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Abstract
The engagement of a group of autonomous air vehicles against several targets is a major challenge in mission planning.
This paper addresses the problem of cooperative flight path planning where the air vehicles should arrive at the destinations
simultaneously or sequentially with specified time delays, while minimizing the total mission time. This involves finding
an optimal assignment of air vehicles to targets and generating trajectories in compliance with the kinematic constraints of
the vehicles. The trajectories have to avoid nofly-areas, threats and other obstacles, and must prevent the air vehicles from
colliding with each other. The presented algorithm for simultaneous arrival first calculates shortest flight paths between all
pairs of air vehicles and targets using a network-based routing model. An optimal assignment and a critical path is found
by solving a linear bottleneck assignment problem with costs corresponding to the lengths of the shortest paths. The other
flight paths are prolongated to the length of the critical path by automatic insertion of waypoints. This is achieved by
concatenating subpaths stored in different shortest-path-trees. Due to the special structure of the network, all concatenated
flight paths are flyable and feasible. Sequential arrival at a target is realized by sorting the flight paths according to their
lengths and prolongating them whenever necessary to accomplish the desired time delays. The capability of the approach is
demonstrated by simulation results.

Keywords Cooperative flight path planning · Trajectory generation · Target assignment · Linear bottleneck assignment
problem · Unmanned air vehicles
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1 Introduction

In recent years, the deployment of cooperative teams of
unmanned air vehicles (UAVs) has become a field of major
interest, both in civilian and in military sectors. Applications
include search and rescue, intelligence surveillance and
reconnaissance, suppression of enemy air defense, combat
operations, and others. It is expected that the capabilities
of a joint system far exceeds the sum of its individual
parts. Most missions can be accomplished more effective by
cooperation and coordination of the team members. In this
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context, task assignment and path planning play a key role
during the planning phase of a mission.

This paper deals with the engagement of a group of
autonomous air vehicles against a number of ground targets.
The task is to find an assignment of air vehicles to targets
and flight paths to the targets such that (1) all air vehicles
arrive simultaneously at the target locations and (2) the total
mission time is as short as possible. The problem is further
complicated by the existence of obstacles, flight restricted
areas and threats endangering the success of the mission.
The main motivation for simultaneous arrival is to enhance
the element of surprise. Another reason is the saturation of
the air defense. Attacking targets simultaneously by several
missiles is more likely to be successful than consecutively,
simply due to the saturation of the anti-aircraft batteries
involved.

The second problem refers to a group of air vehicles that
has to accomplish multiple consecutive tasks on the same
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target. Each air vehicle is able to perform each of the tasks.
The objective is to find flight paths to the target such that
(1) the air vehicles arrive sequentially at the target location
with given time delays and (2) the total mission time is
minimized. A typical application is the suppression of a
hostile air defense site requiring detection, destruction, and
verification (damage assessment) of the target. A further
example is coordinating the landing of a fleet of aircraft on
a single runway. Along with performing the tasks, the fuel
consumption of the air vehicles should be kept as low as
possible.

A crucial issue for flight path generation is that all paths
must be flyable, feasible and safe. The first property refers
to the kinematic capabilities of the air vehicle. The vehicle
must be able to follow the path, i.e. the maneuvers must
be in accordance with the acceleration limits of the aircraft.
The second property states that the flight path must avoid
all obstacles, restricted areas and threats. Safety means to
guarantee that air vehicles are not colliding with each other.
This is realized by maintaining a safety distance between
the vehicles.

There are quite a lot of publications dealing with
various aspects of cooperating UAVs. This includes (A)
task allocation problems, (B) combined task allocation/path
planning problems, and (C) cooperative flight path planning
problems with predefined task assignments.

The Weapon Target Assignment Problem is a combinato-
rial optimization problem that has been studied for several
decades. It consists of optimally assigning n weapons to
m targets such that the total expected damage to the tar-
gets is maximized. It can be formulated as a nonlinear
integer programming problem and is known to be NP-
complete. Numerous exact methods for small-size problems
and heuristic methods for large-size problems have been
proposed (see e.g. Ahuja et al. [1]).

The Stochastic Weapon Target Assignment Problem
where numbers and locations of targets are not known a
priori has been studied, among others, by Murphey [35]. A
similar problem for UAVs, considering failure probabilities
of the vehicles and providing a rudimentary flight path
planning, has been investigated by Bellingham et al. [7]. The
authors pose the problem as a mixed-integer linear program
and solve it using a commercial software package.

A multiple task allocation problem where UAVs with dif-
ferent capabilities have to perform a set of tasks has been
discussed by Bellingham et al. [5]. Using straight-line path
approximations, the problem is solved using a formulation as a
special type of knapsack problem. Other approaches apply-
ing mixed-integer linear programming include the work
of Schumacher et al. [40] and Weinstein and Schumacher
[45]. Tabu search heuristics have also been applied to the
assignment problem, see e.g. Alighanbari et al. [2].

A combined target assignment and path planning
problem is discussed in Maddula et al. [32]. The authors
present heuristic methods for assigning a group of UAVs
to multiple targets, thereby limiting the threat faced by
each UAV and minimizing the maximum path length. The
idea is to create potential subpaths by means of a Voronoi
tessellation, to construct a graph containing these subpaths
and to calculate short paths between targets and UAVs in the
graph. An initial assignment of UAVs to targets obtained by
a greedy heuristic is successively improved by exchanging
subpaths. A similar problem with timing constraints for
simultaneous attack and multiple consecutive tasks has been
investigated and solved using genetic algorithms by Eun and
Bang [18]. However, both approaches do not consider the
maneuverability of the air vehicles and possible collisions
between UAVs.

Flight properties of air vehicles are taken into account by
Shima et al. [42]. The authors study the problem where each
UAV is required to fulfill three consecutive tasks and where
the cumulative length of all paths has to be minimized. The
problem is formulated as a large combinatorial optimization
problem and solved by a genetic algorithm, using a tree
representation of the possible assignments. The flight paths
are realized as Dubins paths consisting of straight lines
and circle segments. Unfortunately, the algorithm neglects
obstacles and the risk of mutual collisions.

Approaches for cooperative flight path planning with
given target assignment include an algorithm for fuel-
optimal path planning presented by Schouwenaars et al.
[39]. A fleet of UAVs has to move from predefined
initial states to predefined final states without colliding
with each other and with other stationary or moving
obstacles, such that the total fuel consumption is as
small as possible. The problem is rewritten as a linear
program with mixed integer/linear constraints and solved
using a commercial optimization package. However, it
seems that flight properties and safety requirements of
the UAVs are not sufficiently considered. A number of
enhancements improving the efficiency of the approach
have been reviewed and compared by Melor et al. [34].

Several papers have been published dealing with the
planning of threat-avoiding trajectories with simultaneous
arrival at the targets. The algorithm proposed by McLain
and Beard [33] determines initial paths from the start
positions to the target positions from a graph search through
the edges of a Voronoi diagram. These paths are discretized
into fixed-length segments and subsequently optimized
to meet the desired length by adding or taking away
segments and smoothing the outcome. Another method
based on Voronoi diagrams, with special emphasis on the
development of paths within the dynamic capabilities of
the UAVs, is due to Chandler et al. [11]. However, the
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algorithms do not consider the risk of mutual collisions of
air vehicles.

Collisions with other UAVs and with static obstacles are
taken into account by the algorithm of Shanmugavel et al.
[41]. The three-step procedure starts with the generation of
flyable paths in the form of Dubins paths with clothoid arcs.
These paths are then modified to safe paths by manually
including waypoints. The third step is to produce paths of
equal length by changing the curvature of the paths. The
method seems to be working well for not overly complex
scenarios with few and small obstacles and if the initial path
lengths are not very different from each other.

The intention of this work is to develop an algorithm
combining task assignment and coordinated flight path
planning for a fleet of UAVs. The algorithm should allow
timing constraints for target arrival and thoroughly consider
flyability, feasibility and safety of the flight paths, thereby
trying to eliminate weaknesses of previous strategies. The
algorithm should be fully automatic, without the need
for intervention by an operator, be reasonably simple
to implement with modest computer running time, and
effective to handle also challenging scenarios.

We propose an algorithm that is divided into three
phases. In the first phase, shortest flight paths are computed
between all pairs of air vehicles and targets. This is
done by generating a sophisticated network discretizing the
configuration space and applying standard graph search
methods. The second phase is to find an optimal assignment
of UAVs to targets or tasks. In case of simultaneous arrival
at different targets, one has to solve a linear bottleneck
assignment problem where the costs correspond to the
lengths of the shortest paths. In case of sequential arrival

at a common target, it suffices to sort the flight paths
according to their lengths and reschedule the flight times.
In the third phase, flight paths have to be prolongated to the
desired lengths and adapted to eliminate possible conflicts
between UAVs. The idea is to insert suitable waypoints.
The modified flight paths are obtained by concatenating
the subpaths to the waypoints which are stored in different
shortest-path-trees. Due to the special structure of the
network, it is guaranteed that all concatenated flight paths
are both flyable and feasible. A sufficiently dense network
contains a large number of suitable waypoints, making it
possible to select a safe flight path without conflicts.

The rest of the paper is organized as follows. Section 2
sketches an algorithm for flight path planning of single
vehicles that will form the basis for cooperative flight
path planning. Section 3 describes the strategy for target
assignment and coordinated path planning and details
the technical realization. Simulation results for various
scenarios are discussed in Section 4. We conclude with final
remarks in Section 5.

2 Flight Path Planning for Single Vehicles

A variety of different techniques has been developed
over time to solve the flight path planning problem. This
includes the potential field method (see e.g. Kim and
Khosla [25], Waydo and Murray [44]), cell decomposition
(Chazelle [12], Lingelbach[31]), the roadmap method
(Choset [13], Kavraki et al. [24]), rapidly exploring random
trees (LaValle and Kuffner [30]), mixed-integer linear
programs (Schouwenaars et al. [39], Bellingham et al. [6]),

Fig. 1 Mikado network
generated from randomly
located Mikado jackstraws
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probabilistic methods (Bertuccelli and How [8], Dogan [17],
Pfeiffer et al. [38]) and diverse network-based approaches
(see e.g. Babel [3], Bortoff [9], Jun and D’Andrea [23]).

Further approaches are aimed at refining the graph
search algorithm of Dijkstra [16]. This ranges from the
A∗-algorithm (Hart et al. [22]) to the incremental A∗-
algorithm (Koenig and Likhachev [26]), the D∗-algorithm
(Stentz [43]), the D∗-lite algorithm ((Koenig and Likhachev
[27]), the field D∗-algorithm (Ferguson and Stentz [19]),
the Theta∗-algorithm ((Nash et al. [36], De Filippis et al.
[15]) and the L∗-algorithm ((Niewola and Podsedkowski
[37]). Comprehensive reviews of path planning algorithms
are presented by Goerzen et al. [21], Latombe [28] and
LaValle [29].

We use an enhanced version of a flight path algorithm
introduced by Babel [4]. The algorithm is best suited for
our purpose since it allows in a very simple and effective
way to manipulate flight paths by inserting waypoints. This
in turn makes it possible to extend path lengths to almost
any quantity, preserving both flyability and feasibility (see
Section 3).

The main idea is to create a sophisticated network
discretizing the horizontal configuration space. A large set
of directed lines is thrown into the operating area like
Mikado jackstraws, see Fig. 1. The flight paths proceed
along these lines. Crossing lines are connected by two
smooth transitions. The branching points (indicated as red
circles) are the vertices of the network, the flight path
segments between the branching points are the edges. The
costs of the edges are the lengths of the flight path segments.
In order to include release and destination point, the network
is augmented by two lines passing through these points
with release and approach direction, respectively. Finally, all
edges of the network passing through obstacles, restricted
areas and threats are eliminated. A shortest path is obtained
by applying standard methods such as Dijkstra’s algorithm
or the A∗-algorithm.

In the original version of the algorithm all lines are
thrown randomly into the plane, thus providing a purely
probabilistic network. Based upon practical experience, we
extend the approach by supplementing the set of randomly
generated lines with a modest number of deterministically
determined lines. Given two polygonal or circular obstacles,
we add those lines touching but not intersecting the
obstacles and, at the same time, not intersecting any other
obstacle in between (see Fig. 2). The lines, one for each
direction, allow to pass the obstacles in straight flight as
close as possible.

Transitions between crossing lines are realized by
combinations of clothoids and circle segments, see Fig. 3a.
A clothoid is a curve whose curvature grows linearly with
its length. The transition curve passes over from the initial
straight line to a clothoid with linearly increasing curvature,

Fig. 2 Deterministically determined Mikado jackstraws

followed by a circle segment with constant curvature and
a second clothoid with linearly decreasing curvature, to
finally join the second straight line. This leads to a trajectory
with continuous curvature and hence smooth and jerk-free
lateral acceleration of the air vehicle.

The variability and number of possible flight paths in
the network can be increased by integrating transitions with
different maximal curvatures, corresponding to maneuvers
of different strengths. An example with four possible
transitions is shown in Fig. 3b. The shortest curve realizes
the strongest maneuver with maximal lateral acceleration,
the other curves are longer with weaker lateral acceleration.

The algorithm allows arbitrary flight directions and
arbitrary turn angles as well as maneuvers of different
strengths, thus fully exploiting the flight capabilities of
the air vehicle. All paths in the network are flyable since
transitions between straight flight path segments are smooth
and in accordance with the lateral acceleration of the
vehicle, and feasible since no flight path segment collides
with an obstacle. A further strength of the algorithm is that
the density of the network is freely adjustable according
to the accuracy requirements of the solution. This is in
contrast to the commonly used regular grid networks, where
grid points are identified with vertices, thus leading to a
limitation of the resolution.

3 Coordinated Flight Path Planning

3.1 Simultaneous Arrival

We consider a group of n UAVs leaving simultaneously
from a base, with the task to engage n targets. Release
positions of the UAVs with release directions and target
positions with approach directions are predefined. All air
vehicles are of the same type and are flying at constant
altitude. The scenarios may contain threats, nofly-areas and
obstacles. The objective is to assign UAVs to targets (one
UAV for each target) and to generate flyable, feasible and
safe flight paths with simultaneous arrival at the targets and
with smallest possible mission time.

The idea of coordinated mission planning is sketched in
the following algorithmic scheme.
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Fig. 3 Transitions between
Mikado jackstraws

Algorithm I

(1) Individual flight path planning
For each UAV compute a shortest flight path to each of
the targets.

(2) Target assignment
Find an assignment of UAVs to targets such that the
length L of the longest flight path is minimal. Let
T denote the flight time of the longest path under
nominal velocity.

(3) Flight path adaptation and coordination
Manipulate all flight paths with length smaller than
L to meet the mission time T and resolve conflicts
arising from UAVs coming too close to each other.

Step (1) of the algorithm requires planning of flight
paths for a group of vehicles, independently of one another
and without considering possible collision between the
vehicles. The problem to be solved in step (2) is known
in the literature as the Linear Bottleneck Assignment
Problem (LBAP). It has been introduced by Fulkerson
et al. [20] in connection with assigning jobs to parallel
working machines as to minimize the latest completion
time. More generally, we are given a number of agents
and an equal number of tasks. Any agent can perform any
task, incurring some cost that may vary depending on the
agent-task assignment. All tasks have to be performed by
assigning exactly one agent to each task. The goal is to
find an assignment such that the maximum cost among the
individual assignments is as small as possible.

The term bottleneck refers to a common type of opti-
mization problem where the maximum cost or maximum
duration of the task has to be minimized. The LBAP
can be solved efficiently by applying the threshold algo-
rithm (see Burkard et al. [10]). The algorithm runs in time
O(n2.5/

√
log n). Clearly, for a small number of agents and

tasks the problem can also be solved by exhaustive search,
i.e. consider all n! possible assignments of agents to tasks
and choose the assignment where the maximum cost or
duration is minimal.

In order to address step (3) of the algorithm, the two
basic questions arise how to modify flight paths to meet
the mission time T , and how to avoid possible collisions
between UAVs. Strategies to solve the first problem, known
from the literature, include:

– Reducing the velocity of the air vehicle, i.e. the flight
path remains unchanged, but the flight time increases
(see e.g. Chandler et al. [11]).

– Increasing path length by decreasing the curvature of the
curves (see Shanmugavel et al. [41] where the curvature
is decreased iteratively). This corresponds to decreasing
the lateral acceleration of the air vehicle.

– Increasing path length by inserting loitering maneuvers
(loops) or short detours (see e.g. McLain and Beard
[33]).

Unfortunately, the strategies are not always successful. Air
vehicles come with reserves that allow deviations from the
nominal velocity. On the other hand, these deviations are
rather limited for most UAVs and missiles. Hence only
minor differences between the lengths of the flight paths
can be compensated by adapting the velocity. Changing
the curvature or lateral acceleration modifies the course of
the flight path. This may lead to collisions, in particular
in challenging scenarios that are densely occupied with
obstacles. The same is true for inserting loops or detours.
In the presence of obstacles, the feasibility of the modified
paths is not guaranteed.

Potential strategies for avoiding collisions between air
vehicles might be:

– Varying the velocity of the air vehicles. The flight path
remains unchanged but the velocity is increased and
decreased along parts of the path.

– Locally modifying the flight path (e.g. by changing
the strength of flight maneuvers or inserting additional
avoidance maneuvers).

– Changing the flight altitude during the whole flight or
within regions where vehicles might come too close to
each other.
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These ideas come along with problems similarly as above.
Changes of the velocity provide only limited variation
options. Changing the course of the path might lead to
collisions with obstacles and alters the path length and flight
time, just like the insertion of climb or descent phases.

We suggest a different approach. Flight paths not meeting
the desired length L are extended by automatically inserting
suitable waypoints. This permits us to realize nearly any
kind of prolongation, small and medium ones, but also large
ones. The key issue is that the modified flight paths remain
both flyable and feasible. Typically, for each flight path
being shorter than L, there exists a large number of potential
waypoints providing paths of length (almost) L, many of
them following different routes. Smaller deviations from L

can be compensated by adapting the velocity.
In step (3) of the algorithm, the flight paths that are too

short are prolongated one after another. Simultaneously, it
is checked whether the selected path collides with one of
the previously fixed paths. This is done by calculating the
minimal distance of the air vehicles in a simulated flight. If
the distance is smaller than a safety threshold then there is
a risk of collision and the selected path is rejected. Instead,
another prolongation leading through another waypoint is
chosen. The large number of alternatives usually allows to
identify a safe flight path.

3.2 Technical Realization

The task in step (1) of the algorithm is to find n2 shortest
flight paths from the release points of the UAVs to the
targets. For that purpose a network is created discretizing
the horizontal configuration space. The generation follows
the description in Section 2. Shortest-path calculations are
performed with the algorithm of Dijkstra. It fixes a single
vertex as the source vertex and finds shortest paths from
the source to all other vertices in the graph, producing a
shortest-path-tree (see e.g. Cormen et al. [14]). The source
vertex is the root of the tree. The usual way to store the
tree is to assign to each vertex its predecessor on the path
from the root to the vertex. A shortest path is then retrieved
by simply processing the sequence of predecessors. The

length of the shortest path is the sum of its edge weights.
To obtain all n2 shortest paths we run Dijkstra’s algorithm n

times, with the release points of the UAVs being the source
vertices. The n shortest-path-trees will be reused later when
inserting waypoints into paths.

The longest (or bottleneck) flight path in the solution
of the target assignment problem will be referred to as the
critical path or reference path. It should be noted that,
although the UAV and the target belonging to the reference
path are unique, this is not the case for the assignment
of the other air vehicles to the other targets. There are
usually many possible assignments. If L is the length of
the reference path and v0 the nominal velocity of the air
vehicles, then the total mission time is given by T = L/v0.

The waypoints used for the prolongation of flight paths
in step (3) of the algorithm are the branching points of the
network (see Fig. 1). Each waypoint is characterized by a
position and a direction. Obviously, a shortest path from a
UAV to a target via a given waypoint consists of a shortest
path from the UAV to the waypoint and a shortest path
from the waypoint to the target. The length is the sum of
the lengths of both subpaths. What is crucial here is that
the transition between the subpaths is smooth. Hence the
concatenation of the subpaths again provides a flyable and
feasible flight path.

Shortest paths from the release points of the UAVs to all
waypoints are implicitly given by the associated shortest-
path-trees computed in step (1). Shortest paths from the
waypoints to the targets can be obtained in a similar way.
For that purpose, the directions of the edges in the network
must be reversed. Then Dijkstra’s algorithm is applied n

times with the n targets being the source vertices. The
resulting shortest-path-trees contain the desired paths. The
schematic representation in Fig. 4 sketches parts of two
shortest-path-trees rooted at the release point of a UAV
(solid lines) and at a target (dashed lines), respectively, and
a few waypoints.

The question remains which of the waypoints are
suitable. A waypoint will be denoted viable if the length of
the associated flight path is between Lmin = T · vmin and
Lmax = T · vmax, where vmin and vmax are the minimal

Fig. 4 Flight paths from release
point to target via selected
waypoints
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and maximal velocity of the air vehicles, respectively. Each
of these paths allows to realize the mission time T . If the
path is too long then the velocity is increased, otherwise it is
reduced. In the algorithm, the viable waypoints are ordered
according to the gap between the associated path lengths
and the length L of the reference path. The first path in the
list needs the least velocity adaptation. If this path turns out
to be safe then it is used. In case of a risk of collision the
path is rejected and the next path from the list is analyzed.

For a more formal description of step (3), assume
w.l.o.g. that the first UAV produces the critical path. The
parametrized curve of the critical path will be denoted by
γ1(t), i.e. γ1(t) = (x1(t), y1(t)) is the location of the UAV
at time t , with 0 ≤ t ≤ T , and
∫ T

0
‖γ̇1(t)‖ dt = L and ‖γ̇1(t)‖ = v0.

γ1(t) remains unchanged. For the other air vehicles, curves
γ2(t), ..., γn(t) have to be determined realizing mission time
T and guaranteeing a safe flight. Let i∗ refer to the target
assigned to the i-th UAV. Let further disti(p) denote the
flight distance between the start position of the i-th UAV
and a specific waypoint p, and disti∗(p) the flight distance
between p and the target i∗. The associated flight paths are
stored in the shortest-path-trees of i and i∗, respectively. The
length of the shortest path via p is then L(p) = disti(p) +
disti∗(p).

Flight path adaptation and coordination

for i = 2, ..., n
Identify all viable waypoints p fulfilling Lmin ≤
L(p) ≤ Lmax . Sort the viable waypoints p according
to increasing deviations |L(p) − L| from the length
L of the reference path and store them in a list W .
while W is not empty

Remove the first waypoint p from the list. Let
P be the path from start position i to target i∗
via waypoint p.
Adapt the velocity of P to meet the mission time
T , i.e. set v = L(p)/T . Let γ (t) with 0 ≤ t ≤ T

denote the associated parametrized curve.
Check safety of γ (t) with respect to γ1(t), ...,
γi−1(t).
if γ (t) is safe then γi(t) = γ (t), break.

if no safe path γi(t) has been found then return
(no solution).

The following procedure checks whether there is a risk of
collision between two air vehicles flying along two curves
γi(t) and γj (t). A risk occurs if the distance falls below
a safety margin dsafe. The curves are discretized using a
time step � t and traversed simultaneously. The notation ‖.‖
stands for the Euclidean norm.

Check safety

safe = true , t = 0

while t < T

t = t + � t

d = ∥∥γi(t) − γj (t)
∥∥

if d < dsafe

then safe = false return.

The algorithm operates successfully except in notori-
ously hard scenarios with a large number of obstacles lying
close together, along with a large safety distance between
the air vehicles. In such exceptional cases, if no solution is
found, the following strategies often resolve the problem:

– Restart of the algorithm. Due to the probabilistic nature
of the network generation there is a good chance to find
a solution in further runs.

– Change of the network resolution. Even slightly increas-
ing the number of Mikado jackstraws significantly
increases the number of potential flight paths, and with
that the chance to find a solution.

– Change of the assignment of UAVs to targets. Except for
the reference path, the assignment of UAVs to targets is
not unique in most cases. Using a different assignment
may lead to a solution.

– Check whether the safety margin can be decreased to
some extent without jeopardizing the mission. If the
safety distance between aircraft is chosen too large then,
in complex scenarios, it may happen that no solution
exists.

3.3 Sequential Arrival

The second type of mission deals with a group of n

air vehicles with multiple tasks assigned to a common
destination. Each vehicle is able to perform each task.
The air vehicles are supposed to arrive sequentially with
specified time delays. The delays can be either loose or
tight depending on whether a minimum or a precisely
defined period of time must elapse between the arrivals. The
objective is to find flyable, feasible and safe flight paths
such that the total mission time is as short as possible.

The basic idea can be summarized as follows.

Algorithm II

(1) Individual flight path planning
For each UAV compute a shortest flight path to the target.

(2) Sequence determination
Sort the flight paths of the UAVs according to
increasing lengths. Let T1, ..., Tn denote the flight
times of the sorted paths under nominal velocity.
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Fig. 5 Adjustment of flight
times

(3) Flight path adaptation and coordination
Adjust the flight times T1, ..., Tn to comply with the
desired time delays.
Manipulate the flight paths to meet the adjusted flight
times and resolve conflicts arising from UAVs coming
too close to each other.

Let � t1, � t2 ,..., � tn−1 denote the time delays between
the arrivals, i.e. the second UAV should arrive at least
(or precisely) � t1 after the first UAV, the third UAV at
least (or precisely) � t2 after the second UAV, etc. Let
further T ∗

1 , ..., T ∗
n denote the adjusted flight times with loose

time delays and T ∗∗
1 , ..., T ∗∗

n the adjusted flight times with
tight time delays. The flight times are determined by the
following procedures.

Adjust flight times

(a) Loose time delays
T ∗
1 = T1

for i = 1, ..., n − 1
if Ti+1 < T ∗

i + � ti
then T ∗

i+1 = T ∗
i + � ti

else T ∗
i+1 = Ti+1

(b) Tight time delays
T ∗∗

n = T ∗
n

for i = n − 1, ..., 1
if T ∗

i + � ti < T ∗∗
i+1

then T ∗∗
i = T ∗∗

i+1 − � ti
else T ∗∗

i = T ∗
i

The principle is illustrated by an example in Fig. 5. To
realize loose time delays, we have to process the flight paths
in the order defined in step (2) of the algorithm. The flight
time of the first UAV remains unchanged, i.e. T ∗

1 = T1. If
Ti+1 ≥ T ∗

i +� ti then the flight time of the (i +1)-th UAV
remains unchanged, i.e. T ∗

i+1 = Ti+1, since a sufficiently
large period elapses between arrival of the i-th and the
(i + 1)-th UAV. Otherwise, the flight time of the (i + 1)-th
UAV has to be shifted to the right to meet the desired time
delay � ti , i.e. T ∗

i+1 = T ∗
i + � ti .

To realize tight time delays, we additionally have to
perform part (b). The flight paths are processed in the
reversed order. The flight time of the last UAV remains
unchanged, i.e. T ∗∗

n = T ∗
n . Whenever there is some idle

time between the arrival of the i-th and (i + 1)-th UAV, i.e.
T ∗

i +� ti < T ∗∗
i+1, then the flight time of the i-th UAV has to

be shifted to the right to precisely meet the time delay � ti .
Flight paths are prolongated as described before by

inserting suitable waypoints. In order to adjust the i-th
flight path to the new flight time T ∗

i or T ∗∗
i , the waypoints

are sorted according to the deviation |L(p) − Li |, where

Fig. 6 Engagement of UAVs
against different targets
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Fig. 7 Engagement of UAVs
released from two directions

Li = T ∗
i · v0 or Li = T ∗∗

i · v0 is the length of the
required path under nominal velocity v0, and L(p) is the
length of the flight path passing the waypoint p. We select
the first waypoint in the list guaranteeing a safe flight.
Minor deviations from the desired flight time T ∗

i or T ∗∗
i are

compensated by adapting the velocity of the UAV. The total
mission time is the flight time T ∗

n or T ∗∗
n of the last UAV.

4 Performance Analysis

The algorithms have been implemented and tested in Matlab
R2017a on a standard PC running Windows 10 with Intel
Core i7-6600U 2.6 GHz CPU and 16 GB RAM.

In the following test cases, the air vehicles are supposed
to arrive simultaneously at the targets. All air vehicles have
a nominal velocity of 100 meters per second. Deviations
of the actual velocity from the nominal velocity must not
exceed 5%. The lateral acceleration is restricted to 10
meters per second squared. The size of the operational
area is 30 km × 15 km. The scenarios contain forbidden
areas and obstacles (plotted as polygons) and threats

(plotted as circles). The planning process is based on
300 Mikado jackstraws resulting in a network with
approximately 110.000 vertices and 160.000 edges. The
transitions between crossing lines are realized by two types
of maneuvers, a strong one consisting of two clothoids with
maximal lateral acceleration of 10 m/s2 and a weak one
with lateral acceleration 5 m/s2.

The first test case consists of four air vehicles advancing
in formation flight from the west and four widely scattered
targets with predefined approach directions. Figure 6 shows
the flight paths calculated by the algorithm. The safety
distance between the air vehicles has been specified as 350
m. The red path from the uppermost UAV to the uppermost
target is the reference path (critical path). The length of the
path is 28.756 m. The lengths of the other three prolongated
paths differ from the reference path by less than 10 m. The
deviations are indeed negligible and make it unnecessary
to modify the velocity of the vehicles. This represents the
typical performance of the algorithm, also for other similar
scenarios.

The second test case contains other targets and threats.
The air vehicles are approaching from different directions,

Fig. 8 Engagement of UAVs
against single target
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Fig. 9 Distance of UAVs to target vs. time

two of them from northwest and the other two from
southwest, see Fig. 7. The red path from UAV #4 to target
#3 is critical with path length 27.578 m. The lengths of the
other prolongated paths deviate by less than 8 m.

The third scenario in Fig. 8 illustrates a fleet of air
vehicles combating a high value target. The target must be
approached from different directions (north, south, east, and
west). The critical path is the red path belonging to UAV #4.
The length is 31.654 m. The deviation of the other three path
lengths is less than 7 m. Figure 9 shows the distance of the
air vehicles to the target. The four vehicles simultaneously
arrive at the target after 316 seconds of flight. For instance,
the distance of UAV #1 to the target slightly increases after
150 seconds since the vehicle flies in a loop to prolongate
the path.

Figure 10 shows the engagement of a fleet of six UAVs
against three targets. Three air vehicles are approaching
from northwest, the other three from southwest. Each target
must be attacked by two air vehicles. The critical path is the
red path from UAV #6 to the rightmost target. In contrast
to the previous test cases there is a perceptible deviation
of the path lengths. The reason is simply that more UAVs
cause more possible interactions and narrow the range of
possible routes. The length of the critical path is 26.721

m. The maximal deviation of the other path lengths is 523
m or 1.9%. The deviation is compensated by appropriately
adapting the velocity of the air vehicles.

Generally, the path planning problem gets more difficult
with increasing number of UAVs. In our experience, with up
to four UAVs the maximal deviation of the path lengths does
not exceed 0.1%. For six air vehicles, the maximal deviation
is smaller than 2%. One option to reduce the deviation is
to increase the number of Mikado jackstraws and hence
the size of the network, resulting in a significantly larger
number of potential paths. This is, of course, at the expense
of increased computer running time. Another option is to
apply the algorithm several times. Due to the random nature
of the network generation, multiple runs of the algorithm
provide different results.

A further aspect is the safety distance between the
air vehicles. Increasing the safety distance substantially
increases the difficulty of finding collision-free paths. For
example, in the scenario shown in Fig. 10, changing the
safety distance from 350 m to 500 m produces deviations
of the path lengths of up to 2.5%. The running time of
the algorithm for a network generated from 300 Mikado
jackstraws is 30-85 seconds, depending on the number
of involved UAVs. Increasing the number of lines to 400

Fig. 10 Engagement of a fleet
of UAVs against three targets
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Fig. 11 Sequential arrival of a
group of UAVs

provides a network with approximately 190.000 vertices
and 270.000 edges, thereby roughly doubling the running
time of the algorithm. On the other hand, the increased effort
provides only minor improvements of the solutions.

The evaluation is completed by a representative test case
for sequential arrival of UAVs at a common target. The
scenario illustrated in Fig. 11 is densely occupied with
obstacles and threats. The safety distance between the air
vehicles has been specified as 400 m. The time delays must
be tight with � t1 = � t2 = 40 s. The lengths of the flight
path in the solution are 26.068 m, 30.069 m and 34.066m
respectively, i.e. the deviations from the desired lengths are
smaller than 3 m. The distance of the air vehicles to the
target as a function of the flight time is shown in Fig. 12.

5 Conclusion

Cooperation of air vehicles is crucial for conducting
successful missions in surveillance and combat scenarios.
The main issues of mission planning include the assignment
of UAVs to targets or tasks and the generation of suitable
flight paths. Due to spatial constraints, timing constraints,
and limited flight capabilities, these are difficult and
strongly coupled optimization problems.

This paper discusses the engagement of a group
of UAVs which is supposed to arrive at the targets
simultaneously or sequentially with specified time delays.
The planning must consider threats and obstacles, as
well as flight characteristics and the risk of mutual

Fig. 12 Distance of UAVs to target vs. time
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collision of UAVs, and must minimize the total mission
time. The presented algorithms do not decouple task
assignment and flight path planning but solve the problems
concurrently. Task assignment uses a formulation as a
linear bottleneck assignment problem with costs of the
tasks corresponding to lengths of shortest flight paths. For
sequential arrival, the assignment depends on a sorting
of the path lengths. Flight paths of prescribed lengths
are generated by concatenating subpaths leading through
intermediate waypoints. A sophisticated network guarantees
all flight paths to be feasible and flyable and allows to find
safe paths without the risk of mutual collision of UAVs.

The algorithms have been designed for UAVs of
the same type. However, they can easily be extended
for a heterogeneous fleet of vehicles with different
velocities and lateral accelerations. For this purpose, several
networks have to be generated, each one adapted to the
maneuverability of the special type of aircraft.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Ahuja, R., Kumar, A., Jha, K., Orlin, B.: Exact and heuristic
algorithms for the Weapon-Target assignment problem. Oper. Res.
55(6), 1136–1146 (2007)

2. Alighanbari, M., Kuwata, Y., How, J.: Coordination and control
of multiple UAVs with timing constraints and loitering. In:
Proceedings of the American control conference, vol. 6, pp. 5311-
5316 (2003)

3. Babel, L.: Three-Dimensional Route planning for unmanned aerial
vehicles in a risk environment. Journal of Intelligent & Robotic
Systems 71(2), 255–269 (2013)

4. Babel, L.: Flight path optimization with application to in-
flight replanning to changing destinations. To appear in aircraft
engineering and aerospace technology (2018)

5. Bellingham, J., Tillerson, M., Richards, A., How, J.: Multi-task
allocation and path planning for cooperating UAVs. In: Coopera-
tive control: models, applications and algorithms. Conference on
coordination, control and optimization, pp. 1-19 (2001)

6. Bellingham, J., Richards, A., How, J.: Receding horizon control of
autonomous aerial vehicles. In: Proceedings of the 2002 American
control conference, Vol.5, pp.3741-3746 (2002)

7. Bellingham, J., Tillerson, M., Alighanbari, M., How, J.: Cooper-
ative path planning for multiple uavs in dynamic and uncertain
environments. In: Proceedings of the 41st IEEE conference on
decision and control, pp. 2816-2822 (2002)

8. Bertuccelli, L., How, J.: Robust UAV search for environments with
imprecise probability maps. In: Proceedings of IEEE Conference
of decision and control, pp.5680-5685 (2005)

9. Bortoff, S.A.: Path planning for UAVs. In: Proceedings of the 2000
American control conference, vol. 1, pp. 364-368 (2000)

10. Burkard, R., Dell’Amico, M., Martello, S.: Assignment problems
- revised reprint. SIAM, Philadelphia (2012)

11. Chandler, P.R., Rasmussen, S., Pachter, M.: UAV Cooperative
path planning. In: Proceedings of AIAA Guidance, Navigation
and Control Conference. AIAA-2000-4370, Denver, Co, pp. 1255-
1265 (2000)

12. Chazelle, B.: Approximation and Decomposition of Shapes. In:
Advances in Robotics 1: Algorithmic and Geometric Aspects
of Robotics. Schwartz J.T., Yap C.K., Eds., Lawrence Erlbaum
Associates, Pp. 145-185 (1987)

13. Choset, H.: Sensor based motion planning: The hierarchical
generalized voronoi graph. California institute of technology,
Ph.D thesis (1996)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. Introduction
to Algorithms, 3rd. MIT Press, Cambridge (2009)

15. De Filippis, L., Guglieri, G., Quagliotti, F.: Path Planning
Strategies for UAVs in 3D Environments. Journal of Intelligent &
Robotic Systems 65(1), 247–264 (2012)

16. Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numer. Math. 1, 269–271 (1959)

17. Dogan, A.: Probabilistic Path Planning for UAVs. In: Proceedings
of 2nd AIAA Unmanned Unlimited Systems, Technologies, and
Operations. San Diego, CA (2003)

18. Eun, Y., Bang, H.: Cooperative Task Assignment/Path Planning of
Multiple Unmanned Aerial Vehicles using Genetic Algorithms. J.
Aircr. 46(1), 338–342 (2009)

19. Ferguson, D., Stentz, A.: Using interpolation to improve path
planning: The field d∗ algorithm. Journal of Field Robotics 23(2),
79–101 (2006)

20. Fulkerson, D., Glicksberg, I., Gross, O.: A production line
assignment problem. Technical report RM-1102. The rand
corporation, santa monica CA (1953)

21. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning
algorithms from the perspective of autonomous UAV guidance.
Journal of Intelligent & Robotic Systems 57(1), 65–100 (2010)

22. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions
on System Science and Cybernetics 4(2), 100–107 (1968)

23. Jun, M., D’Andrea, R.: Path planning for unmanned aerial vehicles
in uncertain and adversarial environments. Cooperative control:
Models. Applications and Algorithms 1, 95–110 (2003)

24. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.:
Probabilistic roadmaps for path planning in high dimensional configu-
ration spaces. IEEE Trans. Robot. Autom. 12(4), 556–580 (1996)

25. Kim, J.O., Khosla, P.K.: Real-Time Obstacle avoidance using
harmonic potential functions. IEEE Trans. Robot. Autom. 8(3),
338–349 (1992)

26. Koenig, S., Likhachev, M.: Incremental A∗. In: Advances in
Neural Information Processing Systems, Pp. 1539-1546 (2002)

27. Koenig, S., Likhachev, M.: D∗-lite. In: Proceedings of the AAAI
Conference of Artificial Intelligence, pp. 476-483 (2002)

28. Latombe, J.C.: Robot Motion Planning. Kluwer Academic
Publishers, Boston (1991)

29. LaValle, S.M.: Planning algorithms cambridge university press
(2006)

30. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning.
Int. J. Robot. Res. 20(5), 378–400 (2001)

31. Lingelbach, F.: Path Planning Using Probabilistic Cell Decompo-
sition. Ph.D.Thesis. KTH Signaler Sensorer och System, Stock-
holm (2005)

32. Maddula, T., Minai, A., Polycarpou, M.: Multi-Target Assignment
and Path Planning for Groups of UAVs. In: Cooperative Systems:
Recent Developments in Cooperative Control and Optimization,
Pp. 261-272 (2004)

33. McLain, T., Beard, R.: Trajectory planning for coordinated
rendezvous of unmanned air vehicles. In: Proceedings of
the AAAI Conference on Guidance, Navigation and Control
Conference, pp. 1-8 (2000)

34. Melor, C., Omar, R., Sabudin, E.: Recent Research in Cooperative
Path Planning Algorithms for Multi-Agent using Mixed-Integer
Linear Programming. Journal of Engineering and Applied
Sciences 22(4), 8921–8926 (2016)

868 J Intell Robot Syst (2019) 94:857–869



35. Murphey, R.: An Approximate Algorithm for a Weapon Target
Assignment Stochastic Program. In: Approximation and Com-
plexity in Numerical Optimization: Continuous and Discrete
Problems. Kluwer Academic Publishers, Boston (1999)

36. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta∗: Any-Angle
path planning on grids. In: Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 1177-1183 (2007)

37. Niewola, A., Podsedkowski, L.: L∗ algorithm - a linear
computational complexity graph searching algorithm for path
planning. Journal of Intelligent & Robotic Systems. Online ISSN
1573-0409, 1–20 (2017)

38. Pfeiffer, B., Batta, R., Klamroth, K., Nagi, R.: Path Planning
for UAVs in the Presence of Threat Zones Using Probabilistic
Modeling. In: Handbook of Military Industrial Engineering.
Taylor and Francis, USA (2008)

39. Schouwenaars, T., De Moor, B., Feron, E., How, J.: Mixed integer
programming for Multi-Vehicle path planning. In: Proceedings
European Control Conference, pp. 2603-2608 (2001)

40. Schumacher, C., Chandler, P., Pachter, M., Pachter, L.: Opti-
mization of Air Vehicles Operations using Mixed-Integer Linear
Programming. J. Oper. Res. Soc. 58(4), 516–527 (2007)

41. Shanmugavel, M., Tsourdos, A., White, B., Zbikowski, R.:
Cooperative Path Planning of Multiple UAVs using Dubins Paths
with Clothoid Arcs. Control. Eng. Pract. 18, 1084–1092 (2010)

42. Shima, T., Rasmussen, J., Sparks, A.: UAV Cooperative Multiple
Task Assignments Using Genetic Algorithms. American Control
Conference, pp. 2989–2994 (2005)

43. Stentz, A.: The focussed d∗ algorithm for Real-Time replanning.
In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1652-1659 (1995)

44. Waydo, S., Murray, R.M.: Vehicle Motion Planning using Stream
Functions. In: Proceedings of IEEE International Conference on
Robotics and Automation, pp. 2484-2491 (2003)

45. Weinstein, A.L., Schumacher, C.: UAV Scheduling via the vehicle
routing problem with time windows. In: Proceedings of the AIAA
Infotech Aerospace Conference and Exhibit, pp. 2839 (2007)

Luitpold Babel studied mathematics and received his diploma and
doctorate degree from the Technical University Munich, Germany in
1990. Following research positions at the Old Dominion University,
Norfolk, USA and University Graz, Austria, he completed his
habilitation in 1997. The focus of his work was on problems of
combinatorial optimization, graph theory and efficient algorithms.
From 1999 to 2006 he joined the missile industry where he worked
in research and development teams of different subsidiaries of EADS
andMBDA. Since 2007 he is a professor of mathematics and computer
science at the Universität der Bundeswehr in Munich, Germany. His
research interests include mathematical methods in defence analyses,
route planning of autonomous systems, and mission planning systems
for missiles and unmanned air vehicles.

869J Intell Robot Syst (2019) 94:857–869


	Coordinated Target Assignment and UAV Path Planning with Timing Constraints
	Abstract
	Abstract
	Introduction
	Flight Path Planning for Single Vehicles
	Coordinated Flight Path Planning
	Simultaneous Arrival
	Technical Realization
	Sequential Arrival

	Performance Analysis
	Conclusion
	Publisher's Note
	References




