 Model
B CPU) acquires measurements from all available sensors
and sends control signals to the Sabertooth motor driver in
the form of two Pulse-width modulation signals.

All available measurements from all its onboard sensors
(GNSS and encoders) are fed to a state estimator, i.e.,
extended Kalman filter, to estimate heading angle of the
mobile robot. In every time instant, estimates are fed to
calculate the errors with respect to the inertial reference
frame fixed to the motion ground and the estimated heading
angle is fed to the transformation matrix to calculate the
tracking errors in the frame on the mobile robot. Then,
tracking errors are fed to the TELC algorithm, which gene-
rates the linear and angular velocity references to track the
target path. Then, the linear and angular velocity references
are controlled by a proportional-integral-derivative type
motion controller - in other words, the robot’s low-level
controller - by using feedback from encoders attached to the
motors to determine the required control signals in the form
of the Pulse-width modulation signal. Thus, the tracking of
given reference command signals ensures that the robot’s
desired velocities are maintained. The motion controller
outputs the modified command signals to the Sabertooth
Motor Driver which correlates the given control signals to
the necessary output voltages needed by the DC motors.

5.2 State Estimation

An Extended Kalman Filter (EKF) is used for the state
estimation in real-time because one GNSS antenna is not
enough to obtain the heading angle of the mobile robot. We
require heading angle information to calculate the heading
angle error and also the rotation matrix. The inputs of the
EKF are position information coming from the GNSS, and
linear and angular velocities coming from the encoders and
gyro. The outputs of the EKF are the position of the mobile
robot on x- and y-coordinate system and the heading angle
of the mobile robot.

The discrete-time unicycle model used for the implemen-
tation of the EKF is written as follows:

xk+1 = xk + Tsνk cos θk

yk+1 = yk + Tsνk sin θk

θk+1 = θk + Tsωk (50)

where Ts is the sampling interval. The general form of the
estimated system model is written:

q̂k+1 = f (̂qk, uk) + wk

ẑk+1 = h(̂qk) + vk (51)
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where f (̂qk, uk) is the system model (50), h(̂qk) is the
measurement function and zk = [xk, yk, νk, ωk]T is the
measurements. The difference between the system model
and real-time system is the process noisewk and observation
noise vk in the measurement model. These noises are
assumed to be independent and zero mean multivariate
Gaussian noises with covariance matrices Wk and Vk ,
respectively [4]:

wk � N(0,Wk)

vk � N(0,Vk) (52)

where the weighting matrices are defined ad follows:

Wk = diag(0.1, 0.1, 0.1) (53)

Vk = diag(0.03, 0.03, 0.01745) (54)

5.3 Experimental Results

The experiment was carried out in off-road terrain and
the GNSS is used as the ground truth measurements. The
learning rate for the linear velocity αν is set to 0.15 and
0.05 for the coefficients kν,1 and kν,0, respectively, while the
learning rate for the angular velocity αω is set to 0.1 and 0.05
for the coefficients kω,1 and kω,0, respectively. The positive
constants λν and λω are set to 3. The sampling time of the
experiment is equal to 200 milliseconds.

An 8-shaped path is used as the reference path for the
mobile robot to evaluate the path tracking performance of
the TELC algorithm. The 8-shaped path consists of two
straight lines and two smooth curves as illustrated in Fig. 6.
The linear velocity reference is set to 0.3 m/s throughout
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Fig. 6 Target and actual paths. Since an 8-shaped path consisting of
two straight lines and two smooth curves was used to evaluate the
path tracking performance of tracking-error model-based controllers
in literature [2, 14, 16, 24], we also use a similar 8-shaped path. The
Euclidean error is plotted in Fig. 7
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Fig. 7 Euclidean error calculated using raw GNSS data. The
mean values of Euclidean errors for the traditonal tracking error-
based controller formulated in Section 3 and TELC algorithm are
respectively around 20.31 cm and 9.11 cm. This shows significant
reduction on tracking error

the path generation. The angular velocity reference is zero
for straight lines while it is set to ± 0.05 rad/s for curved
lines. Thus, the desired reference trajectory xr , yr and θr is
generated by considering the unicycle model in (1) in the
paper. The target and actual paths are shown in Fig. 6. The
mobile robot controlled by the developed TELC algorithm
can track the target path precisely.

The Euclidean errors for the traditional tracking error
control and TELC algorithms are shown in Fig. 7. The mean
values of the Euclidean errors for the traditional tracking
error control formulated in Section 3 and TELC algorithms
are respectively 20.31 cm and 9.11 cm. The TELC results
in more precise mobile robot path tracking performance
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Fig. 8 Reference and measured linear velocities. The low-level
controller provides good tracking performance
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Fig. 9 Control signals for the linear velocity. TELC algorithm learns
the mobile robot dynamics so that the feedback control action is around
zero while feedforward control action is updated and different than
zero throughout the experiment.

when compared to the traditional tracking error control
method. This demonstrates the learning capability of the
TELC algorithm in the outdoor environment.

The total linear velocity applied to the mobile robot is
shown in Fig. 8. It is observed from the reference and
measurements for the linear velocity that the low-level
controller provides accurate tracking of the linear velocity
reference despite the high noisy measurements. Moreover,
the feedback control action generated by the MPC and
the feedforward control action generated by the TELC
algorithm are shown in Fig. 9. The feedback control action
for the linear velocity is around zero as expected and the
feedforward control action for the linear velocity takes the
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Fig. 10 Adaptations of the coefficients for the linear velocity
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Fig. 11 Reference and measured angular velocities. The low-level
controller provides good tracking performance

overall control action of the linear velocity of the mobile
robot. Furthermore, the coefficients in the feedforward
control action for the linear velocity are shown in Fig. 10.
The nominal values for the coefficients kν,1 and kν,0 must be
respectively 1 and 0 in the absence of uncertainties. These
coefficients are different than the nominal values throughout
experiments and varying due to the varying soil conditions
in the outdoor environment.

The total angular velocity applied to the mobile robot
is shown in Fig. 11. It is observed from the reference
and measurements for the angular velocity that the low-
level controller provides accurate tracking of the angular
velocity reference despite the high noisy measurements.
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Fig. 12 Control signals for the angular velocity. TELC algorithm
learns the mobile robot dynamics so that the feedback control action is
around zero while feedforward control action is updated and different
than zero throughout the experiment
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Fig. 13 Adaptations of the coefficients for the angular velocity

Moreover, the feedback control action generated by the
MPC and the feedforward control action generated by the
TELC algorithm are shown in Fig. 12. The feedback control
action for the angular velocity is around zero as expected
and the feedforward control action for the angular velocity
takes the overall control action of the angular velocity
of the mobile robot. Furthermore, the coefficients in the
feedforward control action for the angular velocity are
shown in Fig. 13. The nominal values for the coefficients
kω,1 and kω,0 must be respectively 1 and 0 in the absence
of uncertainties. These coefficients are different than the
nominal values throughout experiments and varying due to
the varying soil conditions in the outdoor environment. The
angular velocity reference is equal to zero while the mobile
robot is tracking straight lines. Therefore, the coefficient
kω,1 is constant, which can be seen from the update rule
in (36). As a result, the only coefficient kω,0 is updated to
decrease the unmodeled effects in real-time.

6 Conclusions

In this paper, a novel TELC algorithm has been developed
for precise path tracking and experimentally validated on
a mobile robot in the outdoor environment. In case of the
plant-model mismatch, the TELC algorithm learns mobile
robot dynamics by using the tracking error dynamics and
updates the feedforward control actions. Therefore, the
feedforward controller gradually eliminates the feedback
controller from the control of the system once the mobile
robot has been on-track. The experimental results on the
mobile robot show that the TELC algorithm ensures precise
path tracking performance as compared to the traditional
tracking error-based control algorithm. The mean value of

the Euclidean errors for TELC is 9 cm approximately in
off-road terrain.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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