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Abstract
Teams of semi-autonomous robots can provide valuable assistance in Urban Search and Rescue (USAR) by efficiently
exploring cluttered environments and searching for potential victims. Their advantage over solely teleoperated robots is
that they can address the task handling and situation awareness limitations of human operators by providing some level
of autonomy to the multi-robot team. Our research focuses on developing learning-based semi-autonomous controllers for
rescue robot teams. In this paper, we specifically investigate the influence of the operator-to-robot ratio on the performance
of our proposed MAXQ hierarchical reinforcement learning based semi-autonomous controller for USAR missions. In
particular, we propose a unique learning-based system architecture that allows operator control of larger numbers of rescue
robots in a team as well as effective sharing of information between these robots. A rigorous comparative study of our
learning-based semi-autonomous controller versus a fully teleoperation-based approach was conducted in a 3D simulation
environment. The results, as expected, show that, for both semi-autonomous and teleoperation modes, the total scene
exploration time increases as the number of robots utilized increases. However, when using the proposed learning-based
semi-autonomous controller, the rate of exploration-time increase and operator-interaction effort are significantly lower,
while task performance is significantly higher. Furthermore, an additional case study showed that our learning-based
approach can provide more scene coverage during robot exploration when compared to a non-learning based method.
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1 Introduction

In Urban Search and Rescue (USAR), mobile robots can
effectively explore disaster environments with minimum
a priori knowledge about the locations of victims and
scene layout [1, 2]. The majority of past robotic USAR
missions, however, have been based on the utilization of
teleoperated single robots [2–5]. Operators of such robots
have, typically, experienced perceptual difficulties in trying
to understand the 3D cluttered environments via remote

� F. Niroui
farzad.niroui@mail.utoronto.ca

1 Autonomous Systems and Biomechatronics Laboratory,
Department of Mechanical and Industrial Engineering,
University of Toronto, 5 King’s College Rd, Toronto,
Ontario, M5S 3G8, Canada

2 Department of Mechanical and Industrial Engineering,
University of Toronto, 5 King’s College Rd, Toronto,
Ontario, M5S 3G8, Canada

visual feedback [2]. Furthermore, the (single) rescue robots
have experienced task-handling limitations.

Recently, researchers have considered multi-robot teams for
a number of applications, including material transportation
[6], reconnaissance and surveillance [7–13], inspection and
manipulation [14], and USAR missions [4, 15, 16]. It has
been claimed that increased efficiency and system robustness
can be achieved through robot redundancy. However, one of
the main challenges that an operator may face in controlling
a multi-robot team in teleoperation mode is the simultane-
ous control of multiple robots while juggling between their
respective tasks and keeping situational awareness (SA) of
all the robots. Furthermore, time constraints on these tasks
can lead to operator fatigue and decrease in efficiency [17].
Thus, it has been recommended that such multi-robot teams
be given some level of autonomy [4].

The objective of this paper is, thus, to promote the use of
a novel controller with MAXQ hierarchical reinforcement
learning (HRL) deliberation for improved supervision and
control of multi-robot teams in USAR environments. This
is achieved by investigating the operator-to-robot ratio
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when using this novel controller. It is conjectured that the
controller’s efficiency improvement over teleoperation is
amplified as the robot team’s size increases.

MAXQ HRL provides a USAR controller with the
ability to effectively allocate subtasks to robots in order to
complete the overall mission. The approach provides two
primary advantages, when compared to methods currently
in use: (i) the operator can handle a greater number of
robots, without significant performance loss, due to the
controller’s ability to only request human assistance when
a robot is stuck or when there is uncertainty in human
identification; and, (ii) less interaction effort is required by
the operator to control the team.

The overall goal of our learning-based control architec-
ture is to reduce interaction effort—the amount of time
the operator is required to interact with the team [18],
while improving task performance [19]. Past controllers
have mainly been shown to control operator-to-robot teams
with up to 1:12 ratio and require high-level decisions be
made by only the human operators (e.g., [6, 20–26]). Our
architecture, in contrast, uses HRL to learn both high-level
and low-level tasks from the USAR environment in order to
increase performance in autonomous exploration and victim
identification.

2Multi-robot Teams for USAR

Our research in the area of robot-assisted USAR has
focused on the development of learning-based semi-
autonomous controllers and exploration planners [27, 28]
for single robots, as well for non-cooperating [29] and
cooperating [30] multi-robots teams. These controllers
allow operators and robots to share the important tasks of
exploring unknown cluttered USAR scenes and searching
for victims. However, as noted by others and us, in
order to effectively implement such semi-autonomous
controllers for cooperative multi-robot teams, the impact of
increased numbers of robots on system performance must
be investigated [15, 20, 31–33], as well as the effect of task
automation on robot team performance [21–26, 34–37].

2.1 Operator-to-Robot Ratios

The issue of operator-to-robot ratio in USAR environments,
for teleoperated robots, has been investigated by numerous
researchers. In [15], for example, it was shown that task
performance increases as operator control increases from
four to eight robots, but subsequently decreases as the
number of robots is further increased from eight to twelve,
when participants were asked to teleoperate robots in a
simulated USAR environment.

In [31] and [32], the use of live-streaming versus asyn-
chronous video displays, when operators were teleoperating
multi-robot teams, was compared in a simulated USAR
environment. With respect to overall performance, the two
approaches were similar for all groups of robots, with the
peak number of victims being found with eight robots.

Multi-robot team compositions of two operators and 24
robots were investigated in [20], using both teleoperation
and autonomous path planning control modes. It was
shown that the team structure has no significant effect
on the number of victims found, however, teleoperation
exploration time may be longer when each operator
individually controls twelve robots.

In [33], a study was conducted to compare several
different operator-to-robot configurations of teleoperated
multi-robot USAR teams in a simulated environment.
The results showed that the effectiveness of task sharing
increases with an increase in the operator-to-robot ratio.

One of the many challenges a human operator could
face in USAR environments is the simultaneous control of
multiple robots. Thus far, in the literature, it has been shown
that human operators can effectively control up to eight
robots in a teleoperation mode before losses in performance
occur [15, 31, 32]. In order to increase the number of
robots that a single operator can handle, task automation
techniques have been proposed.

2.2 Task Automation for Multi-robot Teams

In order to increase effectiveness of team performance in
USAR missions, numerous high-level and low-level task
automation methods have been investigated [21–26, 34, 38–
41]. In [34], the foraging tasks of a multi-robot team were
investigated to determine which tasks can be automated to
reduce operator workload. Experiments were conducted in
a simulated USAR environment with four, eight and twelve
robots. Two conditions were tested: where operators had full
control over each team of robots, and where operators had
independent control only over the exploration or perceptual
search subtasks. Results showed better performance when
the subtasks were individually performed by the operators,
rather than full control, especially, with increased number of
robots. The overall results supported the automation of the
robot exploration tasks.

In [21], low-level task autonomy was considered.
Namely, a semi-autonomous controller with robot path
planning and navigation autonomy was compared to
teleoperation for a 2:24 operator-to-robot configuration in
a simulated environment. Operators were able to find more
victims using the semi-autonomous controller. Furthermore,
there was a substantial advantage for using autonomous
planning when operators shared control of all 24 robots.
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Techniques have also been developed to assist operators
in forming and managing robot teams [22] as well as
determining or adapting search strategies during USAR
missions [23–26]. For example, in [22], a team management
framework was presented to account for lost, failed, and
new robots in a heterogeneous multi-robot team deployed
in disaster zones. The framework coordinated tasks between
heterogeneous robots, and helped a team reshape itself.
Usage of the framework in a simulated environment showed
that it can increase environment coverage and the number
of victims identified when compared to the case where the
robot tasks and team sizes were fixed.

With respect to search strategies, techniques have been
used to 1) provide a list of potential strategies to an
operator [24], 2) interpret operator strategies to provide
direct commands to the robot team [25], 3) provide feedback
to an operator with respect to which actions he/she should
take while implementing USAR tasks [23], or 4) allow
the robots to complete the tasks on their own and ask
for operator assistance when needed, i.e., when a robot
needed help navigating through rubble piles or was stuck
[26]. Simulation and experimental results have shown that
missions were completed in less time [23, 25] and covered
more terrain [23, 26] when compared to teleoperation or
fully autonomous control.

Managing and controlling a team of robots to explore
cluttered environments while searching for victims can be
difficult for autonomous controllers. The aforementioned
work has shown that different high-level and low-level tasks
can be automated to aid with such missions. However,
humans still need to be directly involved to supplement
the lack of perceptual autonomy and to use brute force
when needed. Therefore, semi-autonomous controllers have
been shown to help reduce workload and, thus, increase the
number of robots an operator can handle. The increased
number of robots in a team has been shown to improve
USAR mission performance in both exploration efficiency
and victim identification. These controllers, though, have
mostly been shown to manage less than 1:12 operator-
to-robot team ratios. In order to further increase the
number of robots an operator can control, the integration
of AI-based techniques should be considered to assist in
determining which tasks should be automated and when
during deployment.

2.3 AI-Based Approaches for Semi-autonomous
Control

Markov Decision Process (MDP) based techniques have
been proposed for semi-autonomous control in applications
including multi-agent UAV navigation [35, 36] and single-
vehicle path planning [37]. In [35] and [36], a Mixed
Markov Decision Process (MIMDP) approach was utilized,

which was created from two MDP models—one for the
autonomous system and one for the supervision unit. The
approach allowed the autonomous system to decide what
actions to take and when the supervision unit should
be requested and control transferred to it. The MIMDP
approach, however, was only implemented for a single
UAV problem, with experiments focusing on confirming the
making of requests by the agent to an operator. In [36], a
human-help provider MDP was presented for the control of
UAVs by providing three different help requests to operators
ranging from critical to non-critical. The system was tested
with 1-15 UAV agents and 1-3 operators to determine how
many requests from the agents were treated by the operators.

In [37], a Transfer of Control Partially Observable
Markov Decision Process (TOC POMDP) was used for the
task of semi-autonomous path planning between a driver
and a vehicle. Namely, the TOC POMDP was used to
determine the transfer of control actions. The capability
of the system was compared to both human drivers and
autonomous vehicles using data from the Open Street Map
in order to have a vehicle reach a goal destination. After
100 trials, the TOC POMDP system always reached the goal
destination in similar time as the human driver, while the
autonomous system took longer and at times failed to reach
the goal.

The USAR problem addressed herein differs from the
problems discussed above in that it involves more than just
navigation or path planning. Namely, the problem at hand
comprises three subtasks: exploration, victim identification,
and navigation in cluttered environments. This significantly
increases the state space of the USAR problem, limiting
the use of traditional modeling techniques, such as MDPs,
POMDPs, or DCOPs (Dynamic Distributed Constraint
Optimization Problems). The main drawback of these
traditional techniques is that they often fail to scale up to
large numbers of subtasks and agents.

Furthermore, both MDPs and POMDPs suffer from the
curse of dimensionality, where state parameter dimensional-
ity can increase exponentially with team size [42]. MAXQ,
on the other hand, utilizes a hierarchical organizational
structure by decomposing an overall task into a finite set of
subtasks recursively, where each subtask is modelled as a
MDP. MAXQ uniquely supports temporal, subtask and state
abstraction, which can significantly reduce the number of
state variables needed and can speed up the overall learn-
ing process for real-world problems [43]. Also, it has fewer
constraints on its policies (i.e., mapping of states to possible
actions) and, thus, requires less prior knowledge about the
environment.

In contrast to existing controllers, our hierarchical learn-
ing semi-autonomous controller manages task allocation
between robots and human operators effectively, while
learning from the cluttered USAR environment to increase
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performance in exploration and victim identification. Thus,
allowing higher robot-to-operator ratios without significant
performance loss. The controller is integrated with a user
interface that allows for sharing of information as well as
tasks with the operator. To the authors’ knowledge, no such
learning approaches have been used for multi-robot semi-
autonomous control for cluttered urban search and rescue
applications.

3MAXQHierarchical Reinforcement
Learning for Multi-robot Teams

As abovementioned, herein, we propose the use of a MAXQ
HRL based semi-autonomous controller, developed in our
lab [27–30, 44, 45], to increase the performance of multi-
robot and human operator teams. The fundamental principle
of MAXQ is to decompose the decision-making problem
modeled as an MDP, M0, into a finite set of smaller
and easier to resolve subtasks, M1, M2, · · ·, Mn, and to
derive the optimal policies for these subtasks in order
to achieve a hierarchical optimal policy for the overall
task, M0. The purpose of MAXQ learning is to determine
this hierarchical optimal policy in order to maximize the
expected cumulative reward for M0, defined as the action-
value function, namely the Q function. For every subtask,
Mp, a policy, πp, that maps all possible states of the
subtask to a child task is defined. The child task can be
either a primitive action or another subtask to execute.
Subsequently, the hierarchical optimal policy, π , is the set
containing all the policies for all subtasks. More details on
MAXQ learning can be found in [43].

The MAXQ task hierarchy for the multi-robot USAR
problem at hand is presented in Fig. 1. Herein, sub-scenes
are defined as isolated regions of the USAR environment.
The Root task represents the overall USAR problem of
scene exploration and victim identification. Cooperation is
achieved by providing the robots with their own copy of
the task hierarchy while sharing the same common Root

task.
The Root task is divided into five different hierarchical

subtasks: Search Sub-scene (SSSi , where i represents the
index of the sub-scene), Navigate to Unvisited Regions
(NUR), Victim Identification (V I ), Navigate (NG), and
Human Control (HC). The purpose of the SSSi subtask
is to allocate rescue robots to the different sub-scenes to
explore. The primitive action ExitSub-scene(ESS) is used
to terminate the SSSi subtask and guide a robot out of a
sub-scene. Once robots are deployed into their designated
sub-scenes, the NUR and V I subtasks are used to allow
them to cooperatively explore unvisited regions within these
sub-scenes and identify potential victims, respectively. For
the NUR subtask, the primitive action Standby is used to

end the exploration of a sub-scene for all the corresponding
robots in that sub-scene. For the V I subtask, when a victim
is identified, the primitive action T ag is executed to tag
the victim’s location. While exploring the environment in
a sub-scene and looking for victims, the lower-level NG

subtask can be called from either theNUR and V I subtasks
to allow a robot to perform local navigation and obstacle
avoidance, which utilizes 2D grid map information of the
robot’s surrounding cells [27]. The primitive actions θ , F ,
and B, allow a robot to rotate, move forward, and move
backward, respectively. For example, the NUR subtask can
call the NG subtask to locally navigate unexplored regions,
while the V I subtask can call the NG subtask to move
towards a potential victim.

The HC subtasks are used to request for human
assistance and allow the operator to intervene when a
robot cannot execute any of the aforementioned subtasks
autonomously. The Low Level HC subtask allows an
operator to take over control of the NG subtask, and the
High Level HC subtask allows an operator to take control
of the NUR and V I subtasks. In order to minimize the
workload of the user, MAXQ only requests for human
assistance of a subtask when required (i.e., when the robot
is stuck or there is uncertainty in victim identification).

The MAXQ state function of the Root task is defined as
SRoot (V , SS, MG): V represents the presence of potential
victims; SS denotes the sub-scene status (i.e., unexplored,
being explored, or explored); and, MG is a collection of 2D
occupancy maps of USAR sub-scenes.

For the SSSi subtask, the state function is defined
by SSSSi

(Vi, LRobot , MG,i, AO,SSSi
), where LRobot =

{L1
Robot , L

2
Robot , · · ·, Lk

Robot } denotes the robots’ locations
within the same sub-scene SSi with respect to the
starting location of the first robot, which is defined as
the origin of the local coordinate frame, and number
of robots deployed in the same sub-scene is depicted
by k. MG,i is the 2D occupancy map of the sub-
scene obtained by merging 2D maps generated by each
individual robot, j , deployed into the same sub-scene.

AO,SSSi
=

{
A1

O,SSSi
, · · ·, Aj−1

O,SSSi
, A

j+1
O,SSSi

, · · ·, Ak
O,SSSi

}

represents the other robots’ actions/subtasks.
The state function of NUR is defined as

SNUR(LRobot , MG,i, AO,NUR,i), where AO,NUR,i ={
A1

O,NUR,i, · · ·Aj−1
O,NUR,i, A

j+1
O,NUR,i, · · ·, Ak

O,NUR,i

}

represents the other robots’ actions/tasks while coop-
eratively executing the NUR subtask with Robotj . A
direction-based exploration strategy based on frontiers is
implemented to effectively explore a sub-scene utilizing the
3D cluttered terrain information of the environment in this
subtask [27].

The state function of the VI subtask is
SV I (L

j
V/Robot , M

j
G,i), where the potential victim’s location
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Fig. 1 MAXQ task hierarchy
[27]

is marked as L
j
V/Robot in the scene. When the primitive

action T ag is executed, the victim’s location is tagged
within M

j
G,i .

The state function of the NG subtask is
SNG(C

j
l , D

j
E, D

j
xy, LV/Robot ), where Robotj ′s surround-

ing cells C
j
l , l = 1 to 8, can be categorized according to the

depth profile informationD
j
xy of the rubble pile in the robot’s

surrounding environment; the desired exploration direction
(determined by NUR) is depicted by D

j
E . The primitive

actions, rotate Robotj by an angle (θ ), and move Robotj

forward (F ) or backwards (B), are determined by the status
of the robot’s surrounding cells and sent to the robot’s
low-level controller to execute into motion commands.

MAXQ decomposes the Root task into a finite set of
subtasks or primitive actions recursively. In a MAXQ task
hierarchy, the possible states of each task are mapped to a
child (either a primitive action or another subtask) through
a policy π . In the proposed MAXQ task hierarchy, the Q
value (action-value function) for the Root task is defined as
follows [44]:

Q(Root, s, SSSi) = V (SSSi, s) +C(Root, s, SSSi), (1)

where V (SSSi, s), the projected value function of execut-
ing the SSSi subtask in state s; and C(Root, s, SSSi), the
completion function representing the discounted cumula-
tive reward of executing the SSSi subtask, can be defined
as:

V (SSSi, s) = Q
(
SSSi, s, πSSSi

(s)
)
, and (2)

C (Root, s, SSSi) =
∑

s′∈SRoot ,N

{
PRoot

(
s′, N |s, SSSi

)
γ N

Q
(
Root, s′, πRoot (s

′)
)}

, (3)

where πSSSi
∈{ESS, NUR, V I } and πRoot∈

{SSS1, · · ·, SSSn} represent the policies for the SSSi sub-
task and Root task, respectively. SRoot is the state function
of the Root task, γ is the discount factor and N denotes
the number of transition steps from state s to the next state
s′. PRoot is the probability transition function for the Root

task.
The action-value function of the Root task is recursively

decomposed into the summation of action-value functions
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of its subtasks. For example, the action-value function for
SSSi can be further decomposed as follows:

Q(SSSi, s,ESS) = V(ESS, s) + C(SSSi, s,ESS),

Q(SSSi, s,NUR) = V(NUR, s) + C(SSSi, s,NUR),

Q(SSSi, s,VI) = V(VI, s) + C(SSSi, s,VI), (4)

where V (ESS, s), V (NUR, s), and V (V I, s) are
the projected value functions and C (SSSi, s, ESS),
C (SSSi, s, NUR) and C (SSSi, s, V I) are the completion
functions. It should be noted that ESS is a primitive action
and its projected value function is defined by:

V (ESS, s) =
∑

s′P(s′|s, ESS)R(s′|s, ESS), (5)

where P and R represent the probability transition function
and the expected reward function, respectively. The action-
value functions for the remaining subtasks can be defined in
a similar manner.

When multiple robots are deployed to search the exact
same sub-scene, each robot first has its own action-value
functions and receives rewards for its own contribution to
the relevant subtasks. This information is, then, utilized
with similar information from the other robots in the sub-
scene in order to determine the overall action-value function
for the corresponding subtask. Cooperative learning occurs
by each robot considering the actions of the other robots
while updating its own projected value and completion
functions. For example, when a sub-team of k rescue robots{
Robot1i , · · ·, Robotki

}
cooperatively search sub-scene i,

the projected value function and completion function for
Robot

j
i are defined by:

V j
(
SSSi, s, Ao,SSSi

) = Qj
(
SSSi, s, Ao,SSSi

, πSSSi

)
, (6)

Cj
(
Root, s, Ao,Root , SSSi

)

=
∑

s′∈S,N

⎧⎨
⎩

PRoot

(
s

′
, N

∣∣∣ s, SSSi

)
γ N

Qj
(
Root, s′, Ao,Root , πRoot (s

′
)
)

⎫⎬
⎭, (7)

where Al
o,SSSi

∈ {NUR,V I,ESS} and

Al
o,Root∈ {SSS1, · · ·, SSSn} , with (l = 1, · · ·, k;l �=j).
The projected value functions and completion functions

are updated on-line. The projected value function for
Robot

j
i executing primitive action ESS in state s is updated

by:

V
j

t+1

(
ESS, s, Ao,SSSi

) = (1−α) · V
j
t

(
ESS, s, ,Ao,SSSi

) +α · r

k
,

(8)

where α is the learning rate, t and t+1 represent the
time instants when the corresponding value and completion
function are determined, and r represents the total
real-valued reward for searching sub-scene SSi . Herein,

Al
o,SSSi

= ESS(l = 1, · · ·, k;l �=j) since all the robots
cooperatively searching the same sub-scene terminate the
subtask simultaneously.

The completion functionCj(SSSi, s, Ao,SSSi
, NUR) for

Robot
j
i is defined by:

Cj
t+1(SSSi , s,Ao,SSSi

,NUR) = (1 − α) · Cj
t(SSSi , s,Ao,SSSi

,NUR)

+α · γ N · {Cj
t (SSSi , s

′,Ao,SSSi
, α∗)

+Vj
t(α

∗, s′, Âo,SSSi
)}, (9)

where Âo,SSSi
represents the subtasks that the other robots

will execute in state s′. The greedy action a∗ is defined as:

a∗ = argmaxa′
{
C̃

j
t

(
SSSi, s

′, Âo,SSSi
, a′)

+V
j
t

(
a′, s′, Âo,SSSi

)}
, (10)

where a′∈{ESS, NUR, V I }. C̃
j
t is a completion function

only used to determine the locally optimal policy for subtask
SSSi , which is updated by:

C̃
j
t+1(SSSi , s,Ao,SSSi

, α) = (1 − α) · C̃j
t(SSSi , s,Ao,SSSi

, α)

+α · γ N · {R̃j
(s′)

+C̃
j
t(SSSi , s

′, Âo,SSSi
, α∗)

+Vj
t(α

∗, s, Âo,SSSi
)}, (11)

where the pseudo-reward R̃j
(
s′) indicates how desirable

the terminal state s′ is.
The action-value function for each robot in the sub-team

is, then, used to determine the action-value function for all
robots in the sub-team:

Qsub−team
(
SSSi, s, πSSSi

)

=
k∑

j=1

{
Qj

(
SSSi, s, Ao,SSSi

, πSSSi

)}
. (12)

MAXQ recursively executes the learned policies for each
subtask in the task hierarchy shown in Fig. 1. Due to state
abstraction, the task hierarchy can be scaled-up to address
problems with large numbers of sub-scenes and robots as
well as different size environments.

The reward system used herein for MAXQ is based
on our previous work, Table 1, [30]. Positive rewards
are given to encourage transitions from a robot’s current
state to desirable states. Negative rewards are given when
a transition is made from a robot’s current state to an
undesirable state. The reward values are chosen based on
two criteria: (1) the rewards should encourage transitions
from the robot’s current state to desirable states, and to avoid
transitions to undesirable states, and (2) potential benefits
and costs should be used to determine the magnitudes of
the rewards in order to promote convergence to optimal
policies. For example, successfully exiting an explored
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Table 1 MAXQ transition rewards for multi-robot USAR [30]

Subtask Robot state transition Reward

Root The mission is completed +100

successfully

Search Sub-scene Exit a sub-scene after it has been +50

successfully explored

Search Sub-scene Exit a sub-scene when there are −10

still accessible unknown cells.

Navigate to Exit into Standby after exploring +10

Unvisited all unvisited regions in the sub-scene

Regions

Navigate to Exit into Standby when there are −10

Unvisited still accessible unvisited regions

Regions

Victim Tag a victim correctly +10

Identification

Victim False identification by tagging −10

Identification an object that is not a victim

Navigate Move into an unvisited region in +15

the desired global exploration

direction

Navigate Avoid an obstacle +10

Navigate Collide with an obstacle, −20

a victim or another robot in

the team

Navigate Repeatedly revisit an explored −1

region

Human Control Human Control is requested +10

when necessary

Human Control Human Control is unnecessarily −10

requested

sub-scene is given a positive reward of +50. However, if
the sub-scene is exited prior to all accessible unknown cells
being explored, a negative reward of −10 is given.

The MAXQ semi-autonomous controller was trained
for multi-robot teams. The training results for a team

of ten robots are presented in Fig. 2. A single trial
consists of a group of robots exploring one environment
with multiple sub-scenes. An episode is a single primitive
action for one robot. The results show convergence after
approximately 407,697 episodes (20 trials). During the
USAR experiments, the trained model is updated on-line
to adapt to new unknown simulated USAR environments.
Therefore, through learning, MAXQ determines what
subtasks to select and what actions to take in specific states
in order to maximize the cumulative rewards for the overall
task.

Our implementation of the semi-autonomous controller
allows the operator to provide more than one primitive
action when the controller requests for help. Actions by
the operator are recorded into the existing 2D occupancy
map. When the operator hands back control over to the
semi-autonomous controller, the latter learns from the
information gathered by the operator. This provides a
robust approach in searching USAR scenes with human
assistance.

3.1 An Example Scenario

Let us consider the scenario where one robot Robotj is
deployed to search one sub-scene at the top-level. Also,
let us assume that in State s, some sub-scenes have been
explored or are being explored by one or more robots while
the remaining sub-scenes are unexplored, e.g., Sub-scene
SSi is unexplored. Following the learned policy for the
Root task, Subtask SSSi is selected. In order to compute the
value function for the Root task in the aforementioned State
s, the action-value function for executing Sub-task SSSi is
calculated. Upon the completion of the Sub-task SSSi , the
robot is given a real-valued reward of +50 when it exists the
sub-scene. When all sub-scenes have been searched by the
robot team, a pseudo-reward of +100 is given to the overall
team at the Root task.

While the robot executes the Sub-task SSSi , one of the
lower-level sub-tasks, NUR or V I , is selected according to
the learned policy for the sub-task SSSi . For example, when

Fig. 2 Cumulative reward
received per episode in each trial
for 10 robots
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unvisited regions are detected in the sub-scene, the Sub-task
NUR is selected. The robot is given a real-valued reward
of +10 for completing the Sub-task NUR and exiting into
Standby.

In order to execute the Sub-task NUR, the lower-
level Sub-task Navigate is called. Let us assume that
the cells immediately surrounding the robot consist of a
non-climbable cell in front, and open cells to the right,
left and back. The map of the environment indicates that
there are still unvisited unknown cells in the region to
the right and left of the robot. In such a scenario, the
primitive action rotate is selected since the robot will
receive a real-valued reward of +19 (+10 for avoiding
an obstacle, +10 for moving into an unvisited region in
the desired global exploration direction, and -1 for taking
the rotation action within an already visited cell), which
is higher than the potential rewards for move forward
(−25 for colliding with an obstacle) and move backwards
(+9, including +10 for avoiding an obstacle and −1
for taking the move back action into an already visited
cell).

4 ProposedMulti-robot Single-Operator
System Architecture

Our proposed system architecture for semi-autonomous
control of a multi-robot team is shown in Fig. 3. The
system encompasses both a user interface and a MAXQ
HRL-based deliberation layer. In the teleoperation mode,
the MAXQ HRL-based deliberation layer is not present,
and the user interface is used to directly control the robots
individually.

4.1 Robot Sensors

Each robot is equipped with four 3D sensors used to
provide depth information about its surroundings. This
information is used to classify the terrain as open space,
climbable, or non-climbable obstacles, as well as to build
a map of the cluttered environment. Each robot has an
inertial navigation system (INS) for tracking the robot’s
position and orientation within the environment, and a 2D
camera that provides video streaming to the operator and
is also used for victim identification by the robot. In semi-
autonomous mode, victim identification is implemented by
analyzing 2D images provided by the camera using a skin-
detection method [45]. The victim’s location is, then, tagged
on the map. In teleoperation mode, victim identification is
achieved by the operator using the 2D video stream.

4.2 Mapping

The mapping module receives 3D information of the
USAR environment from the 3D sensors mounted on the
robot, and uses this information to classify the terrain.
Accessible regions are classified as open or climbable
obstacles. Inaccessible regions are classified as non-
climbable obstacles. Terrain classification is accomplished
by fitting a plane to the 3D data using a least-squares
method. The slope of the plane is used to determine whether
regions are traversable (i.e., climbable or non-climbable).
This module also uses the information from the INS to
localize the team of robots within the map.

A 2D occupancy grid map is used to represent
terrain information as well as the locations of the
victims in the environment. Grid cells are labeled as

Fig. 3 System architecture for
multi-robot rescue team in
semi-autonomous mode
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open, climbable, non-climbable, and victim cells. The
accessibility of a cell is determined by the terrain properties
of the USAR environment (more details are provided
in [27]). This approach allows detailed mapping of 3D
cluttered environments by providing information about the
traversability of the cells the robots are exploring. The
2D occupancy map information is sent to both the semi-
autonomous controller and the user interface. The global
map of the USAR scene can be viewed by combining
together all the individual sub-scene maps generated by
each robot in the USAR environment.

In teleoperation mode, terrain classification is not
available. A 2D occupancy grid is provided, only consisting
of visited regions and victim locations.

4.3 MAXQ HRL-Based Deliberation Layer

The objective of introducing the MAXQ HRL technique
(as described in Section 3) into the Deliberation Layer is
to have the robot team learn from its own experiences and
those of an operator in order to effectively perform tasks in
USAR environments [3]. By introducing the MAXQ HRL
technique, a rescue robot team can cooperatively learn and
determine which tasks should be executed at a given time,
and decide whether a rescue robot or an operator should
carry out those tasks to achieve optimal performance. The
root mission task is decomposed into subtasks that are
executed sequentially by individual robots in order to search
the sub-scenes that they are assigned to. However, since
each robot has a copy of the task hierarchy, the team as a
whole implements these subtasks in parallel, as we proposed
in [30].

4.4 User Interface

A user interface was developed for handling communication
between the operator and the multi-robot team in both semi-
autonomous and teleoperation modes, Fig. 4. The interface
comprises three main modules: (1) multi-robot operator
control (bottom of interface), (2) map view (top right corner
of interface), and (3) 2D camera view (top left corner of
interface).

The operator control input module handles various user
inputs from an XBOX gamepad that are used to teleoperate
the robots. These control inputs include moving a robot
forward/backward, turning the robot, tagging a victim, and
switching between different robots in a team. In addition,
the operator can also return control back to a robot in the
semi-autonomous mode.

The map view module receives map information from the
map (generation) module and displays the map of already
visited regions and victim locations in the sub-scenes. The
camera view output module displays a live video stream
for each individual robot. For the semi-autonomous mode,
the user interface also alerts the operator when a robot
needs human assistance. Such directing of attention has
been shown to improve HRI performance [46].

The robot team view also provides the status of the robots
in the team. The operator is limited to controlling one robot
at a time. The team view also indicates whether a particular
robot is being controlled manually (MAN) via teleoperation
or by the semi-autonomous (AUTO) controller. The user
interface also provides the operator with an occupancy grid
map of the USAR scene, in addition to the camera view of
the robot.

Fig. 4 User interface for human
operator
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Our interface follows an adaptive interface design.
Namely, adaptive interfaces can automatically make deci-
sions regarding the need for automation as well as change
the degree of automation in order to decrease operator
workload and the number of required human operator inter-
ventions, and increase situational awareness [47–49]. In
semi-autonomous mode, the user interface is interconnected
with the MAXQ HRL-based deliberation layer. The team
of robots moves autonomously until a robot requires human
assistance. During operator input, the robot control status
switches toMANmode to indicate that the robot is under the
operator’s control. In teleoperation mode, the MAXQ HRL-
based deliberation layer is not present. The user interface
directly sends operator inputs to control the team of robots.
The operator has full control over each individual robot in
the team.

4.5 Low-Level Robot Control

In the semi-autonomous mode, the primitive actions (i.e.,
move forward, move backward, turn) from the MAXQ
HRL-based deliberation layer are converted into motion
commands for the team of robots. In teleoperation mode,
the operator has direct control of the motion of the robots
and the low-level controller is used to process operator
commands into low-level motion commands.

4.6 USARSim

USARSim was used as our 3D simulation environment
[50]. The USARSim platform was used together with the
Unreal Developer’s Kit (UDK) game engine [51]. This
provided the capability to create realistic unstructured
USAR environments consisting of both rubble and victims.
Herein, rubble is defined by concrete piles and overturned
furniture. Our aforementioned system architecture contains
a library of extensive functions for communicating with
USARSim.

USARSim was utilized due to its high-fidelity simulation
capabilities of USAR robots and environments, which can
be used to investigate HRI and multi-robot coordination
[52]. In particular, USARSim has already been validated
for its ability to provide accurate models of robot geometry
and kinematic design, sensors, and environments [53].
Furthermore, USARSim allows multiple robots to be used
concurrently [54], and has been used extensively in USAR
mission studies, which require operators to search for
victims while exploring an environment with multiple
robots [20, 31, 55–57]. Therefore, in this work, USARSim
has been used to accommodate the large groups of robots
(up to 20 robots) and varying environment sizes we are
considering and to ensure repeatability across our different
test conditions.

4.7 Software Implementation

The software components include the UDK game engine
running USARSim, Multi-Robot Operator Team (MROT),
and the MAXQ HRL-based deliberation program, Fig. 5.
We integrated MROT, our custom multi-robot remote con-
trol application for USARSim, with the MAXQ program,
our semi-autonomous controller, to build an effective com-
mand console for operators monitoring multiple semi-
autonomous robots in real-time within USARSim. With our
implementation, operators can, at a glance, monitor the sta-
tus of all robots in the team. Operator intervention is made
seamless by detecting when an operator intends to take
control of a robot, or when the MAXQ program requests
assistance. Following an operator intervention, control is
transferred back to the MAXQ program with a single
input.

5 Experiments in Simulated Environments

The experiments consisted of operators controlling teams
of robots in the simulated environment of USARSim to
investigate the influence of the operator-to-robot ratio on the
performance of the HRL-based semi-autonomous controller
as well as on the full teleoperation control of the robots. We
used a combination of effectiveness and efficiency metrics
to evaluate the controller [58]. Namely, the performance
metrics used were: (1) percentage of scene coverage, (2)
percentage of victims found, (3) number of robot team
collisions in the environment, and (4) total exploration
time.

For our experiments, we also measured the human-
performance metrics of Interaction Effort (IE), using
operator control time to show an operator’s effort in
controlling a robot team [18, 58], and Task Perfor-
mance (TP) to provide an overall metric for mission
performance (exploration and victim identification) [19].
TP enables the identification of bottlenecks in the sys-
tem (i.e., robot team size), in which performance can
be negatively impacted [59], while reducing IE can
directly improve the effectiveness of the human-robot team
[18].

5.1 Procedure

Twenty-one people participated in the trials, ranging from
23 to 36 years in age (μ = 25.9, σ = 3.6). All participants
were engineering students. None had prior experience with
controlling a USAR robot, however, they had varying
expertise in playing 3D video games, ranging from none
to little experience (43%), as well as moderate to more
experienced (57%).
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Fig. 5 Software schematic
diagram

Each trial consisted of having the participant control a
team of 5, 10, 15, and 20 robots in both semi-autonomous
mode and teleoperation mode, respectively. Namely, each
participant controlled four different team configurations for
each mode (total of 8 trials per participant). The USAR
scenes used for the experiments occupied 288 m2, 544 m2,
944 m2, and 1184 m2 for the 5, 10, 15, and 20 robot
teams, respectively. Each USAR scene was divided into
smaller sub-scenes. The overall size of each sub-scene
varied, ranging from 32 to 80 m2, the amount of clutter
ranged from 60% to 75% of the overall sub-scene, and the
number of victims ranged from one to four.

Figure 6 provides several examples of rubble piles and
victim configurations within the sub-scenes. The Pioneer
P3AT mobile robotic platforms were used, which contained
four 3D sensors located to scan the front, left, right, and
back of each robot for terrain classification, an INS, and a
2D camera with 320 × 240 pixel resolution.

A counter-balance approach was used; half of the
participants started each trial in teleoperation mode, and
the remaining in semi-autonomous mode. After finishing
the trials in each mode, participants switched to the next
mode. To avoid carry-over effects there was an average
of three days of rest between the two modes. The robot
team size configurations in each mode were randomized
for each participant (e.g., 5-20-15-10, 15-20-5-10). Each
participant had ten minutes of training with respect to

the gamepad control inputs and the user interface prior
to the experiments. The objective for the operator was to
explore the USAR environment to cover as much area
as possible and to identify as many victims within the
overall environment with no time limits. They were told to
explore the environment by traversing the cluttered terrain.
After the experiments were completed, the participants
were asked to complete a 5-point Likert questionnaire
(5—Strongly Agree, 1—Strongly Disagree) based on their
experiences.

5.2 Results and Discussion

A (one-tailed) statistical power analysis was first conducted
to confirm that the sample size was sufficient with respect to
the performance metrics. We obtained powers greater than
0.99 (p < 0.05) for all the metrics.

During semi-autonomous operations, all robots in
the team worked in parallel and asked for assis-
tance from the operator only when required. Thus,
for example, we expected some increase in explo-
ration time with increased environment size and robot
team size. In teleoperation mode, however, the hypoth-
esis was that a more significant increase in exploration
time would occur with increased robot team size since
each individual robot requires the operator’s attention
at all times. Table 2 shows the average values and
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Fig. 6 Example sub-scenes: a
with overturned furniture, b
with climbable and
non-climbable concrete piles,
and c a combination of both
furniture and concrete piles

ranges for the collected performance metrics for the
experiments.

Figure 7 shows the relationship between the number of
robots in a team and the average exploration time. A second-
order-polynomial least-squares fit was utilized for both the
semi-autonomous and teleoperation cases. As expected, in
both the semi-autonomous and the teleoperation modes, the
total exploration time increases as the number of robots

increases for larger USAR scenes. However, the rate of
increase is significantly higher for teleoperation as we had
hypothesized. This mode also results in a greater number
of robot collisions with the environment. It should be noted
that collision avoidance is not one of the primary tasks
in USAR missions, and therefore the operators were not
explicitly asked to avoid obstacles. We postulate, if we
had told the operators to avoid obstacles, the number of

Table 2 Varying robot-team size performance metrics

Exploration # of Robots on Average metric value (range for all participants)

mode a team # of Victims % of Scenes explored # of Collisions % of Victims found Total exploration time (s)

Semi-Autonomous 5 12 100 0.3 100 101

(100–100) (0–7) (100–100) (76–162)

10 20 100 0.5 100 129

(100–100) (0–4) (100–100) (90–192)

15 30 100 6.2 100 184

(100–100) (1–15) (100–100) (109–344)

20 37 100 9.5 100 195

(100–100) (0–27) (100–100) (126–284)

Tele-operation 5 12 93 10.8 98 319

(81–100) (0–48) (83–100) (168–811)

10 20 88 17.8 98 516

(76–100) (0–57) (90–100) (277–1082)

15 30 89 28.4 98 916

(77–100) (4–77) (93–100) (552–1688)

20 37 88 55.1 97 1405

(81–97) (16–174) (92–100) (737–3386)
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Fig. 7 Total exploration time for
all participants controlling 5, 10,
15, and 20 robots in both control
modes

collisions could potentially decrease, but in return the total
exploration time would increase as they would be more
cautious while moving the robots in the environment [60].

For easier comparison, when linear least-squares was
utilized, the slopes were determined to be about 6.7 s/robot
versus 73.2 s/robot, with a confidence level of more
than 94.64%. Namely, the results confirm the difficulty
an operator would face when trying to control a large
team of rescue robots, exploring the scenes sequentially.
Furthermore, when using the semi-autonomous controller,
robot teams were able to explore 100% of the scenes and
identify all the victims while minimizing the number of
collisions they had in the environment.

Operator interaction effort, IEh, for each robot team size
for participant h was defined as:

IEh = Oth

Eth

, (13)

where Oth represents the total time Participant h was
controlling the robots, and Eth represents the total
exploration time for that participant.

In order to determine the overall task performance, a
weighted linear combination of the effectiveness metrics
was used. In particular, task performance, T Ph, for
Participant h, was defined as:

T Ph = w1Sh+w2Ch+w3Vh, (14)

Fig. 8 Interaction effort
between control modes
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Fig. 9 Task performance
between control modes

where Sh is the percentage of scene explored, Ch is the
number of collisions, Vh is the percentage of victims found
and w1, w2, and w3 are performance weights

(∑
wi= 1

) :

Sh = Sth

maxSth

, (15)

Ch = maxCth/Cth

max
(
maxCth/Cth

) , (16)

Vh = Vth

maxVth

. (17)

Above, Sth, Cth , and Vth represent the percentage of
scenes explored, number of collisions, and percentage of
victims found over Eth , respectively. The average operator
IE and T P per robot team size is presented in Figs. 8 and
9, respectively.

An analysis of variance (ANOVA) test was performed
to determine statistical significance for all performance
metrics. The results showed that semi-autonomous mode
was significantly better compared to teleoperation mode
in all performance metrics regardless of the robot team
size: (1) percentage of scene exploration, F (1, 160) =
279.0, p < 0.001; (2) percentage of victims found,
F (1, 160) = 40.42, p < 0.001; (3) total exploration time

Table 3 Comparison of learning, non-learning and teleoperation for
exploration

Exploration mode # of Robots on a team % of Scenes explored

Learning-based 1 100

4 100

Non-Learning based 1 24

4 61

Tele-operation 1 44

4 93

F (1, 160) = 201.7, p< 0.001; and (4) total number of
collisions, F (1, 160) = 77.79, p < 0.001.

With respect to human performance metrics, sta-
tistical significance was also determined between
the control modes regardless of the robot team size
for: (1) IE, F (1, 160) = 12740, p< 0.001; and, (2)

Table 4 Post-Experiment Questionnaire

Statement Mean SD

1. With the information provided, I was able to

visualize the layout of the environment in:

a. Teleoperation mode. 4.5 0.5

b. Semi-autonomous mode. 3.9 1.1

2. I had a difficult time monitoring all of the

sensory information in:

a. Teleoperation mode. 2.4 1.4

b. Semi-autonomous mode. 2.6 1.2

3. The user interface was easy to use. 4.4 0.5

4. I had confidence in the robots performing 3.8 0.7

their tasks in semi-autonomous control.

5. I had an easy time controlling all the robots in:

a. Teleoperation mode. 3.5 1.4

b. Semi-autonomous mode. 4.3 0.9

6. I felt stressed during:

a. Teleoperation mode. 3.1 1.0

b. Semi-autonomous mode. 1.9 1.0

7. In general, the semi-autonomous mode was 2.1 1.1

more stressful for me.

8. I had a better overall experience in:

a. Teleoperation mode. 3.1 1.2

b. Semi-autonomous mode. 4.1 0.7

9. Given a choice, I would choose manual 1.7 0.9

teleoperation over semi-autonomous control.
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Fig. 10 Mean ratings of
post-experiment questionnaire
directly comparing the
teleoperation and
semi-autonomous modes

T P , F (1, 160) = 506.2, p < 0.001. Namely, both inter-
action effort and task performance were significantly better
for the semi-autonomous mode compared to the teleop-
eration mode. We also found no significant correlation
between 3D video games experience of the participants and
T P , (ρ = −0.1, p = 0.527).

From Table 2, when comparing performance across the
robot team sizes using the learning-based semi-autonomous
controller, one can note that regardless of the number
of robots on the team, 100% scene coverage and victim
identification is obtained. The increase in total exploration
time can be due to the fact that the robots are exploring
larger scenes (i.e., 288 m2 for 5 robots and 1184 m2 for 20
robots). The decrease in TP is due primarily to this increase
in exploration time and the number of collisions. However,
the rate of decrease slows down as the number of robots on
the team increases. On the other hand, IE between the team
sizes only slightly increases.

5.3 Exploration with andWithout Autonomy
and Learning

In order to further investigate the impact of learning and auton-
omy on robot exploration, we conducted a separate experiment
in USARSim with a single robot and a group of four robots
in a 96 m2 highly cluttered USAR scene. The experiment
compared our learning-based MAXQ technique with: (1) an
existing autonomous non-learning technique for direction-
based exploration [26], and (2) teleoperation. Thirteen par-
ticipants from the same demographics were used for this test
condition. The results are presented in Table 3.

The percentage of scene coverage for this scene, with
one robot, was 100% using MAXQ, 24% using the non-

learning technique, and 44% with teleoperation. With a
team of four robots, the scene coverage percentage was
100% using MAXQ, 61% using the non-learning technique,
and 93% with teleoperation. In the case of the non-
learning technique, the lower scene coverage was due to the
robots getting into situations where they became trapped
in corners or rubble piles, whereas when using MAXQ,
the robots were able to avoid such situations through
learning. With respect to teleoperation, when comparing
the 4 robot team, the operator required, on average, 4.8
times the exploration time (for 93% scene coverage) than
MAXQ, which is consistent with the results discussed
above.

5.4 Post-Experiment Questionnaire

The results from the 5-point Likert questionnaire showed
that participants had a better overall experience using the
semi-autonomous controller (with a mean of 4.1 for this
question versus a mean of 3.1 for teleoperation) and felt
less stressed during the USAR mission (with a mean of 1.9
versus a mean of 3.1 for teleoperation), Table 4. Participants
preferred the semi-autonomous controller over solely
teleoperated robots due to the task handling capabilities of
the former—with no apparent a priori design bias toward
either mode of operation (e.g., Questions 1 and 2). The
standard deviation for each question is also presented in
Table 4 to show the variability of the questionnaire results
[61]. The participants’ responses for all questions are fairly
consistent with no major deviations. Figure 10 provides
a graphical representation of the direct comparison of the
statements 1, 2, 5, 6, and 8 for both the teleoperation and
semi-autonomous modes.
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6 Conclusions

This paper investigated the influence of the operator-to-
robot ratio on the performance of our unique system
architecture for using a learning-based semi-autonomous
controller to aid an operator in a multi-robot team
USAR. Experiments showed that operator performance
improved significantly when aided by our MAXQ learning-
based semi-autonomous controller. With the MAXQ semi-
autonomous controller, operators can cover more area in
a shorter time, and exhibit greater patience in exploration.
Our semi-autonomous controller architecture proved to be
more effective when the operator is controlling a large robot
team compared to pure teleoperation. In addition, operator
interaction effort decreased significantly when compared
to teleoperation. A case study comparing our approach to
an autonomous non-learning based method for exploration
also showed that our MAXQ semi-autonomous method
provided more scene coverage in cluttered environments.
In conclusion, learning-based semi-autonomous controllers
have the potential to provide both multi-robot system
(e.g. coverage, time) and human operator (e.g. task
performance, interaction effort) performance improvements
over teleoperated control of large groups of robots. These
controllers can be used for exploration, and person and
object identification tasks in cluttered environments. The
learning capabilities also allow robots to adapt to new and
unknown environments.
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