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Abstract
This paper proposes a novel approach to the visual path following problem based on Nonlinear Model Predictive Control.
Simplified visual features are extracted from the path to be followed. Then, aiming to calculate the control actions directly
from the image plane, a regulatory model is obtained in the optimal control problem scope. For this purpose a Serret-Frenet
system is placed in the center of camera’s field of view and the optimal control actions generate velocity references to
an inner loop embedded in the robot. Stability issues are handled through a classical method and a new approach based
on constraints relaxation is proposed in order to guarantee feasibility. Experimental results with a nonholonomic platform
illustrate the performance of the proposed control scheme.

Keywords Path-following · Visual control · Nonlinear model predictive control · Autonomous robots

1 Introduction

Recently, in order to get solutions for high precision
autonomous robotic navigation, great efforts have been
devoted to the development of control strategies based on
computer vision [1–3], with special emphasis on the visual
servoing based solutions.

Two of the main techniques for visual servoing are the
Position Based Visual Servoing (PBVS) and Image Based
Visual Servoing (IBVS), with the latter being more efficient
from computational point of view due to the absence of
algorithms for estimating the pose [4]. In both approaches,
an important task is to position an end effector to capture
a reference image by a camera attached to the robot (for a
complete review, see [5] - Chapter 15).
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To improve the navigation capabilities of actual applica-
tions, these techniques are adopted to cope with multiple
reference images [6–8], intrinsic characteristic of applica-
tions such as continuous path following based on computer
vision. In which case, traditional visual servoing approaches
become computationally inefficient due to the need to cal-
culate the inverse of iteration matrix for a large number of
visual features.

In the case of visual path following of mobile robots,
the objective is to minimize errors obtained from simplified
visual features, with the control law calculated directly from
the image plane [9–11]. Such requirement of simplicity
arises from the needs of maintaining low computational
complexity, especially for fast and non-linear dynamic
systems.

In many solutions, such features are used to set a lateral
displacement and orientation errors relating to a horizon
in front of the camera [12]. Such approaches emphasize
the need for a concise characterization of the paths to
be followed, i.e. constraints on the path curvature, initial
configuration and navigation speed. This was dealt with in
the past by: proposing control schemes that switch between
controllers of image row or column [13], handling obstacle
avoiding through a dynamic window approach [14] and
establishing an error metric based on the square of the
distance between two samples of image [15]. However,
the physical limits imposed by the visual system have
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not been handled explicitly by neither of the previous
works.

An efficient alternative to include these aspects in the
calculation of control actions is based on the use of
Nonlinear Model Predictive Control (NMPC) since it is
an optimal control strategy which handles the constraints
of the problem and adapts well to time variant systems
[16–19]. To obtain acceptable performance metrics, the
practical implementation of NMPC controllers requires a
detailed analysis of stability and feasibility requirements.
In particular, for the vision based control, where there are
constraints in field of view and frame rate, control strategies
with such guarantees and efficient in the computational
scope should be developed.

A visual MPC approach for steering a nonholonomic
mobile robot is proposed in [20]. This linear version
of predictive control copes with stability in kinematic
and dynamic scope. Nevertheless, the effectiveness of
NMPC controllers is lost when dealing with a conti-
nous path following problem [21]. Consequently, aspects
related to feasibility and computational complexity are not
considered.

The control scheme proposed in this study is based
on constrained NMPC to follow visual paths considering
aspects of stability and feasibility directly from the image
plane. Such an approach generates an error model from
simplified visual characteristics acquired through a Serret-
Frenet coordinate system [22] brought into the center of
the camera’s field of view. Terminal cost and constraints
are used to guarantee stability and a constraints relaxation
technique is designed to ensure the recursive feasibility.
With these solutions and under normal operating conditions,
it is possible to ensure that the path remains in the field
of view, allowing robots to follow paths with variable
curvatures and different navigation speeds, improving the
autonomy of the robotic system.

Experimental results using a wheeled mobile robot
(WMR) and a webcam (both commercial) with an arbitrary
reference path show the advantage of the proposed
strategy compared to traditional approaches. Generally,
such approaches do not take into account limitations on
camera’s field of view and frame rate nor the specification
of computational cost of the control actions.

It is worth emphasizing that the ideas proposed herein
are applicable on other robotic platforms, provided that their
kinematic models are known.

The paper is organized as follows. Section 2 states
the visual path following problem. Section 3 presents the
proposed control strategy and how it deals with stability
and feasibility issues. In Section 4, experimental results are
presented and discussed. Finally, the conclusions are drawn
in Section 5.

2 Problem Statement

This section is dedicated to the formulation of the path
following problem using only visual information. In order to
solve the problems related to visual system limitations and
its implications on stability and feasibility, the model should
allow the immediate application of NMPC controllers, topic
of the next section.

Aiming to use simplified visual features, with the
requirement of low levels of computational complexity,
adaptations are made on the vision-based model proposed
in [23] for aplication of classical control methods. In this
case, from a desired navigation speed v, the orientation
of the robot is controlled aiming to maintain the path to
be followed centered in the camera’s field of view. Such
visual path following approach is particularly applicable in
situations with the following conditions:

1. The visual system is positioned in front of the path to
be followed;

2. The camera field of view is limited;
3. Image distortions are neglected;
4. The robot kinematic model must be known.

Figure 1a presents the coordinate systems and the
parameters used in the modelling for the case of robots

Fig. 1 Visual path following problem representation
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with differential drive. Specifically, the world frame {W }
with unity vectors [xW , yW ], the robot frame {R} with unity
vectors [xR, yR] and the Serret-Frenet system {SF } with
unity vectors [T , N] are defined. Using this nomenclature,
the kinematic model relative to {W } is given as follows:
⎡
⎣

ẋ

ẏ

θ̇

⎤
⎦ =

⎡
⎣

cos θ 0
sin θ 0

0 1

⎤
⎦

[
v

ω

]
. (1)

The forward speed v and the rotational speed ω are
related to the wheels speeds v1 and v2 as follows:

v = v1 + v2

2
, (2)

ω = v1 − v2

l
, (3)

with l being the distance between the wheels.
Additionaly a horizon is defined as a straight line on the

ground parallel to the front axis of the robot at a distance H

of the center of mass (point P relative to {W }) as shown in
Fig. 1b. In this paper H is constant, depending only of the
camera pose relative to center of mass and the robot height.
The point Pr is considered as the intersection point between
the horizon and the path to be followed, �. This point is
unique if the curvature of the path is continuous and double
otherwise. In this case Pr will be the point closest to the
longitudinal axis of the robot. Z is defined as the distance
between Pr and the robot’s longitudinal axis. A Serret-
Frenet system {SF } is used to characterize the movement of
a virtual vehicle positioned in Pr .

Both H and Z are features whose parameters can easily
be extracted from the images, since the horizon corresponds
to an array of pixels at a distance d(H) of the main point and
Z is proportional to the number of pixels between the center
of horizon and Pr . Figure 2 presents an example of image
with these features. Considering H as a constant, to obtain
Z directly from the image, there is a single coefficient
of proportionality obtained in the calibration phase of the
visual system.

Fig. 2 Image of the path section to be followed

The point Pr (see Fig. 1a) is given as follows:

Pr(s(t)) = P(t) + HxR(θ(t)) − Z(t)yR(θ(t)). (4)

The time derivative of this expression, omitting the
temporal dependencies, is given as:

ṡT(s) = ẋxR + Hθ̇yR + Zθ̇xR − ŻyR. (5)

with s being the curvilinear abscissa along the path.
The relationship between the robot coordinate system

{R} and the Serret-Frenet system {SF } is given as follows:
[

xR

yR

]
=

[
cos θr sin θr

− sin θr cos θr

] [
T
N

]
(6)

Transfoming Eq. 5 into Serret-Frenet system and
substituting Eq. 1 we get:

Ż = ωH + (ωZ + v) tan θr ; (7)

ṡ = v + ωZ

cos θr

. (8)

Since θ̇r = ω − ṡc(s), where c(s) is the path curvature,
we get:

Ż = ωH + (ωZ + v) tan(θr ); (9)

θ̇r = ω − c(s)
(v + ωZ)

cos θr

. (10)

To explicit the geometric and temporal behavior of the
path to be followed the time derivative of c is obtained by
multiplying both sides of Eq. 8 by dc. Thus, to follow a
particular path, the following condition must be met:

ċ = dc

ds

(v + ωZ)

cos θr

. (11)

Considering Ż = θ̇r = 0, ω is given as follows:

ω = cv

cos θr + cZ
; (12)

ω = v tan θr

Z tan θr + H
. (13)

Equating Eqs. 12 to 13, we get:

θr = sin−1(Hc). (14)

Thus, it is possible to verify that an equilibrium condition
can be reached only when adjusting θr .

Aiming to formulate the visual path following problem
as an optimal control problem, the system’s control input is
defined as ue = θ̇r . With the state vector ẋe = [Z θr ]T , the
visual path following error model is given as follows:

ẋe = f (xe, ue) =
[

Ż

θ̇r

]
=

[
ωH + (ωZ + v) tan(θr )

ue

]
.

(15)

Considering the outputs as the states themselves, the
problem of controlling the movements of the robot, based
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on visual information, can be summarized as follows:

Find ω, such that Z and θr are feasible.

Particularly important step for the success of imple-
menting this method is the calculating of the visual path
curvature c(s). As Z and θr are obtained as rough esti-
mates, without strict requeriments in the visual system’s
calibration, any error in these measurements will propagate
through the c(s) calculation thus hindering the method’s
accuracy.

In this work, this curvature is obtained with reasonable
accuracy through the use of 2 points near to the main point
and calculating the radius of the circle passing through these
three points. Figure 3 illustrates the procedure.

It’s worth pointing out that accuracy of the movements
of the robots along the visual path will be of great relevance
for the calculus of the visual curvatures. The experimental
platform used in this study enabled a satisfatory aplication
of this method.

3 Control Approaches

The model described by Eq. 15 is nonlinear and has con-
straints on inputs and states, justifying the use of compu-
tationally efficient optimal control strategies. Approaches
based on Model Predictive Control meet some of these
requirements due their performance with multivariable, time
variant and constrained problems. These controllers have
good inherent characteristics of robustness and adapt well
to disturbances, non-linearities and modelling errors due to
the receding horizon scheme.

An alternative that has widely been used in several
branches of the automatic control is the NMPC approach,
which currently meets the mentioned requirements without
a prohibitive computational cost. In the NMPC control, the
system’s output is predicted based on its current states and
models. A control profile is obtained in open loop by a
numeric optimization, applying only the first control signal
to the system. At the next sampling time, a new profile is
obtained considering the most recent information.

Fig. 3 Procedure to curvature estimation

3.1 NMPC Addressing Stability

Despite of the several advantages of NMPC, there are
limitations regarding stability due to the use of a finite
control horizon. Stable control can only be guaranteed if the
control horizon is large enough. This drastically increases
the demand for computational power. Thus, for a practical
viability in many systems (especially the nonlinear ones) a
small (i.e. stability non-guaranteeing) horizon is necessary.

The problem of stability with a small control horizon
is initially addressed through the inclusion of a terminal
penalty term (V (·)) and a terminal region for the constraints
(�) to the nominal NMPC problem as proposed in [24]. The
NMPC scheme with stability guarantee takes the following
form:

Jmin = min
ue

∫ t+Tp

t

F (xe(τ ), ue(τ ))dτ + V (xe(t + Tp)),

(16)

subject to: ẋe(τ ) = f (xe(τ ), ue(τ )), (17)

ue(τ ) ∈ U , ∀ τ ∈ [t, t + Tc], (18)

xe(τ ) ∈ X , ∀ τ ∈ [t, t + Tp], (19)

xe(t + Tp) ∈ �, (20)

with the stage cost F given by:

F(xe(τ ), ue(τ )) = xT
e Qxe + uT

e Rue, (21)

where:

Tp is the prediction horizon;
Tc is the control horizon; With Tc ≤ Tp;
U is the set of feasible inputs;
X is the set of feasible states and
Q, R are positive defined matrices that weight the
deviations into the required values.

The following Lyapunov function is chosen as a penalty
term:

V (xe(t + Tp)) = 1

2
xe(t + Tp)T Pxe(t + Tp), (22)

with xe(t + Tp)) = [ZT , θrT ] being the terminal state and P
being positive definite matrix.

Considering a terminal control action ueT
, the following

condition must be satisfied:

V̇ (xe(t)) + F(t, xe(t), ue(t)) ≤ 0. (23)

For a state feedback terminal control action, ueT
=

−αθrT , with α > 0 and the following formats for weighting
matrices:

Q = diag(q11, q22); (24)

R = r11; (25)

P = diag(p11, p22), (26)
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from Eq. 15 in Eq. 22 and the result in Eq. 23 we have the
following development to meet the stability condition:

p11ZT ŻT + p22θrT θ̇rT + F(t, xe(t), ue(t))

= p11zT (ωH + (ωZT + v) tan θrT )

+p22θrT ueT
+ F(t, xe(t), ue(t))

= p11ZT (ωH + (ωZT + v) tan θrT )

+p22θrT ueT
+ q11Z

2
T + q22θ

2
rT

+ r11u
2
eT

= p11ZT (ωH + (ωZT + v) tan θrT )

−αp22θ
2
rT

+ q11Z
2
T + q22θ

2
rT

+ r11α
2θ2

rT

= q11Z
2
T + (−αp22 + q22 + r11α

2)θ2
rT

+p11ZT (ωH + (ωZT + v) tan θrT ).

To guarantee stability at terminal stage, the sum of
the coefficients of the quadratic terms must be negative.
Thus the weighting matrices can be obtained through the
following condition:

αp22 − q22 − r11α
2 ≥ q11. (27)

The decrease in the cost function at terminal stage will be
completed with the negativeness of the non quadratic term
and the relative magnitude of terminal states. With these
considerations, the terminal region of states - � is defined
as follows:

|θrT | ≥ |ZT |; (28)

p11ZT (ωH + (ωZT + v) tan θrT ) ≤ 0. (29)

This region is bounded by terminal control inputs as
follows:

ω = cv − αθrT cos θrT

cos θrT − cZT

, (30)

with ω constrained by robot’s physical limits as follows:

ωmin ≤ ω ≤ ωmax. (31)

3.2 NMPC Addressing Feasibility

In search of solutions with low requirements of compu-
tational complexity, this section deals with the following
nominal NMPC approach:

Jmin = min
ue

∫ t+Tp

t

F (xe(τ ), ue(τ ))dτ, (32)

subject to: ẋe(τ ) = f (xe(τ ), ue(τ )), (33)

ue(τ ) ∈ U , ∀ τ ∈ [t, t + Tc], (34)

xe(τ ) ∈ X , ∀ τ ∈ [t, t + Tp]. (35)

To guarantee recursive feasibility, the sets U and X
should be well defined at all time instants, taking into
account aspects directly related to the visual system.

The optimization problem will be initially feasible if for
a given initial state x0 the set of admissible inputs U(x0)

is not empty. The feasibility will be maintained over the
control horizon when the following conditions are met for
every tk = 0, 1, . . . , Tc − 1:

u(tk) ∈ U(xu(tk, x0)), (36)

xu(tk+1, x0) ∈ X , (37)

with:

u(tk) being the actual control sequence and
xu(tk) and x0 the solutions of Eq. 17 at instants tk and
t0, respectively.

Since only feasible control problems generate acceptable
solutions, the points x0 ∈ X satisfying U(x0) �= ∅ at every
instant, are exactly the points for which the implicit NMPC
control law μ is well defined.

Formally, the following lemma, introduced in [25,
Chapter 8], sets the property of the recursive feasibility:

Lemma 1 Let A ⊆ X be recursively feasible for the
nominal NMPC problem described by Eqs. 32 to 35 with
prediction horizon Tp ∈ N. Then for each x ∈ A the closed-
loop solution xμTp

(tk, x) is well defined for all tk ∈ N0 and
satisfies xμN

(tk, x) ∈ A and thus also xμTp
(tk, x) ∈ X for

all tk ∈ N0.

According to the same authors the proof is obtained
by straightforward induction using xμN

(tk, x) and some A
forward invariant for μi , i.e., if f (x, μi) ∈ A holds for all
x ∈ A. In this paper A was determined based on practical
implamentation aspects, by adding a slacking policy. In
such scenario, defining the bounds to Ui and Xi based
on physical elements (actuation velocities and regulation
errors), the initial and recursive feasibility will be limited to
small regions of attraction, which implies major limitations
for the practical visual path following control. If for some
reason the reference path leaves the camera’s field of view,
the feasibility will be lost holding the control actions to the
limits specified in U causing instability.

The approach proposed herein is to use the structure
of the problem to guarantee feasibility. Specifically, since
the control input defined in Eq. 15 only exist in the
mathematical domain, it is possible to remove any physical
sense in the definition of U , i.e. high values are allowed and
later are reduced to maximal real values in the experimental
platform.

The bounds to the states constraints (A-bounders) are
defined as follows:

xbound = xmax
e + xtol; (38)

xbound ∈ X , (39)

with xmax
e being the vector of the maximum state errors

along the prediction horizon and xtol being the vector of
constant tolerances for each state.
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Fig. 4 Robot control structure

Algorithm 1 sinthetizes the proposed scheme to guaran-
tee feasibility.1

Algorithm 1: Guarantee of feasibility

Data: x = [x0, x1, . . . , xTp ]T ,
u = [u0, u1, . . . , uTc ]T , xtol

Result: U e X
1 begin
2 {k ∈ Z+ | k > 100}
3 lim U = k

∑i=Tc

i=0 |ui |
4 lim X = max(x) + xtol

5 end
6 return U and X

With this formulation suboptimality as proposed in [26]
can also be used to guarantee stability, since in such
approach feasibility implies stability.

This handling of state constraints (Eqs. 38 and 39)
is somewhat similar to soft-constraint approach [27], but
without any explicit penalization in the cost function,
keeping low levels of computational complexity.

3.3 Control Scheme Implementation

The proposed control scheme is based on the cascade
structure, shown in Fig. 4. The inner-loop is intended to
control the robot dynamics by tracking the reference speeds
given by the outer-loop controller. The outer-loop physical
control efforts (v, ω) are obtained by applying the optimal
control input, u(tk)optimal, obtained from the solution of
NMPC algorithms, to Eq. 10. More specifically, ω is given
as follows:

ω = u(tk)optimal cos θr + cv

cos θr − cZ
. (40)

1lim S denotes the upper limit of the set S .

It is important to note that when addresing feasibility,
these variables could have high values, thus ω is saturated
to practicable levels as follows:

sat (ω) =
⎧⎨
⎩

ωmin ω ≤ ωmin,

ω ωmin < ω < ωmax,

ωmax ω ≥ ωmax

. (41)

These velocities are converted into robot rotational
wheels’ velocities (ω1,r , ω2,r ), through the inverse kinemat-
ics block (IK), as follows:
[

ω1,r

ω2,r

]
= 1

rw

[
1 l

2
1 − l

2

] [
v

ω

]
, (42)

where rw is the wheel radius. These reference velocities
are sent to the inner-loop that implements classical PID
controllers.

The approach to guarantee stability and feasibility
allows positioning the robots at distant points of the paths
and navigating in realistic environments with practical
velocities. Furthermore, since high valued errors can be
regulated, it is also possible to deal with time-varying
paths, being a further improvement with respect to approach
originally proposed for visual path following.

4 Experimental Results

In these experiments, a webcam Microsoft� LifeCam HD-
3000 [28] was installed on a robot with a differential drive
built with Lego� Mindstorms� EV3 platform [29]. The
webcam’s offset pose (relative to {R}) was xc = 0.05 m;
yc = 0.05 m; zc = 0.2 m; θc = π

4 rad. Figure 5a shows the
mobile robot. An Arduino Uno platform implemented the
inner-loop and communicated with EV3 hardware through
I 2C protocol. The robot communicated through UART
protocol, under USB standard, with a personal computer
that implemented the outer-loop and had the following
features: Intel� CoreT M i5 CPU M 430 @ 2.27 GHz X 4;
5.5 GB RAM; 64 bits.



J Intell Robot Syst (2019) 95:731–743 737

Fig. 5 Experimental platform

The visual system was calibrated considering the
following limiting values to state errors (limits of camera’s
field of view): Z = ±0.1 m; 	r = ±0.8 rad. The
optimization problem was solved through the free package
DONLP2 [30], a general purpose nonlinear optimizer for
continuous variables that implements a sequential quadratic
programming method with an active set technique.

The performance of the proposed methods was evaluated
in a situation where the curvature function was variable,
specifically for the arbitrary path illustrated in Fig. 5b. As
can be seen, the variable curvature profile tends to demand
more of the control actions in many instants.

Considering the characteristics of the mobile robot,
visual system and the path to be followed, the first results
were acquired for v = 0.05 m/s. It can be observed that

for this speed, the path was tracked with a total navigation
time of 110 s, generating 550 samples. The nominal NMPC
weighting matrices were:

Qi = diag(10; 1), (43)

Ri = diag(0.2). (44)

The initial bounds of the constraints were defined as
follows:

|ue| ≤ 0.2 rad/s; |Z| ≤ 0.05 m; |θr | ≤ 0.3 rad.

For a sampling time Ts = 0.2 s and defining Tp = Tc = 3
samples (due to the nonlinearities exposed), the controllers
designed were classified as follows:

– Nominal Case (NC), without addressing stability nor
feasibility;

– Stable Case (SC), stability is guaranteed by adding
terminal cost and constraints;

– Feasible Case (FC), feasibility is guaranteed through
constraints relaxation.

4.1 Nominal Case

The results of the nominal controller can be seen in Fig. 6.
The computational cost, tracking errors, and the control
efforts are shown in Fig. 6b, c and d, respectively. As can
be seen, the visual path was closely followed. Figure 6b
shows some peaks in processing time that are related to
the low accuracy of curvature data processed on line. It is
noteworthy (see Fig. 6c) that, in despite of the constraints
have been satisfied, the states reached values close to the
platform’s limits thus reducing the regulation capability.

Fig. 6 Visual path following -
arbitrary path - nominal NMPC
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Fig. 7 Visual path following -
arbitrary path - NMPC with
stability guarantee

Figure 6d shows that the control efforts remained below the
experimental platform’s possible maximum values.

4.2 Stable Case

The results for the stable case, where the weighting matrices
Qi (43) and Ri (44) were maintained with the same weight,

P = diag(100; 100) and α = 2 to satisfy the criteria
presented in Eq. 27, are shown in Fig. 7.

As can be seen, results similar to the previous experiment
were obtained, with a notable variation in the processing
time with larger and more frequent peaks (see Fig. 7b). This
is an expected result since the curvature captured is less
precise due to computation lags.

Fig. 8 Visual path following -
arbitrary path - NMPC with
guarantee feasibility
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Table 1 Quantitative metrics (v = 0.05 m/s, 550 samples)

IAE TV

ZIAE [m] θrIAE
[rad] vT V [m/s] ωT V [rad/s]

Nominal case 1.1126 7.2840 1.1400 17.7760

Stable case 1.1828 7.5952 1.3390 20.1809

Feasible case 1.1146 7.1702 1.2820 17.9080

It is possible to visualize small differences in the
figures of the states (see Fig. 7c) and control actions (see
Fig. 7d), with the current experiment presenting slightly
lower performance, with higher magnitudes and change
rates.

4.3 Feasible Case

Complementing this initial analysis, the stage to guarantee
feasibility is enabled. For the same tuning parameters, Fig. 8
shows the results. Similar results were obtained for positions

snapshots (see Fig. 8a), however, detailed analysis shows a
better performance of this technique, since the state errors,
especially orientation errors, have remained lower than in
the two previous experiments (see Fig. 8c) even with relaxed
constraints. The processing time and control actions are
close to the nominal case (see Fig. 8b and d) confirming the
low computational complexity of the proposal. Figure 8b
also shows a more precise profile of curvature function
captured in this case. This measure is quite sensitive to
the tracking errors, being therefore useful to evaluate the
best performance of the technique based on the constraints
relaxation.

In order to compare the performance of these approaches,
two quantitative metrics were used: the integral of the
absolute error (IAE) and the total control variation (TV).
The IAE index, calculated by

∫ TEND

0 |e(t)|dt , is widely used
to compare the performance of distinct strategies in similar
experiments. The TV index, calculated by

∑kEND

k=0 |u(k) −
u(k − 1)|, aims to evaluate the effect of noise on the
control signals, assessing the effectiveness of the controller.

Fig. 9 Approaches comparison for v = 0.1 m/s
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Table 2 Quantitative metrics (v = 0.1 m/s, 275 samples)

IAE TV

ZIAE [m] θrIAE
[rad] vT V [m/s] ωT V [rad/s]

Nominal case 1.0124 6.4820 0.8170 15.8300

Stable case 1.0228 6.5784 0.9650 12.2760

Feasible case 1.1088 7.1316 0.9190 13.2920

In general, the higher these indices are, the worse the
performance of a given approach is.

For the problem at hand, the state errors (Z and θr ) and
the physical control actions (v and ω) were used to calculate
the indices presented in Table 1.

Similar values are observed, but with a slight advantage
for the Nominal Case for the majority of indices except
for θrIAE

, where the best result was in the Feasible Case.
The reduction of this variable is fundamental for the actual
application, since it ensures that the path remains in the

Table 3 Quantitative metrics (v = 0.2 m/s, 60 samples)

IAE TV

ZIAE [m] θrIAE
[rad] vT V [m/s] ωT V [rad/s]

Nominal case 0.4698 2.6262 0.5730 11.8430

Stable case 0.4196 2.3476 0.5290 11.3650

Feasible case 0.3106 1.7324 0.4160 3.0770

camera’s field of view. The Stable Case indices show that
due to the experimental platform, the inherent increase in
computational cost became unnecessary.

4.4 Speed Influence

The imperfections of experimental platform and the nav-
igation environment impose limitations on the navigation
speed, whose values need to be set below the robots max-
imum. In order to analyze the behavior of the proposed

Fig. 10 Approaches comparison for v = 0.2 m/s (60 samples)
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Table 4 Visual path following with feasibility guaratee for different
speeds

IAE TV

v [m/s] ZIAE [m] θrIAE
[rad] vT V [m/s] ωT V [rad/s]

0.05 1.1146 7.1702 1.2820 17.9080

0.1 1.0228 6.5784 0.9650 12.2760

0.2 1.2492 7.5438 0.7960 11.9040

methods at higher speeds, more specifically v = 0.1 m/s
and v = 0.2 m/s, new experiments were performed with the
same reference path.

From the previous experiments it is possible to conclude
that if some formal metric of speed reduction in more curved
parts of the path was used, it could be possible to obtain
satisfactory results for all control methods, however, it is
interesting to explain the limitations of the proposals for
constant navigation speeds.

Remaining with all other parameters unaltered, experi-
mental results were acquired for v = 0.1 m/s (as shown in
Fig. 9). In this case, the path was tracked with a total nav-
igation time of 55 s, generating 275 samples. It is possible
to note that the state error constraints were violated in some
moments for the Nominal and Stable Cases. The same can
not be said for the Feasible Case since the constraints were
relaxed in the right measure to guarantee the optimization
problem recursive feasibility. Table 2 shows the respective
quantitative metrics.

It is worth to note that smaller values are obtained due
to the smaller analysis interval (half of the experiments
with v = 0.05 m/s). Close values are observed for the
index relative to state errors, but for control actions total
variation there is a slight advantage in the Stable Case. This
was expected due to the generation of more conservative
movements, necessary for the stable convergence to the
terminal states. It is also possible to note that for all
experiments the Feasible Case provided more uniform
indices with the increase of speed.

From these results, it is natural to expect performance
deterioration at higher speeds since the constraints window
was fully used and the quantitative metrics were not

reduced by half (ideal scenario). This is confirmed through
experiments with v = 0.2 m/s, illustrated in Fig. 10.
It is observed that only the Feasible Case follows the
path completely, since at neither moment the path left the
camera’s field of view. With a very degraded performance,
for the Nominal Case, the path was lost in approximately
14 s and for the Stable Case case in approximately 21s,
confirming the importance of recursive feasibility for all
NMPC approaches. Table 3 shows the quantitative metrics
for the first 12 s of movement (60 samples). As can be
observed, the only strategy in which there was no substantial
increase in all indices was the one based on guaranteed
feasibility.

For the Nominal Case there is a natural limitation due
to the lack of stability, on the other hand, the approach
that provides guarantees for this characteristic suffers from
too high a computational cost, not allowing the calculation
of control actions by only Ts , not capturing new reference
images. In this context, relaxing the constraints without
penalty in the cost function arises as an appropriate
approach.

The performance indices calculated for all the experi-
ment of Feasible Case for all analyzed speeds (including the
v = 0.2 m/s, 140 samples) are summarized in Table 4. As
can be seen, at double speed, the IAE index got worse, on the
other hand there was improvement in TV since for greater
speeds, few variations were necessary to correct the pose. In
all cases, the proposed technique for guaranteeing feasibil-
ity meets the regulation of state errors with control actions
appropriate to the experimental platform and with low pro-
cessing time, even without any modification in the structure
of the cost function.

Figure 11 shows the minimal cost functions (Jmin) and
the optimal control actions of these last experiments. As can
be seen in Fig. 11a, the cost function for Nominal and Stable
Cases increases few instants before the loss of the path.
In these cases Fig. 11b shows the internal control action
behaviour in search of a feasible solution. These figures also
show the full convergence of the cost function and suitable
values to optimal inputs for the Feasible Case.

The computational and visual systems performances are
illustrated in Fig.12. As can be seen, the computational

Fig. 11 Approaches
comparison: optimization
internal variables analysis
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Fig. 12 Approaches
comparison: computational and
visual systems analysis

delay due to the optimization activities of the Nominal and
Stable Cases (Fig. 12a) causes irreversible information loss
represented by null values of frame rate data Fig. 12b. For
the Feasible Case an uniform profile is illustrated for both
characteristics.

These results confirm that for path following in the
image plane, the navigation speed must be specified taking
into account characteristics of the experimental platform
(Mobile robot + Camera). In the current evaluation, the only
approach that can meet the variation of 0.05 to 0.2 m/s was
based on the Feasible Case.

5 Conclusion

This paper proposed a new nonlinear model predictive
visual path following control aiming to increase the
autonomy of a robotic system. This task was performed
by inclusion of the visual system in all stages of control
architecture. A commercial nonholonomic mobile robot was
used to performance evaluation.

The model was based on the extraction of simplified
visual features obtained from a Serret-Frenet system
positioned in the center of camera’s field of view and the
control law was calculated directly from the image plane, a
fact that motivates analysis of stability and feasibility issues
since a perturbation on robot structure tends to be amplified
in the images, making the path potentially out of camera
field of view.

Through experimental results the applicability of NMPC
controllers proposed for arbitrary paths was confirmed.
For this purpose a path with variable curvature (which for
most visual path following techniques hinders directly the
specification of navigation speed) was used.

Although the nominal NMPC and the case with a
classical approach to guarantee stability based on terminal
state and constraints satisfied the visual path following
problem at low speeds, the need to increase this speed
showed that the only approach with full capability is
based on guaranteeing of feasibility. The NMPC controller
addressing feasibility has increased the ability to keep the
path in the image plane. This was due to the conservation

of the recursive feasibility at all time instants, making
the processing time low enough to acquire new reference
images.

The guarantee of recursive feasibility based on con-
straints relaxation allows to get a superior performance
with full time safe operation in all scenarios, becoming
an attractive tool for validation in several other practical
applications.

Compared to other works on a similar problem, we
believe that our approach presents the following advantages:

– The error model generated allows to get stabilizing
control actions directly from the image plane.

– The Visual Path Following based on NMPC allows
handling the visual system limitations directly under
constraints form, enabling the treatment of time-varying
paths.

– The NMPC controller addressing feasibility increases
the ability to navigate even with imperfections of
surface, camera and mobile robots, improving the levels
of inherent robustness.

– The full convergence of the optimization problem
showed a possibility for treatment of variable visual
reference paths in a simplified way which produces low
computational cost solutions.

Future work includes robustness analysis and visual
formation controllers based on NMPC with guaranteed
stability and feasibility.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Efraim, H., Arogeti, S., Shapiro, A., Weiss, G.: Vision based
output feedback control of micro aerial vehicles in indoor
environments. J. Intell. Robot. Syst. 87(1), 169–186 (2017)

2. Kucukyildiz, G., Ocak, H., Karakaya, S., Sayli, O.: Design and
implementation of a multi sensor based brain computer interface
for a robotic wheelchair. J. Intell. Robot. Syst. 87(2), 247–263
(2017)



J Intell Robot Syst (2019) 95:731–743 743

3. Ji, P., Song, A., Xiong, P., Yi, P., Xu, X., Li, H.: Egocentric-vision
based hand posture control system for reconnaissance robots. J.
Intell. Robot. Syst. 87(3), 583–599 (2017)

4. Chaumette, F., Hutchinson, S.: Visual servo control. i. Basic
approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

5. Corke, P.: Robotics, Vision and Control: Fundamental Algorithms
in MATLAB. Springer Tracts in Advanced Robotics. Springer,
Berlin (2011)

6. Zhao, Y.-M., Xie, W.-F., Liu, S., Wang, T.: Neural network-based
image moments for robotic visual servoing. J. Intell. Robot. Syst.
78(2), 239–256 (2015)

7. Araar, O., Aouf, N., Vitanov, I.: Vision based autonomous landing
of multirotor uav on moving platform. J. Intell. Robot. Syst. 85(2),
369–384 (2017)

8. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision
for uavs: current developments and trends. J. Intell. Robot. Syst.
87(1), 141–168 (2017)

9. Frezza, R., Soatto, S., Picci, G.: Visual path following by recursive
spline updating. In: Proceedings of the 36th IEEE Conference on
Decision and Control, 1997, vol. 2, pp. 1130–1134 (1997)

10. Diosi, A., Remazeilles, A., Segvic, S., Chaumette, F.: Outdoor
visual path following experiments. In: 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 4265–
4270 (2007)

11. Delfı́n, J., Becerra, H.M., Arechavaleta, G.: Visual path following
using a sequence of target images and smooth robot velocities
for humanoid navigation. In: 2014 14th IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pp. 354–359
(2014)

12. Bertozzi, M., Broggi, A., Fascioli, A.: Vision-based intelligent
vehicles: state of the art and perspectives. Robot. Auton. Syst.
32(1), 1–16 (2000)

13. Cherubini, A., Chaumette, F., Oriolo, G.: An Image-Based visual
servoing scheme for following paths with nonholonomic mobile
robots. In: International Conference on Control, Automation,
Robotics and Vision, ICARCV 2008, pp. 108–113, Hanoi,
Vietnam, France (2008)

14. de Lima, D.A., Victorino, A.C.: A visual servoing approach for
road lane following with obstacle avoidance. In: 2014 IEEE 17th
International Conference on Intelligent Transportation Systems
(ITSC), pp. 412–417 (2014)

15. Sabatta, D.: A vision-based error metric for path following
control. 2014 PRASA, RobMech and AfLaT International Joint
Symposium (PRASA/RobMech/AfLaT 2014) (2014)

16. Mehrez, M.W., Mann, G.K.I., Gosine, R.G.: An optimization
based approach for relative localization and relative tracking
control in multi-robot systems. J. Intell. Robot. Syst. 85(2), 385–
408 (2017)

17. Rybus, T., Seweryn, K., Sasiadek, J.Z.: Control system for free-
floating space manipulator based on nonlinear model predictive
control (nmpc). J. Intell. Robot. Syst. 85(3), 491–509 (2017)

18. Cao, G., Lai, E.M.-K., Alam, F.: Gaussian process model
predictive control of an unmanned quadrotor. J. Intell. Robot. Syst.
88, 147–162 (2017)

19. Masri, M.A., Dbeis, S., Saba, M.A.: Autolanding a power-off uav
using on-line optimization and slip maneuvers. J. Intell. Robot.
Syst. 86(2), 255–276 (2017)

20. Li, Z., Yang, C., Su, C.Y., Deng, J., Zhang, W.: Vision-based
model predictive control for steering of a nonholonomic mobile
robot. IEEE Trans. Control Syst. Technol. 24(2), 553–564 (2016)

21. Faulwasser, T., Findeisen, R.: Nonlinear model predictive control
for constrained output path following. IEEE Trans. Autom.
Control 61(4), 1026–1039 (2016)

22. Płaskonka, J.: Different kinematic path following controllers for a
wheeled mobile robot of (2,0) type. J. Intell. Robot. Syst. 77(3),
481–498 (2015)

23. Coulaud, J.B., Campion, G., Bastin, G., De Wan, M.: Stability
analysis of a vision-based control design for an autonomous
mobile robot. IEEE Trans. Robot. 22(5), 1062–1069 (2006)

24. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.:
Constrained model predictive control: stability and optimality.
Automatica 36(6), 789–814 (2000)
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