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Abstract
Circumnavigation control algorithms enable multiple robots to rotate around a target while they still preserve a circular
formation, which is useful in real world applications such as entrapping a hostile target. Specifically, four quantities are
involved: the circumnavigation radius, the angular speed, the height and the phase differences among robots, which are
termed spacings in this paper. Based on whether these quantities vary or not, the circumnavigation control problem is divided
into two categories: the static one and the dynamic one. Corresponding to these two classes, distributed control algorithms
are proposed for any number of mobile robots in random 3D positions to circumnavigate a target with arbitrarily given
spacings or dynamic spacings. It should be noted that arbitrary spacings or dynamic spacings are useful for a heterogeneous
multi-robot system in which robots may possess different kinematics capabilities; robots with higher movement speeds,
for instance, can compensate for the insufficiency of those with lower movement speeds by decreasing the corresponding
spacings. The robots can only perceive the positions of their two neighbouring robots, so the proposed control algorithms
are distributed and scalable. Simulations along with real-robot experiments using soccer-playing robots are conducted to
validate the theoretical results.

Keywords Static circumnavigation · Dynamic circumnavigation · Distributed control · Multi-robot system

1 Introduction

Increasing research focuses on multi-robot systems since
there are many advantages over single-robot systems [18].
The ways of controlling a multi-robot system can be cate-
gorized into two classes: centralized control and distributed
control. In centralized control, a central robot is respon-
sible for almost all the work of sensing, computation and
decision-making, and then a centralized control signal is
transmitted to other robots in the system. However, the pre-
requisite for this system is that there is at least one robot
that is able to communicate with all the other robots [14].
In contrast, distributed control employs local information
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among robots to realize collective behavior and achieve a
global objective [18]. Considering the narrow communi-
cation bandwidth, limited computation/memory resources
and the mass scale of the group to control, distributed con-
trol possesses greater potential for applications. Currently,
it has been applied in the military, aerospace, industrial and
educational activities.

One of the most prominent research topics on multi-robot
system is the formation control problem. The objective is
for a group of robots to form a desired formation by local
interactions among them, so a particular global aim can be
achieved. Significant efforts have been made on the circular
formation control and circumnavigation control problems.
In the circular formation control problem, robots remain
in their positions after the formation is generated, while in
circumnavigation control problem, they still encircle around
the target. In this sense, circular formation control could be
regarded as a special case of circumnavigation control when
the circumnavigation speed equals to zero. The control
algorithms, however, are different for these two kinds of
problems.

There are already many studies on circumnavigation
control (or circular formation control) problems. Most of
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the existing studies only consider the case where robots are
distributed evenly on the formation (i.e., equal spacings),
such as [9, 13, 15, 23, 25, 26]. In addition, the control
algorithms proposed in these studies are only applicable on
the 2D plane. Nevertheless, [24] and [5] propose algorithms
which are also effective in the 3D space. The formation
spacings, however, are fixed and equal. Although this is
effective for a homogeneous multi-robot system, it may not
be sufficient for a heterogeneous one where robots have
different properties, such as maximum movement speeds.
[16] and [17] propose a distributed control law for a multi-
robot system to form a circular formation with any desired
spacings among robots. However, it assumes that the robots
are placed initially on a prescribed circle and the control
algorithm is not applicable in the 3D space. Furthermore, to
the best of our knowledge, there are no studies concerning
dynamic spacings for a heterogeneous multi-robot system.

In this paper, the circumnavigation problem is divided
into two categories: the static one and the dynamic one. To
explain these two categories, four chief quantities are
considered in a circumnavigation problem, i.e., the circum-
navigation radius, the phase differences among robots (i.e.,
spacings), the circumnavigation height and the circum-
navigation angular speed. In the static circumnavigation
problem, these four quantities are given and constant dur-
ing the whole circumnavigation process. Differently, as for
the dynamic circumnavigation process, one or more of these
quantities will vary dynamically, which is particularly use-
ful in practical scenarios. For example, robots can decrease
their spacings to avoid a target from escaping from the cir-
cular formation. Most of the existing research only deal with
the static circumnavigation problem while in this study, both
the static and the dynamic circumnavigation problems are
considered.

In this study, we suppose that mobile robots are het-
erogeneous in terms of their kinematics abilities, such as
maximum locomotion speeds, etc. In a scenario where these
mobile robots need to entrap a hostile target, their inter-
robot spacings should be different for better performance;
those robots with lower mobility are supposed to gather
together with smaller spacings than those with higher mobil-
ity, so the probability for the target to flee away from
the formation is lower. Therefore, the first goal of the
paper, which corresponds to the static circumnavigation
problem, is to propose a distributed circumnavigation con-
trol algorithm which is able to control a group of mobile
robots from any initial positions to encircle around a tar-
get with any given desired spacings in the three dimensional
space. However, we do not consider the particular vari-
ances in the mobility or the optimal spacings among robots.
Instead, the desired spacings are assumed to be appropriate
and specified beforehand. We also consider the deteriora-
tion of individual performance due to physical worn-out

or damage. Therefore, their spacings should be varied in a
dynamic way during the circumnavigation process. Based
on this, the second goal of this paper, which corresponds to
the dynamic circumnavigation problem, is to propose a new
distributed circumnavigation control algorithmwhich is able to
drive a group of heterogeneous mobile robots to circumnav-
igate a target with dynamic spacings in the 3D space.

The main contribution of this work is twofold. First, as
for the static circumnavigation problem, the corresponding
control algorithm proposed here is able to drive all robots to
form a circular formation with given arbitrary spacings in
the 3D space. Second, as for the dynamic circumnavigation
problem, we propose two new concepts: utility and forma-
tion guideline. Based on them, a distributed dynamic cir-
cumnavigation control algorithm is designed, which enables
robots to adjust their spacings dynamically according to
the local variations of robots’ utilities. Moreover, the con-
trol algorithm can respond effectively to the situation where
robots quit from or join into the formation.

The paper draws upon work previously published in
conference proceedings [20–22]. We also publish for the
first time new results about the spacing convergence
performance as presented in Section 4.3 and we also derive
new control algorithms to alleviate the effects of external
perturbations as presented in Section 6. Some parts are
explained with more details compared with those published
in the conference proceedings.

The remainder of this paper is organized as follows.
Section 2 introduces the preliminary knowledge and nota-
tions that will be used in this paper. Then Section 3 derives
the control input from the Cartesian coordinate system to the
cylindrical coordinate system, which facilitates the design
of control algorithms. In Sections 4 and 5, the static and the
dynamic circumnavigation control problems are formulated,
and the corresponding control algorithms are proposed.
The circumnavigation control problem considering exter-
nal perturbations is elaborated in Section 6. In Section 7,
simulation and real robot experiments are performed to val-
idate the theoretical results. Finally, Section 8 concludes the
paper and summarizes the future work. The video about the
simulations and experiments is attached to this manuscript.

2 Preliminary Knowledge and Notations

First we list some useful concepts and notations from the
matrix analysis theory. For positive integersm and n,Mn(F)

and Mm×n(F) are sets of all n-by-n and m-by-n matrices
with entries from the field F respectively. If F is neglected,
then it represents R by default. If all the entries in a matrix
are nonnegative, then this matrix is called nonnegative. We
denote Id ∈ Md as the d × d identity matrix. 1 and 0 are
vectors of all 1’s or 0’s of suitable dimensions respectively.
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||v|| represents the Euclidean norm of a vector v. For a
nonnegative matrix A ∈ Mm×n,

√
A = [√aij ], i =

1, .., m, j = 1, ..., n. For a vector v ∈ R
n, A = diag{v} ∈

Mn is a diagonal matrix where [aii] = vi and aij = 0, i �=
j . We denote λ(B) as the set of all eigenvalues of B ∈ Mn.
In addition, if all the eigenvalues of B are real, we use the
notation λi(B), i = 1, ..., n, to represent the ith smallest
eigenvalue. That is, λi(B) ∈ λ(B) � R are ordered as
follows:

λm(B) = λ1(B) ≤ λ2(B) ≤ ... ≤ λn(B) = λM(B). (1)

In clear context, B is neglected.
Some knowledge about the graph theory is also provided

here. Graph is essentially a concept from the set theory. A
graph containing n nodes can be denoted by Gn = (Vn, En),
where Vn = {v1, . . . , vn} is the node set and En � Vn×Vn is
the edge set. εij = (vi, vj ), i, j ∈ {1, . . . , n} represents an
edge connecting nodes vi and vj . For simplicity, it can also
be written as εij = (i, j). When i = j , εij is called a self-
loop [4], which will not be considered in this study. When
the elements in the edge set En are ordered pairs, Gn is a
directed graph (or digraph) while it is an undirected graph
if the elements are unordered pairs. In other words, εij �= εji

for directed graph but εij = εji for undirected graph. Node
i of εij is called the parent node and node j is the child
node [14]. A directed path is an ordered set of edges such
that the child node of the previous edge is the parent node of
the next edge, such as (v1, v2), (v2, v3), . . .. For undirected
graph, the concept of undirected path is similarly defined.
A directed graph is called strongly connected if for every
pair of nodes there is a directed path between them [10].
Similarly, an undirected graph is connected if for every pair
of nodes there is an undirected path between them. The
corresponding adjacent matrix to graph Gn = (Vn, En) is
denoted by An = [aij ] ∈ Mn, i, j ∈ 1, . . . , n. It represents
whether there is an edge between any two nodes, that is,
aji > 0 when the edge (i, j) ∈ En and aji = 0 when
the edge (i, j) /∈ En. The Laplacian matrix is denoted by
Ln = [lij ] ∈ Mn, where lij = ∑n

k=1,k �=i aik, i = j ; lij =
−aij , i �= j . The underlying directed graph of a nonnegative
matrix M ∈ Mn, denoted by G(M), is the directed graph
with the node set {vi}, i ∈ {1, ..., n}, such that there is a
directed edge in G(M) from vj to vi if and only if mij �= 0
[7].

3 Cylindrical Control Input

In this part, the control input to the robot is derived. Instead
of using the Cartesian coordinate system to represent the
control input, the cylindrical coordinate system is adopted
for better simplicity and clarity. The research question is
that a group of n (n ≥ 2) mobile robots, denoted by

ri, i = 1, ..., n, encircle a target in 3D space on a circular
formation. Suppose each mobile robot is modeled by a 3D
kinematic point:

ṗi (t) = ui (t), i = 1, ..., n, (2)

where ui(t) is the control input to the robot ri and pi(t) ∈
R
3 is its position in the world reference frame W . In

this problem, robots are required to maintain on the same
plane with the encircled target which is modeled by another
kinematic point. Therefore, a (target) body reference frame
B centered at the target S is introduced (see Fig. 1).
In addition, the cylindrical coordinate system is preferred
to the commonly used Cartesian coordinate system since
the former itself embodies three elements of interest: the
distance between the projection of the robot on the XSY

plane to the target (ρ), the height relative to the XSY plane
(z) and the angle between the X-axis and the line joining
the projection of the robot on the XSY plane with the
target (ϕ). The cylindrical coordinates for ri are denoted by
qi = (ρi, ϕi, zi)

T . To relate the cylindrical coordinates with
the Cartesian coordinates, a vector function is defined as
q(p) = (ρ(p), ϕ(p), z(p))T , where p ∈ R

3 is a vector with

components px, py, pz and ρ(p) =
√

p2
x + p2

y , ϕ(p) =
tan-1(py/px), z(p) = pz. Note that ϕ ∈ [0, 2π). The
Jacobian matrix of the vector function will be used later,
which is

J = ∂q

∂pT
=

⎡

⎢
⎢
⎣

px√
p2

x+p2
y

py√
p2

x+p2
y

0

−py

p2
x+p2

y

px

p2
x+p2

y
0

0 0 1

⎤

⎥
⎥
⎦ . (3)

For better analysis, we label the robots in the coun-
terclockwise direction according to their initial (angular)
positions (ϕi) in B as shown in Fig. 2. Note that the sub-
script i− and i+ represent the indices of the neighbouring
robots of ri in the clockwise and counter-clockwise direc-
tion respectively. Especially, if i = n, i+ = 1, and if i = 1,

Fig. 1 The body reference frame B with the target S as the origin



886 J Intell Robot Syst (2019) 94:883–905

Fig. 2 Robots’ projections and the target S on the XSY plane

i− = n. �i > 0 represents the difference between the
angular position of ri+ and that of ri . In particular,

�i =
{

ϕi+ − ϕi, i = 1, . . . , n − 1,
ϕ1 − ϕn + 2π, i = n.

(4)

To consider the circumnavigation control problem in the
body reference frame B so that we can take advantage of the
cylindrical coordinates, first we define a rotational matrix
Rb, which is the representation of B with respective to the
world reference frameW . Therefore, the following formula
calculates the cylindrical coordinates of the robot ri in frame
B.
qi = q(RT

b (pi − pb)), (5)

where pi and pb are the Cartesian coordinates of the robot ri
and the target in frame W respectively. Then the derivative
of Eq. 5 is the dynamics of robots in the cylindrical
coordinates, which is

q̇i = Ji

[
ṘT

b (pi − pb) + RT
b (ṗi − ṗb)

]
, (6)

where Ji is the Jacobian matrix as shown in Eq. 3, i.e.

Ji = ∂q
∂pT

∣
∣
∣
∣ p = RT

b (pi − pb)
. Note that in view of Eq. 3,

det(J ) = 1√
p2

x+p2
y

as long as p2
x + p2

y �= 0. In the scenario

of the circumnavigation control problem, this means Ji

is invertible as long as the distance between the robot ri
and the target is nonzero. This condition can always be
guaranteed since the initial positions of the robots and the
target do not coincide, and by designing appropriate control
laws, the distance can be guaranteed to be nonzero all the
time. By letting

ui = ṗi = ṗb + Rb(J
−1
i vi − ṘT

b (pi − pb)), (7)

we can switch our focus to the new control input in
cylindrical coordinates vi = q̇i = (ρ̇i , ϕ̇i , żi )

T [5]. The

advantage of transforming to this control input is that we
can control ρi , ϕi and zi separately, which are the three main
variables in the circumnavigation control problem.

4 Static Circumnavigation Control Problem

In the static circumnavigation control problem, robots and
the target maintain on the same plane with any given
constant circumnavigation radius, spacings, angular speed
and height during the steady state. These four quantities
are unchanged compared with those in the dynamic
circumnavigation control problem which will be discussed
in Section 5. In this section, the formulation of the static
circumnavigation control problem is presented first. And
then the corresponding control algorithm is proposed and
the convergence speed of the robots’ spacings is analyzed.

4.1 Problem Formulation

We define �d
i > 0, i = 1, . . . , n, as the desired spacings

between the robot ri+ and ri . Also note that

n∑

i=1

�i =
n∑

i=1

�d
i = 2π, (8)

where �i > 0, �d
i > 0. Therefore, the static

circumnavigation control problem can be formulated as
follows:

Definition 1 (Static Circumnavigation Control Problem
with Arbitrary Spacings) In a heterogeneous multi-robot
system composed of n (n ≥ 2) mobile robots, of which the
dynamics are modeled by Eq. 2, the static circumnavigation
control problem with arbitrary spacings is to seek control
laws satisfying the following asymptotic conditions:

lim
t→∞ρi(t) = ρ∗, (9)

lim
t→∞�i(t) = �d

i , (10)

lim
t→∞ϕ̇i (t) = ω∗, (11)

lim
t→∞zi(t) = z∗, (12)

for all i = 1, ..., n. Here, ρ∗ > 0, ω∗ > 0 and �d
i > 0

denote the circumnavigation radius, the angular speed and
the desired spacings among robots respectively, and �d

i

satisfies Eq. 8.

In this paper, it is required that all robots and the target
remain on the same plane in the end. Therefore, the default
value of z∗ is 0.
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4.2 Control Algorithm

The following is a preliminary result related to any strongly
connected digraph.

Lemma 1 (Theorem 3 of [12]) Assume G is a strongly
connected digraph with Laplacian L satisfying Lwr = 0,
wT

l L = 0 and wT
l wr = 1. Then

R = lim
t→∞ exp(−Lt) = wrw

T
l ∈ Mn. (13)

Theorem 1 Consider a multi-robot system with robot
dynamics described by Eq. 2, by introducing the control
input vi = q̇i = (ρ̇i , ϕ̇i , żi )

T into Eq. 7, where

ρ̇i = kρ(ρ∗ − ρi), (14)

żi = −kzzi, (15)

ϕ̇i = ω∗ + kϕ(ϕ̄i − ϕi). (16)

Note that kρ , kz and kϕ are positive gains, and

ϕ̄i =

⎧
⎪⎪⎨

⎪⎪⎩

ϕi− + �i + �i−

�d
i + �d

i−
�d

i− , i = 2, 3, . . . , n,

ϕn + �1 + �n

�d
1 + �d

n

�d
n − 2π, i = 1,

(17)

then the static circumnavigation control problem with
arbitrary spacings encoded by Eqs. 9, 10, 11 and 12 can be
solved.

Equation 17 is based on the way-point control law
proposed in [16] but here we add a particular condition for
the robot indexed 1. In particular, substituting Eq. 4 into
Eq. 17, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ̄1 = �d
1

�d
1+�d

n

ϕn + �d
n

�d
1+�d

n

ϕ2 − 2π�d
1

�d
1+�d

n

,

ϕ̄i = �d
i

�d
i +�d

i−1
ϕi−1 + �d

i−1

�d
i +�d

i−1
ϕi+1, i = 2, . . . , n − 1,

ϕ̄n = �d
n

�d
n+�d

n−1
ϕn−1 + �d

n−1

�d
n+�d

n−1
ϕ1 + 2π�d

n−1

�d
n+�d

n−1
.

(18)

Proof It is obvious that Eqs. 14 and 15 do not rely on the
states of other robots, and they are basically P control laws
with reference input ρ∗ and 0 respectively. So according
to the classical control theory, ρi and zi will converge
exponentially to ρ∗ and 0 respectively.

We define ϕ̄ = [ϕ̄1 ... ϕ̄n]T and ϕ = [ϕ1 ... ϕn]T , so
Eqs. 16 and 18 can be written into compact forms:

ϕ̇ = ω∗1 + kϕ(ϕ̄ − ϕ), (19)

ϕ̄ = Aϕ + b, (20)

where A ∈ Mn and b ∈ Rn are as follows:

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 �d
n

�d
1+�d

n

0 . . . 0 0
�d

1
�d

1+�d
n

�d
2

�d
2+�d

1
0

�d
1

�d
2+�d

1
. . . 0 0 0

...
...

...
...

...
...

...

0 0 0 . . .
�d

n−1

�d
n−1+�d

n−2
0

�d
n−2

�d
n−1+�d

n−2
�d

n−1

�d
n+�d

n−1
0 0 . . . 0 �d

n

�d
n+�d

n−1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(21)

b = 2π

[
−�d

1
�d

1+�d
n

0 · · · 0 �d
n−1

�d
n+�d

n−1

]T

. (22)

Matrix A is a row stochastic matrix [7] and furthermore,
it could be considered as the adjacency matrix [10]
corresponding to a weighted directed ring denoted by G(A),
which is strongly connected. Next we define the error signal
as

eϕ = ϕ̄ − ϕ = (A − In)ϕ + b = −Lpϕ + b, (23)

where Lp = In − A, which is the Laplacian matrix of
G(A). Therefore, the derivative of eϕ is ėϕ = −Lpϕ̇. By
substituting Eqs. 19 and 23 into this equation, we further
obtain the error dynamics as

ėϕ = −ω∗Lp1 − kϕLpeϕ = −kϕLpeϕ . (24)

Note that 1 is the right eigenvector associated with the zero
eigenvalue of Lp, so −ω∗Lp1 = 0. The solution to Eq. 24
is eϕ(t) = exp(−kϕLpt)eϕ(0). According to Lemma 1
and also note that kϕ > 0 only affects the convergence
speed but not the convergence value, we have lim

t→∞eϕ(t) =
wrw

T
l eϕ(0), where Lpwr = 0, wT

l Lp = 0 and wT
l wr = 1.

By substituting Eq. 23 into this equation, we obtain the
following:

lim
t→∞eϕ(t) = wr(−wT

l Lpϕ + wT
l b) = wT

l bwr . (25)

Let wr = 1 and

wl = wL
∑

wL

, (26)

where the ith entry of wL is [wLi
= (�d

i +
�d

i−)
∏n

j=1,j �=i,i−�d
j ] and

∑
wL

= ∑n
i=1 wLi

. It can be

easily verified that wT
l and wr are the left and right eigen-

vector of the Laplacian matrix Lp associated with the zero
eigenvalue respectively, and wT

l wr = 1. Therefore, Eq. 25
becomes lim

t→∞eϕ(t) = 0. In other words,

lim
t→∞ϕ(t) = lim

t→∞ϕ̄(t). (27)

According to Eq. 19, the circumnavigation speed of each
robot converges to the desired angular speed ω∗. In addition,
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under this condition, ϕ̄i is replaced by ϕi in Eq. 17 and
therefore for robots with indices i = 2, ..., n, the equation
ϕi = ϕi− + �i+�i−

�d
i +�d

i−
�d

i− further becomes

�i

�i−
= �d

i

�d
i−
. (28)

Equation 28 means a sequence of equations �n

�n−1
=

�d
n

�d
n−1

, ..., �2
�1

= �d
2

�d
1
. Assuming �1 = k�d

1 , k �= 0, we

have �i = k�d
i , i = 2, ..., n. Since 2π = ∑n

i=1 �d
i =∑n

i=1 �i = k · 2π , it can be concluded that k = 1.
Therefore, �i = �d

i , i = 1, ..., n, so the desired spacings
are achieved.

Remark 1 If �d
1 = · · · = �d

n = 2π
n
, that is, the spacings are

equal. Then Eq. 18 becomes

⎧
⎪⎨

⎪⎩

ϕ̄1 = ϕn+ϕ2−2π
2 ,

ϕ̄i = ϕi−1+ϕi+1
2 , i = 2, ..., n − 1,

ϕ̄n = ϕn−1+ϕ1+2π
2 .

(29)

Combined with Eqs. 14, 15 and 16, they can solve the
circumnavigation control problem with equal spacings.

Remark 2 It is interesting that when there are only two
robots, i.e., n = 2, the subscripts of robots satisfy equation
i− = i+. Equation 18 is still valid but simplifies to
ϕ̄1 = ϕ2−�d

1 , ϕ̄2 = ϕ1+�d
1 , which becomes very intuitive

to understand given that �d
1 + �d

2 = 2π . Furthermore,

A and b degrades to A =
[
0 1
1 0

]

and b =
[ −�d

1
�d

1

]

respectively .

Another problem that is worth considering is whether
robots preserve their initial orders during the whole
circumnavigation process. This means each robot will
not overtake or be overtaken by its neighbours, which
guarantees that they will not collide with each other if they
are regarded as mass points. Before introducing the next
theorem, the definition of a Metzler matrix [11] is given.
For a real matrix M = [mij ] ∈ Mn, if all its off-diagonal
elements are non-negative, i.e., mij ≥ 0, i �= j , M is a
Metzler matrix.

Theorem 2 During the circumnavigation process, robots
always keep their initial orders in the formation. In other
words, �i(t) > 0, i = 1, . . . , n, for t ≥ 0.

Proof According to Eqs. 4, 16 and 17, for i = 1, . . . , n, it
follows that

�̇i = kϕ

[
�d

i

�d
i+ + �d

i

�i+ +
( −�d

i+

�d
i+ + �d

i

+ −�d
i−

�d
i + �d

i−

)

�i

+ �d
i

�d
i + �d

i−
�i−

]

. (30)

Let � = [�1 . . . �n]T , then Eq. 30 can be rewritten as
�̇ = kϕM��, where M� is shown in Eq. 31. Therefore,
the solution of �(t) is �(t) = exp(kϕM�t)�(0).
Since M� is a Metlzer matrix, it has been proved that
exp(kϕM�t) is a non-negative matrix [11]. In addition, due
to �(0) > 0, it follows that �(t) > 0, t ≥ 0, which
means that robots always keep their initial orders in the
formation.

M� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−�d
2

�d
2+�d

1
+ −�d

n

�d
1+�d

n

�d
1

�d
2+�d

1
. . .

�d
1

�d
1+�d

n

�d
2

�d
2+�d

1

−�d
3

�d
3+�d

2
+ −�d

1
�d

2+�d
1

. . . 0

...
...

...
...

0 0 . . .
�d

n−1

�d
n+�d

n−1

�d
n

�d
1+�d

n

0 . . .
−�d

1
�d

1+�d
n

+ −�d
n−1

�d
n+�d

n−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(31)

4.3 Spacing Convergence Performance

Note that among the control inputs represented by
Eqs. 14, 15 and 16, only Eq. 16 utilizes the information
among robots. It is of particular interest to study the
convergence performance corresponding to this specific
control input, which is directly related to the desired
arbitrary spacings. In particular, we aim to find out
how fast the current spacings converge to the desired
spacings, i.e. eϕ = ϕ̄ − ϕ, using a Lyapunov function.

Let P
�= diag{wl}, which is obviously a positive

definite square matrix and trace(P ) = 1. The valid

Lyapunov equation Q
�= LT

pP + PLp and the constructed

matrix D
�= (

√
P

−1
)T Q

√
P

−1
are important for the

following proofs, so we provide a lemma demonstrating
some of their important properties first.

Lemma 2 Let P
�= diag{wl}, where wl is the normalized

left eigenvector of Lp associated with the zero eigenvalue

as presented by Eq. 26. Let Q
�= LT

pP + PLp and
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D
�= (

√
P

−1
)T Q

√
P

−1
. Q and D have the following

properties respectively:

(1) Q is a symmetric balanced Laplacian matrix. There-
fore, some of its properties include Q = QT , 1T Q =
Q1 = 0;

(2) The underlying graph of Q, i.e. G(Q), represents a
strongly connected graph;

(3) D is real symmetric (or Hermitian), i.e. D = DT ;
(4) η = √

P1 and ηT = (
√

P1)T are the right and left
eigenvectors of D associated with the zero eigenvalue
respectively, i.e. Dη = ηT D = 0;

(5) The eigenvalues of D are all real and nonnegative,
i.e. λ(D) ≥ 0. In addition, 0 is a simple eigenvalue
of D, i.e. 0 = λ1(D) < λ2(D). More specifically,
λ(D) = 2λ(Lp).

Proof The results of (1) to (4) are quite straightforward
considering that P is a diagonal matrix with positive
diagonal elements. We prove (5) as follows. According to
(3), the eigenvalues of D are real. It can be easily verified
that PLpP −1 = LT

p , or

PLp = LT
pP . (32)

Therefore, D = (
√

P
−1

)T Q
√

P
−1 = 2

√
P

−1
(PLp)√

P
−1 = 2

√
PLp

√
P

−1 �= 2E. Since E is similar to Lp,
we have λ(D) = 2λ(E) = 2λ(Lp). Considering Lp is a
Laplacian matrix with a simple zero eigenvalue, the proof is
completed.

It should be noted that the property (5) of Lemma 2 also
implies that all the eigenvalues of the Laplacian matrix Lp

are real. The next lemma is a famous theorem on Rayleigh
quotient [7]. We modify some notations for consistency
with those used in this paper and only keep the parts we
need.

Lemma 3 (Theorem 4.2.2 (Rayleigh) of [7]) Let A ∈
Mn(C) be Hermitian, the eigenvalues of A be ordered as in
Eq. 1, i1, ..., ik be given integers with 1 ≤ i1 < ... < ik ≤ n,
xi1 , ..., xik be orthonormal and such that Axip = λipxip for
each p = 1, ..., k, and S = span{xi1, ..., xik }. Then

λi1 = min{x:0�=x∈S}
x∗Ax

x∗x
, (33)

where x∗ denotes the conjugate transpose of x. The
minimum value is achieved if and only if Ax = λi1x.

Corollary 1 LetA ∈ Mn be real symmetric, the eigenvalues
of A be ordered as in Eq. 1, x1, ..., xn ∈ R

n be orthonormal

and such that Axi = λixi for each i = 1, ..., n, and
S = span{x2, ..., xn}. Then

λ2 = min
{x∈Rn:x �=0,xT

1 x=0}
xT Ax

xT x
. (34)

The minimum value is achieved if and only if Ax = λ2x.

Proof We consider Lemma 3 in the field of R. Moreover,
it is a basic fact that there is an orthonormal basis of Rn

consisting of eigenvectors of A, i.e. span{x1, ..., xn} = R
n.

Also note that S = span{x2, ..., xn} = {x ∈ R
n :

xT
1 x = 0} � R

n−1. By letting k = n − 1 and
i1 = 2, i2 = 3, ..., ik = n, the remaining of the proof

follows from Lemma 3, i.e. λ2 = min{x∈Rn:0�=x∈S} xT Ax
xT x

=
min{x∈Rn:x �=0,xT

1 x=0}
xT Ax
xT x

.

Lemma 4 ([1]) Let P = P T ∈ R
n×n, λM(P ) and

λm(P ) denote the largest and smallest eigenvalues of P ,
respectively, and || · || denote the Euclidean norm. Then

λm(P )||x||2 ≤ v(x) = xT Px ≤ λM(P )||x||2, (35)

for all x ∈ R
n.

As for the convergence performance of eϕ(t), we obtain
the following theorem.

Theorem 3 Consider the control input (16), which involves
distributed inter-robot information exchange corresponding
to a fixed strongly-connected digraph. The error signal
eϕ(t), as the solution of the error dynamics (24), globally
exponentially vanishes, which is described by the following
inequality:

||eϕ(t)|| ≤
√

λM(P )

λm(P )
||eϕ(0)|| exp(−kϕβt), (36)

where P = diag{wl}, wl is the normalized left eigenvector
of Lp associated with the zero eigenvalue as presented in
Eq. 26, λM(·) and λm(·) denote the maximum and minimum
eigenvalues respectively and β = λ2(Lp).

Proof Since P is positive definite, we define a valid
Lyapunov function for the error dynamics (24) as follows:

V (eϕ) = eT
ϕ P eϕ . (37)

After taking the derivative of V (eϕ) we have

V̇ (eϕ) = ėϕ
T P eϕ + eT

ϕ P ėϕ

= −kϕeT
ϕ (LT

pP + PLp)eϕ

= −kϕeT
ϕ Qeϕ . (38)
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Some of the properties of Q is presented in Lemma 2. Let

D = (
√

P
−1

)T Q
√

P
−1

. According to the properties pre-
sented in Lemma 2, D is real symmetric and η̂ = η/||η||
is the right normalized eigenvector of D associated with
the simple eigenvalue λ1(D) = 0. Since the multiplicity
of λ1(D) is 1, η̂ is automatically orthogonal to the space
spanned by the rest of the eigenvectors of D [7]. According
to Corollary 1, we have

min
{y∈Rn:y �=0,η̂T y=0}

yT Dy

yT y
= λ2(D). (39)

Or, for y ∈ R
n, y �= 0, η̂T y = 0, the following inequality is

satisfied:

yT Dy ≥ λ2(D)yT y. (40)

According to Eq. 24, we have wT
l ėϕ = −kϕwT

l Lpeϕ =
0, so wT

l eϕ(t) is an invariant quantity. In addition,
wT

l eϕ(∞) = 0, so we have

wT
l eϕ(t) = 0, (41)

during the whole encirclement process. Since η̂T (
√

Peϕ) =
1T P eϕ/||η|| = wT

l eϕ/||η|| = 0, we substitute y by
√

Peϕ

in Eq. 40 and obtain the following inequality:

eT
ϕ Qeϕ ≥ 2βV (eϕ), (42)

where β = λ2(Lp). Note that we have used the fact that

Q = √
P

T
D

√
P and the property (5) listed in Lemma 2.

Therefore, Eq. 38 can be written into

V̇ (eϕ) = −kϕeT
ϕ Qeϕ ≤ −2kϕβV (eϕ). (43)

Since V (eϕ) is positive definite, we have

V (eϕ) ≤ V [eϕ(0)] exp(−2kϕβt). (44)

According to Lemma 4, the inequality (44) can be further
derived as follows:

λm(P )||eϕ ||2 ≤ V (eϕ) ≤ λM(P )||eϕ(0)||2 exp(−2kϕβt).

(45)

Equivalently,

||eϕ(t)|| ≤
√

λM(P )

λm(P )
||eϕ(0)|| exp(−kϕβt). (46)

Remark 3 Since the underlying graph for the Laplacian
matrix Lp is strongly connected, the multiplicity of λ1(D)

is 1. However, considering a more general case when
the underlying graph is not strongly connected, hence
the multiplicity of λ1 is greater than 1. In this case,
Gram-Schmidt process can be applied to the eigenvectors

associated with λ1 while we keep η̂ unchanged. Then η̂ is
still orthogonal to the space spanned by the new set of the
remaining eigenvectors of D. Therefore, Eq. 39 is still valid.
However, since λ2(D) = 0, the following part of the proof
becomes insignificant.

Remark 4 Let 0 < �d
s1

≤ �d
s2

≤ · · · ≤ �d
sn

< 2π , where
si ∈ {1, 2, ..., n} and si �= sj (i �= j). Then it is easy

to verify that λM(P ) = (�d
s1

+�d
s2

)�d
s3

···�d
sn∑

wL

and λm(P ) =
(�d

sn−1
+�d

sn
)�d

s1
···�d

sn−2∑
wL

. Therefore, in particular,

||eϕ(t)|| ≤
√
√
√
√

(�d
s1

+ �d
s2

)�d
sn−1

�d
sn

(�d
sn−1

+ �d
sn

)�d
s1

�d
s2

||eϕ(0)|| exp(−kϕβt)

≤
√

�d
sn−1

�d
sn

�d
s1

�d
s2

||eϕ(0)|| exp(−kϕβt) (47)

Remark 5 In some literature, such as [12], β is called
the Fiedler eigenvalue. In addition, in [12], the underlying
graph is required to be not only strongly connected but also
balanced, and β = λ2(G

′) where G′ = (L+LT )/2 and L is
the balanced Laplacian matrix. However, we do not require
the underlying graph to be balanced in this study (e.g., the
spacings among robots are not required to be equal). With a
greater gain kϕ , the circumnavigation process will converge
faster.

5 Dynamic Circumnavigation Control
Problem

Different from the static circumnavigation control problem,
one or several of the values of the circumnavigation
radius, the angular speed, the spacings and the height
are time varying in the dynamic circumnavigation control
problem. In this section, we only consider the time-varying
spacings among robots. First, the insufficiencies of the static
circumnavigation control algorithm are pointed out. Then
concerning theses insufficiencies, the problem formulation
and the control algorithm for the dynamic circumnavigation
control problem are proposed. Specifically, the concepts
of utilities and formation guidelines are proposed in this
study. Finally, a simulation and a real-robot experiment are
conducted.

5.1 Insufficiencies of the Static Circumnavigation
Control Algorithm

For the static circumnavigation control problem, although
the spacings are arbitrarily given, they should be informed
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to each robot before the beginning of the circumnavigation
process. Therefore, a central robot, for example, needs
to transmit the values to each robot. This means any
inconsistency in the values received by other robots will lead
to a failure in forming the correct formation. In addition, if
the desired spacings do not satisfy Eq. 8 accidentally (e.g.
the central robots calculate the wrong desired spacings),
then robots will not form the expected spacings. Moreover,
once there are robots joining into or quitting from the
formation, the desired spacings should be calculated (to
satisfy Eq. 8) and transmitted again, which requires the
central robot to be aware of the exact number of robots in
the formation. Therefore, the control algorithm relies on the
stability of the central robot and the accurate information of
the number of robots. To cope with these insufficiencies, the
expected spacings will be dynamic as discussed later.

5.2 Problem Formulation

Before giving the definition of the dynamic circumnaviga-
tion control problem, we propose the concept of utility. Let
R≥0 denotes the field of non-negative real numbers.

Definition 2 (Utility) In a heterogeneous multi-robot
system, given different kinds of robots, a robot’s utility
μ(t) ∈ R≥0 is determined by a given criterion (such as
its maximum movement speed). The utility reflects the
weight of the robot in the circumnavigation process at
time t .

For example, suppose a robot’s maximum movement
speed is the criterion. Let μi(t) = vmi(t)

vM
, i = 1, . . . , n,

where vmi(t) is the maximum movement speed of ri and
vM is the greatest movement speed in the heterogeneous
multi-robot system. Then μi(t) ∈ [0, 1], i = 1, . . . , n.
When μi(t) = 0, the robot ri cannot continue the
circumnavigation process with other robots. In this case,
its neighbouring robots will neglect its role in the
circumnavigation process. μi(t) will increase or decrease
due to the enhancement or damage of the robot’s locomotion
capabilities. To explain directly how utilities are used to
enable dynamic spacings among robots, we simply regard
the utility of a robot to be proportional to its maximum
movement speed. For simplicity of writing, the symbol t is
neglected from μ unless it causes confusion. The dynamic
circumnavigation control problem based on utilities is
defined as follows:

Definition 3 (Dynamic Circumnavigation Control Prob-
lem) In a heterogeneous multi-robot system composed
of n (n ≥ 2) mobile robots, of which the dynamics
are modeled by Eq. 2, when lim

t→∞fi(t, μ1, . . . , μn) exists,

the dynamic circumnavigation control problem based on

utilities is to seek control laws satisfying the following
asymptotic conditions:

lim
t→∞ρi(t) = ρ∗, (48)

lim
t→∞�i(t) = lim

t→∞fi, (49)

lim
t→∞ϕ̇i (t) = ω∗, (50)

lim
t→∞zi(t) = z∗, (51)

for i = 1, ..., n. Here, μi > 0, ρ∗ > 0, ω∗ > 0 and z∗ ∈
R. ρ∗, ω∗ and z∗ denote the circumnavigation radius, the
angular speed and the circumnavigation height respectively.

fi
�= fi(t, μ1, . . . , μn) : R

n+1 → R is a function of
time and the utilities of robots. It maps utilities to the final
formation spacings. It is bounded and piecewise continuous.

In fact, in this paper, it is required that all robots and
the target remain in the same plane in the end. Therefore,
the default value of z∗ is 0. Equation 49 manifests that
the final formation spacings are not specified manually, but
instead, it is determined by the fi function, which will be
referred to as f function for simplicity. The advantage of
eliciting the f function is that the spacings among robots
can be dynamically adjusted corresponding to the variations
of robots’ utilities.

The expression of the f function is determined by a
formation guideline. It is proposed under specific physics
background representing the relationship between the
utilities of robots and the expected formation spacings. In
this paper, we suppose that multiple heterogeneous robots
circumnavigate a target and try to prevent it from fleeing.
In Fig. 3, four robots r1, . . . , r4 rotate around a target

Fig. 3 The physics background of the formation guidelines
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denoted by O. Suppose that the target is intelligent enough
to determine the best fleeing points denoted by A, B, C

and D in the figure. Obviously, the best fleeing points are
related to the utilities (i.e., the maximum movement speeds)
of robots. The position of A, for instance, is calculated by
∠AOr2 = μ2

μ1+μ2
. We also suppose that the probability

of capturing the target by a robot is inversely proportional
to the time spent on moving from its initial position along
the circular trajectory at its maximum speed to the best
fleeing point. Therefore, the first formation guideline can be
defined as below:

Formation Guideline 1 In the final circumnavigation
formation formed by robots, when the target tries to escape
via any of the best fleeing point, the two robots adjacent to
the best fleeing point have the same probability of capturing
the target.

To understand the above formation guideline, taking
Fig. 3 for example, it means the traveling time for r1 and
r2 to arrive at the best fleeing point A along the circular
trajectory at their maximum speeds (i.e., μ1 and μ2 resp.)
is the same, or the traveling time for r2 to arrive at A or
B along the circular trajectory at its maximum speed (i.e.,
μ2) is identical, and hence, the probability of capturing
the target is equal. Following this, it can be derived that
for i = 1, . . . , n, μi

μi+μi+
�i = μi

μi+μi−
�i−. According to

this equation, the relationship between the final expected
formation spacings and the utilities is

�1 : �2 : · · · : �n =(μ1+μ2) : (μ2+μ3) : · · · : (μn+μ1).

(52)

Therefore, given μ1, . . . , μn, by Eqs. 8 and 52 the
formation spacings can be determined, and the f function is
expressed as follows:

fi(t, μ1, . . . , μn) = μi + μi+∑n
i=1 μi

π . (53)

Similarly, another formation guideline can be defined as
follows:

Formation Guideline 2 In the final circumnavigation
formation formed by robots, the spacings among robots are
proportional to their utilities.

Formation Guideline 2 can be interpreted in this way: as
the utility of a robot increases, its complementary effects
on its neighbouring robots increase, and therefore the
spacings between them should be increased. Taking Fig. 3

for example, the formation guideline indicates that, for i =
1, . . . , n,

�i

μi

= �i−

μi−
(54)

Accordingly, given μ1, . . . , μn, the final desired formation
spacings are determined by Eqs. 8 and 54 jointly. Hence the
f function is

fi(t, μ1, . . . , μn) = 2μi
∑n

i=1 μi

π . (55)

In fact, according to different situations, formation guide-
lines can be designed manually. The guidelines mentioned
above are only two possible examples. For better under-
standing of the above concepts proposed in this paper,
the relationship between the f function, the formation
guidelines and the utilities is explained as follows. The
formation guideline determines the explicit form of the f

function, and furthermore, the f function maps the util-
ities to the final expected spacings. Therefore, given the
utilities of all robots, under a specific formation guideline,
the f function and hence the final spacings can be deter-
mined. However, it should be noted that the knowledge of the
final spacings does not play any instrumental role during
the circumnavigation process. Instead, the actual spacings
converge to the final spacings in a distributed manner
merely depending on the exchange of the utilities informa-
tion among robots. In other words, in a multi-robot system,
robots are not aware of what the final expected spacings are;
the actual spacings among robots adapt dynamically to the
variations of the local utilities of neighboring robots.

5.3 Control Algorithm

Theorem 4 Consider a multi-robot system with robot
dynamics described by Eq. 2, by introducing the control
input vi = q̇i = (ρ̇i , ϕ̇i , żi )

T into Eq. 7, where ρ̇i and żi are
given by Eqs. 14 and 15 respectively, and ϕ̇i is as follows:

ϕ̇i = ω∗ + kϕ(ϕ̃i − ϕi), (56)

where

ϕ̃i =

⎧
⎪⎨

⎪⎩

ϕi− + μi− + μi

μi+ + 2μi + μi−
(�i + �i−), i = 2, 3, . . . , n,

ϕi− + μi− + μi

μi+ + 2μi + μi−
(�i + �i−) − 2π, i = 1,

(57)

and μi is the utility of the robot ri , which is piecewise
constant. If the f function is shown as Eq. 53 (Formation
Guideline 1), the dynamic circumnavigation control prob-
lem based on utilities encoded by Eqs. 48, 49, 50 and 51 can
be solved.
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Proof See Appendix.

Remark 6 Ifμ1+μ2 = · · · = μn−1+μn = μn+μ1, Eq. 53
becomes fi = 2π/n, that is, the spacings among robots are
equal. Then Eq. 57 becomes
⎧
⎪⎨

⎪⎩

ϕ̃1 = ϕn+ϕ2−2π
2 ,

ϕ̃i = ϕi−1+ϕi+1
2 , i = 2, ..., n − 1,

ϕ̃n = ϕn−1+ϕ1+2π
2 .

(58)

Combined with Eqs. 14, 15 and 56, they can solve the
dynamic circumnavigation control problem with equal
spacings.

Remark 7 It is interesting to note that when there are only
two robots, i.e., n = 2, the subscripts of robots satisfy
i− = i+. Equation 57 is simplified to ϕ̃1 = ϕ2 − π, ϕ̃2 =
ϕ1 + π , and Eq. 53 becomes fi = π, i = 1, 2. This
indicates that the formation spacings are fixed no matter
how robots’ utilities change (except 0); these two robots will
always position on the ends of the diameter of the circular

trajectory. Furthermore, A and b degrade to A =
[
0 1
1 0

]

and b =
[ −π

π

]

respectively.

Remark 8 In the definition of the dynamic circumnaviga-
tion control problem based on utilities, Eq. 49 contains the
utilities of all robots. However, it can be seen from Eq. 57
that each robot only needs to obtain the utilities of its two
neighbouring robots. In addition, when a robot joins or
leaves the formation, according to Eqs. 56 and 57, the spac-
ings among robots will adjust dynamically through local
update of the utilities of neighbouring robots. To sum up, the
dynamic circumnavigation control algorithm does not rely
on the number of robots, and it is able to dynamically adjust
the formation spacings dependent on the change of utili-
ties. The control algorithm is distributed, and in this way, it
achieves the global aim described by Eq. 49.

Note that when μθ = 0, the robot rθ has quited from the
circumnavigation process, and therefore the communication
topology has changed. The change of communication
topology means the indices of the neighbouring robots alter
accordingly. When μ2 = 0, for example, the neighbouring
robots of r3 change from r2 and r4 to r1 and r4. In this way,
the circumnavigation control algorithm based on utilities
can well adapt to the cases where there are local variations
on utilities or where robots join or quit from the formation.
The formation spacings can be adjusted dynamically based
on the selected formation guideline, achieving distributed
formation reconfiguration.

Similarly, under Formation Guideline 2, the dynamic
circumnavigation control problem based on utilities can also
be solved.

Proposition 1 Consider a multi-robot system with robot
dynamics described by Eq. 2, by introducing the control
input vi = q̇i = (ρ̇i , ϕ̇i , żi )

T into Eq. 7, where ρ̇i and żi are
given by Eqs. 14 and 15 respectively, and ϕ̇i is given by

ϕ̇i = ω∗ + kϕ(ϕ̂i − ϕi), (59)

where

ϕ̂i =

⎧
⎪⎨

⎪⎩

ϕi− + �i + �i−

μi + μi−
μi− , i = 2, 3, . . . , n,

ϕi− + �i + �i−

μi + μi−
μi− − 2π, i = 1,

(60)

and μi, i = 1, . . . , n, is the utility of the robot ri and it
is piecewise constant. If the f function is shown as Eq. 55
(Formation Guideline 2), the dynamic circumnavigation
control problem based on utilities encoded by Eqs. 48, 49,
50 and 51 can be solved with exponential convergence
speed.

Proof The proof is similar to that of Theorem 4, so it is
omitted here.

It should be noted that Theorem 4 also applies to the
circumnavigation process under Formation Guideline 1
and 2.

6 Circumnavigation Control with External
Perturbations

In practice, external perturbations are inevitable. These
perturbations can come from sensor measurement noise,
environmental disturbances, etc. In this section, these
perturbations are considered in a general form, denoted by

d = [
d1 . . . dn

]T
. It is reasonable to assume that the

perturbations are bounded in the sense that

||d||1 < dM, (61)

where dM > 0. Regardless of the specific form of
the perturbations, they are introduced into the cylindrical
control input as an additional additive term, namely vi =
q̇i − di . For simplicity, the new control algorithm to reduce
the effect of external perturbations is derived for the static
circumnavigation control problem. However, it turns out to
be very similar for the dynamic circumnavigation control
problem, and thus it is omitted here. First we define the sgn
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function as: if x > 0, sgn(x) = 1; if x < 0, sgn(x) = −1;
if x = 0, sgn(x) = 0.

Theorem 5 Consider a multi-robot system with robot
dynamics described by Eq. 2, by introducing the control
input vi = q̇i = (ρ̇i , ϕ̇i , żi )

T into Eq. 7, where

ρ̇i = kρ(ρ∗ − ρi) − k1sgn(ρ
∗ − ρi) − di, (62)

żi = −kzzi − k2sgn(−zi) − di, (63)

ϕ̇i = ω∗ + kϕ(ϕ̄i − ϕi) − k3sgn(ϕ̄i − ϕi) − di, (64)

where di is the external perturbation satisfying Eq. 61, and
ki < −2dM, i = 1, 2, 3. kρ , kz and kϕ are positive gains,
and ϕ̄i is shown in Eq. 17. Then the static circumnavigation
control problem with arbitrary spacings can be almost
solved in the sense that Eqs. 9, 10 and 12 are satisfied
asymptotically.

Proof Denote ρ = [
ρ1 . . . ρn

]T
and eρ = ρ∗1 − ρ. We

first prove that ρ → ρ∗1. Define a Lyapunov function
candidate as V (eρ) = 1

2e
T
ρ eρ . Take the derivative of V with

respect to time we can obtain:

V̇ (eρ) = −eT
ρ ρ̇

= −kρeT
ρ eρ + k1e

T
ρ sgn(eρ) + eT

ρ d

≤ −kρeT
ρ eρ + (k1 + ||d||1)||eρ ||1

≤ −kρeT
ρ eρ − dM ||eρ ||1 ≤ 0. (�)

The equality is taken when eρ = 0. Therefore, it suffices to
prove that ρ → ρ∗1. The procedure to prove that zi → 0
is the same and thus it is omitted here. Next we show that
�i → �d

i . We use the same notations eϕ , P , Q, Lp as in
Section 4.3. λ = λM(Q) denotes the largest eigenvalue of
Q, which is positive. Therefore, ėϕ = −Lpϕ̇ = −kϕLpeϕ+
k3Lpsgn(eϕ)+Lpd. Define a Lyapunov function candidate
as V (eϕ) = eT

ϕ P eϕ , so it follows that

V̇ (eϕ) = ėT
ϕ P eϕ + eT

ϕ P ėϕ

(∗)= −kϕeT
ϕ Qeϕ + k3sgn

T (eϕ)Qeϕ + dT Qeϕ

(∗∗)≤ −kϕeT
ϕ Qeϕ + k3n(λ + 1)||eϕ ||1

+(n(λ + 1) + 1)||d||1||eϕ ||1
≤ −kϕeT

ϕ Qeϕ−(nλ + n−1)dM ||eϕ ||1≤0, (�)

where the equality is taken when eϕ = 0. Therefore,
it suffices to prove that ϕ → ϕ̄, and following the
discussion in the previous sections, it follows that �i →
�d

i . Note that (∗) is due to the fact that PLp =
LT

pP is symmetric as shown in Eq. 32. So, for example,

sgnT (eϕ)LT
pP eϕ + eT

ϕ PLpsgn(eϕ) = sgnT (eϕ)(LT
pP+

PLp)eϕ = sgnT (eϕ)Qeϕ . (∗∗) is due to the following
inequality:

sgnT (eϕ)Qeϕ = sgnT (eϕ)(Q + I )eϕ − sgnT (eϕ)eϕ

(†)≤
√

eT
ϕ (Q + I )eϕ

×
√
sgnT (eϕ)(Q + I )sgn(eϕ) − ||e − ϕ||1

≤ λM(Q + I )||sgn(eϕ)||2||eϕ ||2 − ||eϕ ||1
(‡)≤ (λ + 1)

√
n
√

n||eϕ ||1 − ||eϕ ||1
≤ n(λ + 1)||eϕ ||1.

Note that (†) is due to the Hölder’s inequality (since
xT (Q + I )y is the inner product) [6]. (‡) is justified by the
equivalence between the first and the second norm and the
fact that ||sgn(eϕ)||2 ≤ √

n. Similarly, dT Qeϕ = dT (Q +
I )eϕ − dT eϕ ≤ λM(Q + I )||d||2||eϕ ||2 + ||d||1||eϕ ||1 ≤
(n(λ + 1) + 1)||d||1||eϕ ||1.

Remark 9 Using the new control algorithm, only Eqs. 9, 10
and 12 are satisfied asymptotically. In fact, ϕ̇i → (w∗ −
di), which is directly affected by the external perturbation.
However, assume that w∗ � ||d||, the effect of the
perturbation is negligible. In addition, the less conservative
choices of ki, i = 1, 2, 3 are ki < −dM, i = 1, 2 and
k3 < −(1 + 1

n(λ+1) )dM , which can be easily derived from
Eqs. (�) and (�).

Remark 10 In order for Eq. 11 to be satisfied as well,
a disturbance observer can be designed to eliminate
the disturbance from the control input [2]. Suppose the
disturbance is generated by a linear exogenous system

ξ̇ = Aξ

d = Cξ, (65)

where A and C are n by n matrices and ξ ∈ R
n. It is

assumed that the system described by Eq. 65 is neutral
stable and (A, C) is observable. The control algorithm is
then designed as

ϕ̇ = w∗1 + kϕ(ϕ̄ − ϕ) + d̂ − d,

where d̂ is the estimated value of the disturbance d. d̂ is
generated by the following disturbance observer:

ż = (A − LC)(z + Lϕ) − L(w∗1 + kϕ(ϕ̄ − ϕ) − d̂)

ξ̂ = z + Lϕ

d̂ = Cξ̂

where L is chosen such that A − LC is Hurwitz.
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7 Simulation and Experiment Results
and Analysis

This section presents the simulation and experiment results
for both static and dynamic circumnavigation problems,
which further validate the theory presented above.

7.1 Results for Static Circumnavigation

7.1.1 Simulation with Simulink

To validate the effectiveness of the control law proposed
in this paper, we carry out two simulations with Simulink,
taking into account the possible effects of different
parameters (Table 1). Different from most of the previous
studies, robots and the target move in the three dimensional
space instead of the two dimensional space. The desired
spacings of these two simulations are the same, as shown in
Fig. 4. For better explanation and intuitive demonstration,
we use a line to connect the centers of robots at the same

time and the resultant geometry is called the formation
shape.

In view of Eq. 7, the orientation of the body reference
frame Rb and its derivative ṘT

b should be calculated or
measured by robots. However, on one hand, Rb and ṘT

b

are very difficult to obtain and they might not be useful
in practice if we only consider the entrapment application
in real world scenarios. On the other hand, it is beneficial
to generate complex trajectories if these variables can
be specified manually. Therefore, in the simulations, we
manually specify them and assume that robots are informed
of these two values at every time step. We also assume that
the velocity of the target ṗb is known by all the robots. The
results of Simulation I and Simulation II are presented in
Figs. 5 and 6 respectively. The red, green and blue lines
connecting four robots indicate the formation shapes at the
beginning, the middle and the end of the circumnavigation
process. The dashed lines originating from robots represent
their trajectories. It can be seen that the circumnavigation
error signals converge to zero exponentially, and the desired
spacings among robots can be finally achieved. Although
the two simulations involve only four robots, and the desired
spacings are the same, it should be noted that the control
law can be extended to a system with any number of robots,
and the desired spacings can be specified arbitrarily as long
as they satisfy Eq. 8.

7.1.2 Experiment with Soccer-Playing Robots

The hardware platforms used in this experiment are
four soccer-playing robots [3, 19]. Since they have
omnidirectional movement abilities (with custom-made
omnidirectional wheels), and they can reach any given
valid velocity almost instantly (due to the commercial
motor controller boards), their dynamics can be regarded
as the first-integrator model given in Eq. 2. In addition, an
omnidirectional vision system is equipped on each robot
with algorithms for self-localization and the recognition
of a yellow football [8]. The position and velocity of the
robot itself and those of the football are obtained by their

Table 1 Different and common parameters used in Simulation I and Simulation II

Simulation I Simulation II

Different parameters ṗb = [0 20 30]T , Rb(0) = Rot(X, π/4), , ṗb = [0 0 0]T , Rb(0) = I3,

ωb = [0 0 0]T ωb = [0 0.5 0]T ,
Common parameters ρ∗ = 200, w∗ = 1, �d = [ π

3
π
3

2π
3

2π
3 ]T , kρ = 1, kϕ = 2, kz = 1,

pb(0) = [100 50 30]T , p1(0) = [118 59 -100]T , p2(0) = [8 300 40]T ,
p3(0) = [-87 40 80]T , p4(0) = [-200 -133 100]T .

In this table, the length unit, angle unit and time unit are cm, rad and s respectively. ṗb is the target’s velocity, which is expressed in the world
reference frame W . Rb(0) is the initial orientation of the body reference frame B. Rot(X, π/4) means rotating the coordinate frame’s X-axis by
π/4. ωb is the angular velocity vector, of which the components represent angular velocity about the X-, Y- and Z-axis of frame B respectively
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Fig. 5 Simulation I for the static circumnavigation control problem. a–c are the error signals which represent the curves for ρ∗ − ρi , ω∗ − ϕ̇i and
−z respectively. d plots the spacings among robots; e–g are robots’ trajectories projected on the plane XSY , XSZ and YSZ respectively

own on-board omnidirectional vision systems. Moreover,
robots are only allowed to receive information from its
neighbouring robots. The desired spacings among robots
are the same as those specified in the above simulation.
Specifically, the target (football) is dragged by a Turtlebot.1

In this experiment, the circumnavigation radius is 200 cm,
the angular speed is 0.5 rad/s, kρ = 2 and kϕ = 2.5.

The experiment is illustrated in Fig. 7 and the corre-
sponding data plots are shown in Fig. 8. The pink dots in
Fig. 8d are the perceived positions of the target by Robot 1

1http://www.turtlebot.com/

(for simplicity, perceived positions by other robots are not
plotted). This shows that there is much noise existing in the
perceived positions of the target, which affects the perfor-
mance of the circumnavigation process. From Fig. 8 it can
be seen that despite the information noise, the curves for
circumnavigation radius, angular speed and spacings only
fluctuate around the desired values lightly. Considering that
there are measurement errors of the football position (max-
imum error 20 cm) and self-localization (maximum error
20 cm), and that the robot’s kinematics model is only an
approximation of the first-integer model, the errors of the
circumnavigation radius, angular speed and spacings are

http://www.turtlebot.com/
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Fig. 6 Simulation II for the static circumnavigation control problem. a–c are the error signals which represent the curves for ρ∗ −ρi , ω∗ − ϕ̇i and
−z respectively. d plots the spacings among robots; e–g are robots’ trajectories projected on the plane XSY ; XSZ and YSZ respectively

acceptable. Therefore, the control algorithm for the static
circumnavigation control problem is effective, which means
the multi-robot system is able to realize the circumnaviga-
tion process with arbitrary spacings. Note that due to the
limitation of the experiment platform, only ground vehicles
are used. However, the control algorithm is also applicable
for the three-dimensional case.

7.2 Results for Dynamic Circumnavigation

Although it is claimed that formation guidelines correspond
to specific physics backgrounds, in the experiment, we do

not try to reproduce the specific scenarios. This is because
the emphasis here is the stability of the control algorithm,
and how the global formation spacings react dynamically
to the variation of the utilities. In the experiments, robots’
utilities and the variation of the utilities are manually
specified. Readers can think of an increase in the utilities
as improvement of robots’ locomotion capabilities, while
the decrease means the deterioration of performance due
to the worn-out or damage of robots. Note that formation
guidelines only reflect the relationship between the utilities
of robots and the final formation spacings; it does not
determine the utilities of robots. The first experiment is
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Fig. 7 Real robot experiment for the static circumnavigation control
problem. The yellow lines connecting thev centers of robots indicate the
formation shapes intuitively. The football in themiddle of the field is the

target to be encircled, which is marked by a red circle. The football is
dragged by a Turtlebot, so its positions are varying during the process.
a–d show the robots’ positions at 0, 5, 32 and 51 second respectively

Fig. 8 Data plots for the
real-robot experiment. a–c are
the plots for ρ∗ − ρi , ω∗ − ϕ̇i

and the spacings respectively. d
shows the robots’ trajectories on
the XSY plane. The red, green
and blue lines connecting four
robots indicate the formation
shapes at 0, 30 and 54 second
respectively. The dashed lines
originating from robots
represent their trajectories
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a simulation with Simulink and the other is a real-robot
experiment using soccer-playing robots.

7.2.1 Simulation with Simulink

In this simulation, four robots are used and Formation
Guideline 2 is adopted. For demonstrating the dynamic
change in formation spacings when robots’ utilities vary,
the utilities of the robot r1, r3 and r4 remain 1 throughout
the whole circumnavigation process, while the utility of the
robot r2 varies according to a piecewise constant function.
That is μ2 = 2, 0 ≤ t < 5; μ2 = 0, 5 ≤ t < 10; μ2 =
0.5, t ≥ 10. For convenience, the three time ranges are
denoted by Stage 1, 2 and 3 respectively. Note that at Stage
2, the utility of the robot r2 is zero, which means it does
not continue the circumnavigation process and it will retreat
to a corner. In this simulation, robots’ initial positions are
randomly chosen. Simulation parameters are ρ∗ = 2 m,
w∗ = 1 rad/s and kϕ = kρ = kz = 2.

The circumnavigation process is illustrated in Fig. 9.
The black dot in the center is the target to be encircled.

Dashed lines connecting four robots represented by red,
green, blue and yellow dots indicate the formation shape
and the communication topologies intuitively. Dashed lines
connecting the target and the robots demonstrate the
circumnavigation radii. At Stage 1, four robots gradually
form a stable formation and circumnavigate the target (see
Fig. 9a). Then r2 leaves the formation at Stage 2 (see
Fig. 9b). At the beginning of Stage 3, r2 joins the formation
(see Fig. 9c). Note that the communication topologies have
changed from Stage 1 to Stage 2 and from Stage 2 to Stage
3. Four robots form a stable formation again with different
spacings in comparison with Stage 1 in the end (see Fig. 9d).

The data plots of the simulation are shown in Fig. 10.
Since r2 quits from the formation during Stage 2, the
corresponding data is not plotted. It can be seen from
Fig. 10 that although the changes of the utility of
r2 lead to the deviation of curves from the expected
values, the circumnavigation error signals converge to zero
exponentially during the three stages (see Fig. 10a, b and c
resp.). The spacings among robots change according to the
variation of the utilities. However, the spacings converge to

Fig. 9 The simulation with Simulink. a–d show the circumnavigation process at 4.8 s (Stage 1), 8.9 s (Stage 2), 10.3 s (Stage 3) and 13.4 s (Stage
3) respectively
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Fig. 10 The data plots of the simulation. a–c show the error signals of
the circumnavigation process. They are the plots for ρ∗ − ρi , ω∗ − ϕ̇i

and −z respectively. d shows the curves of the real spacings and the

desired spacings. The red, green, blue and yellow dashed lines are the
desired spacings for robots r1, r2, r3 and r4 respectively

the desired ones at the end of each stage (see Fig. 10d).
Although the simulation experiment involves only four
robots, it should be noted that the control algorithm only
utilizes the information of neighbouring robots, therefore it
can be extended to a system with any number of robots.

7.2.2 Experiment with Soccer-Playing Robots

In this experiment, four soccer-playing robots are used and
Formation Guideline 1 is adopted. The utilities of robots r1,
r3 and r4 remain 20 throughout the whole circumnavigation
process, while the utility of the robot r2 varies according to
a piecewise constant function. That is, μ2 = 1, (0 ≤ t <

15); μ2 = 20, (15 ≤ t < 30); μ2 = 50, (30 ≤ t <

45); μ2 = 0, (t ≥ 45). For convenience, the four time
ranges are denoted by Stage 1, 2, 3 and 4 respectively. Note
that at Stage 4, the robot r2 quits from the circumnavigation
process as its utility becomes zero. The utilities of the four
robots and the corresponding expected spacings are listed
in Table 2. In this experiment, robots’ initial positions are
randomly chosen. The experiment parameters are ρ∗ = 2
m, w∗ = 0.5 rad/s, kϕ = 2.5 and kρ = 2.

The circumnavigation process is shown in Fig. 11. It
demonstrates the positions of robots at different stages. The
yellow lines connecting each robot’s center indicate the
formation shapes. The football in the middle of the field is
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Table 2 The utilities and the corresponding expected spacings at four
stages

Stage Utilities Expected spacings

Stage 1 [20 1 20 20]T [62 62 118 118]T
Stage 2 [20 20 20 20]T [90 90 90 90]T
Stage 3 [20 50 20 20]T [114 114 66 66]T
Stage 4 [20 0 20 20]T [120 120 120]T

Under Formation Guideline 1, the expected spacings (unit: degree) are
calculated according to robots’ utilities. However, this information is
not needed by robots during the circumnavigation process
aAt this stage, the robot r2 quits from the formation.

the target to be encircled, which is marked by a red circle.
The corresponding data plots are shown in Fig. 12. Since
robots move on the ground, the error plot of −z is omitted.
As for Fig. 12d, the red, green, blue and black solid lines
connecting the centers of robots represent the formation
shapes at Stage 1, 2, 3 and 4 respectively. The dashed lines
originated from robots are their trajectories. Note that since
r2 quits from the formation at Stage 4 (μ2 = 0), the data
related to r2 is not plotted after 45 s.

It can be seen from these figures that at Stage 1, since
the utility of r2 is the least, its neighbouring robots r1 and
r3 decrease their spacings with r2 to compensate for this

Fig. 11 The real-robot experiment. a shows the initial robots’ positions; b–e show robots’ positions at 4 s (Stage 1), 19 s (Stage 2), 39 s (Stage 3)
and 61 s (Stage 4) respectively
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insufficiency (see Fig. 11b or the red solid lines in Fig. 12d).
When it comes to Stage 2, robots form an equal-spacings
formation as their utilities are equal (see Fig. 11c or the
green solid lines in Fig. 12d). Stage 3 is contrary to Stage
1, where the utility of r2 becomes the greatest. Therefore,
its two neighbouring robots increase the corresponding
spacings with it (see Fig. 11d or the blue solid lines in
Fig. 12d). Finally, at Stage 4, r2 quits from the formation
due to its zero utility. The other three robots form a new
communication topology (i.e., excluding the robot r2) and
transform to an equilateral triangular formation as their
utilities are identical (see Fig. 11e or the black solid lines in
Fig. 12d).

In addition, the circumnavigation radii, angular speeds
and formation spacings converge to but fluctuate around
the desired values at each stage (see Fig. 12a, b and c).
Moreover, at the three intersections of the stages (15 s, 30

s and 45 s respectively), the circumnavigation radii and the
angular speeds of robots r1 and r3, the two neighbouring
robots of r2, experience large deviation from the desired
values. However, they converge swiftly afterwards (see
Fig. 12b). Noticeably, at the last intersection (45 s), the
circumnavigation radius and spacings for the robot r1
deviate significantly from the desired values due to the
absence of the robot r2 in the formation, but the errors
diminish rapidly subsequently (see Fig. 12a and c). The
robot r4 is hardly affected as it is not a neighbouring robot of
r2. In Fig. 12d, the black dot at the center is the real position
of the target and the cluster of pink dots are the perceived
positions of the target by r1. This manifests that information
noise increases the uncertainty of the perceived information.
Although there are fluctuations due to the information noise,
the real spacings converge to the expected spacings at each
stage (see Fig. 12c).

Fig. 12 The data plots for the real robot experiment. a and b are the
error signals of the circumnavigation process. They are the plots for
ρ∗ − ρi and ω∗ − ϕ̇i respectively. c is the curves of the real spacings

and the desired spacings. The red, green, blue and yellow dashed lines
are the desired spacings for robots r1, r2, r3 and r4 respectively. d is
the plot of the trajectories of robots on the XSY plane
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Fig. 13 The data plots of the simulation for circumnavigation process affected by some external perturbations. a–c show the plots for ρ∗ − ρi ,
ω∗ − ϕ̇i and −z respectively. d shows the spacing among robots

7.3 Simulation Results for Circumnavigation
with External Perturbations

We simulate the circumnavigation process affected by
some external perturbations as shown in Fig. 13. The
control algorithms (62), (63) and (64) are employed. The
parameters are: ρ∗ = 200, w∗ = 3, kρ = 1, kϕ = 2, kz = 1
and ki = −1 for i = 1, . . . , 4. The external perturbations
are modeled by a sinusoidal wave: di = 0.1 sin(t) for
i = 1, . . . , 4. It can be seen that the results are consistent
with the theoretical analysis.

8 Concluding Remarks and FutureWork

This paper proposes distributed control algorithms for
a heterogeneous multi-robot system to realize both the
static and the dynamic circumnavigation processes in
three dimensional space. There is no assumption that the
robots should be initially placed on a prescribed circle
nor should they splay evenly on the circle. Particularly,
the spacings among robots are either arbitrarily given
or dynamically changing based on robots’ utilities. The
concept of utilities and formation guidelines are first
proposed in this study, and they jointly facilitate the design
of dynamic circumnavigation control algorithm, which is
able to address the issue where robots quit from or join into
the circumnavigation process. The control algorithms are
distributed and applicable for a heterogeneous multi-robot
system of arbitrary size.

Theorem 4 cannot guarantee that robots would not collide
with each other since it assumes that robots are mass points.
Therefore, the collision avoidance problem taking into
account the physical dimensions of robots will be studied in
the future.
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Appendix

Proof of Theorem 4

Proof The proof is similar to that of Theorem 4 except for
some minor changes. First, according to the classical control
theory, ρi and zi will converge exponentially to ρ∗ and 0
respectively. Since μi, i = 1, . . . , n, is piecewise constant,
it is obvious that lim

t→∞fi exists. As before, we define ϕ̃ =
[ϕ̃1 ... ϕ̃n]T and ϕ = [ϕ1 ... ϕn]T , so Eqs. 56 and 57 can be
written into compact forms as ϕ̇ = ω∗1+kϕ(ϕ̃−ϕ), and ϕ̃ =
Âϕ+ b̂, where Â ∈ Mn is shown as Eq. 66, and b̂ ∈ Rn is as
Eq. 67:

Â =

⎡

⎢
⎢
⎢
⎢
⎣

0 μn+μ1
μ2+2μ1+μn

. . .
μ1+μ2

μ2+2μ1+μn
μ2+μ3

μ3+2μ2+μ1
0 . . . 0

...
...

...
...

μn−1+μn

μ1+2μn+μn−1
0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦
. (66)

b̂ = 2π
[ −(μ1+μ2)

μ2+2μ1+μn
0 . . . 0 μn−1+μn

μ1+2μn+μn−1

]T

(67)

During each time period where μi is constant, Â and b̂ are
constant matrix and vector respectively. Similarly, G(Â) is
strongly connected and the error signal is eϕ = −L̂pϕ + b̂,
where L̂p = In − Â, which is the Laplacian matrix of G(Â).
Since L̂p is constant at each time period, the derivative of
eϕ is ėϕ = −L̂pϕ̇. Then eϕ(t) = exp(−kϕL̂pt)eϕ(0) and
lim

t→∞eϕ(t) = wr(−wT
l L̂pϕ + wT

l b̂) = wT
l b̂wr . Let wr = 1

and wl = wL∑
wL

, where the ith entry of wL is

⎡

⎣wLi
= (μi+ + 2μi + μi−)

n∏

j=1,j �=i,i−
(μj + μj+)

⎤

⎦ ,

and
∑

wL
= ∑n

i=1 wLi
. It can be easily verified that wT

l and
wr are the left and right eigenvector of the Laplacian matrix
Lp associated with the zero eigenvalue respectively, and
wT

l wr = 1. Therefore, Eq. 25 becomes lim
t→∞eϕ(t) = 0, or
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lim
t→∞ϕ(t) = lim

t→∞ϕ̃(t). According to ϕ̇ = ω∗1 + kϕ(ϕ̃ −
ϕ), the circumnavigation speed of each robot converges
to the desired angular speed ω∗. In addition, under this
condition, ϕ̃i is replaced by ϕi in Eq. 57 and therefore,
for robots with indices i = 2, ..., n, the equation ϕi =
ϕi− + μi−+μi

μi++2μi+μi−
(�i + �i−) further becomes �i

�i−
=

μi+μi+
μi+μi−

. This means a sequence of equations �n

�n−1
=

μn+μ1
μn−1+μn

, ..., �2
�1

= μ2+μ3
μ1+μ2

. Assuming �1 = k(μ1 +
μ2), k �= 0, we have �i = k(μi + μi+), i = 2, ..., n.
According to Eq. 8, it follows that 2k

∑n
i=1 μi = 2π ,

and hence k = π/
∑n

i=1 μi . Therefore, �i = (μi +
μi+)π/

∑n
i=1 μi = fi(t, μ1, . . . , μn), i = 1, ..., n. So

the expected spacings expressed by Eqs. 49 and 53 can be
achieved.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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