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Abstract
The mission of future parcel delivery will be performed by unmanned aerial vehicles (UAVs). However, the localization
of global navigation satellite systems (GNSS) in urban areas experiences the notorious multipath effect and non-line-of-
sight (NLOS) reception which could potentially generate approximately 50 meters of positioning error. This misleading
localization result can be hazardous for UAV applications in GNSS-challenged areas. Due to multipath complexity, there is
no general solution to eliminate this effect. A solution to guide UAV operation is to plan an optimal route that smartly avoids
the area with a strong multipath effect. To achieve this goal, the impact of the multipath effect in terms of positioning error at
different locations must be predicted. This paper proposes to simulate the reflection route by a ray-tracing technique, aided
by predicted satellite positions and the widely available 3D building model. Thus, the multipath effect in the pseudorange
domain can be simulated using the reflection route and multipath noise envelope according, according to specific correlator
designs. By constructing the multipath-biased pseudorange domain, the predicted positioning error can be obtained using a
least square positioning method. Finally, the predicted GNSS error distribution of a target area can be further constructed. A
new A* path planning algorithm is developed to combine with the GNSS error distribution. This paper designs a new cost
function to consider both the distance to the destination and the positioning error at each grid. By comparing the conventional
and the proposed path planning algorithms, the planned paths of the proposed methods experienced fewer positioning errors,
which can lead to safer routes for UAVs in urban areas.
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1 Introduction

Unmanned aerial vehicles (UAV) are widely used in military
and civilian applications, such as military reconnaissance,
disaster search and rescue [1] and future package delivery
[2]. In recent years, the development of multi-rotor UAV
provides a carrier of high controllability and flexibility.
These characteristics allow employing UAVs to enable
many potential civilian applications. The operation of
a UAV is highly dependent on its positioning sensors.
The sensors provide an accurate position of the UAV to
facilitate the UAV’s navigation throughout the operation.
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The most common sensor is the global navigation satellite
system (GNSS) receiver. By receiving satellite signals and
calculating the distance between the satellite and receiver,
the location of the UAV is able to be determined. As
UAVs become more employable for civilian applications,
they are required to operate in areas closer to the public,
including urban areas. Urban areas are surrounded by a
large number of buildings, which are obstacles for UAVs.
Operating UAVs in these areas is highly restricted for the
purpose of assuring safety. The precision of the localization
closely influences the performance and safety of UAVs
in urban areas. However, the conventional localization
method of GNSS is not reliable for urban applications [3].
The accuracy of GNSS positioning is highly affected by
satellite signal blockage and the multipath effect. Since
more satellites from different constellations have been
recently launched, the total number of satellites could
become sufficient in an urban area. The major challenge
for GNSS localization is still the multipath effect. It occurs
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when a user device receives signal reflections, resulting
in the aggregate signals deceiving the receiver tracking
loop to induce an additional signal delay [4]. Especially
when the number of clean measurements is limited, the
GNSS positioning result will be highly deteriorated by the
multipath signal [5]. Currently, the multipath error has no
complete solution but only remedies that mitigate such
effects.

To improve the localization accuracy in urban areas,
a general approach is to implement additional sensors
to compensate for inaccurate GNSS solutions. A popular
method is to integrate an inertial measurement unit (IMU)
and GNSS to form a complementary integration system
to obtain accurate and stable positioning performance [6].
Recent research also uses a light detection and ranging
(LiDAR) scanner to detect the surrounding obstacles and
achieve localization via simultaneous localization and
mapping (SLAM) technology [7]. SLAM can also improve
the performance of localization in urban areas [8]. These
methods are able to obtain an accurate localization result,
but extra devices add weight to the UAV. This is could
be excessive for a UAV with a limited payload. In
addition, high computation loads shorten the operation time.
Researchers also employ on-board stereo vision systems to
conduct visual SLAM to achieve localization and obstacle
avoidance in GPS-denied areas [9]. However, without the
initialization by a GNSS solution, the visual SLAM can
only provide the relative position information instead of an
absolute position. However, GNSS is still the only sensor
system that can provide the absolute positioning result. To
ensure that the safety of the UAV will not be affected by the
misleading localization in an urban area, this paper proposes
a new path planning algorithm to avoid having it fly in the
areas with an erroneous GNSS localization result.

There are different approaches of path planning to
determine the optimal path [10]. One approach is to use
a grid method to divide the environment into serval grids
and then calculate the cost of each step and select the
lowest cost. Thus, the shortest path to the destination
can be found. This path planning method is well-known
as the Dijkstra algorithm [11]. By further utilizing the
heuristic searching process, the A* algorithmwas developed
and achieved higher efficiency compared to the Dijkstra
algorithm [12–15]. The A* method has been applied in an
urban area, avoiding the problem of quadcopters crashing
into buildings by constructing constraints of obstacles [16].
Many improved path planning algorithms are developed
based on the A* algorithm. Considering the physical
characteristics of aircraft, the A* algorithm is improved
with extra constraints such as heading [17] and turning
[18], resulting in a more appropriate route for aircraft.
The A* path planning method is also capable of including
extra information from the environment to determine the

optimal path. A cost map of the environment can be
designed to evaluate different factors during the flight,
such as the operating risk [19, 20] and signal strength
[21, 22]. By merging the cost map into the A* cost
function, an ideal path can be determined, adapting to the
operating requirements for different environments. Since
A* normally requires high computation, a light-assisting
method is proposed to aid A* by searching fewer grids
[23]. In addition, its dynamic searching speed is improved
in [24, 25]. The A* algorithm is efficient for searching a
global optimized path and convenient for adapting to the
requirements for different environments by adjusting the
cost function. The major limitation is the computer load
and memory usage when addressing large environments
[26]. Another popular path planning approach is to build
artificial potential fields in the environment as attractive and
repulsive fields for destinations and obstacles, respectively.
The path will be planned by the displacement due to
the overall force. This algorithm has been used to avoid
obstacles with a low computational load, enabling it to be
more likely to operate in real-time [27]. Its improvements
are also developed by different researchers. New potential
field methods are developed to improve controllability for
complex environments [28] and to cooperate with sensor
detection for real-time indoor operation [29]. However, the
potential field method greatly suffers from the local minimal
issue [10]. The cancellation of the force results in the aircraft
failing to reach the destination and becoming trapped in
the middle [30]. Another path planning approach such as
the genetic algorithm [31] is developed based on genetic
characteristics to determine the optimal path. The genetic
algorithm is a nondeterministic algorithm that is able to
cope with the ill-behaved path planning problem, especially
for a dynamic or gradient information-lacking environment
[32]. Although it has robust performance, the genetic
algorithm is time-consuming with a high computational
load [33]. The genetic algorithm may even be unable to
obtain the global optimal solution on time because of the
premature convergence issue .[34]. Performance analysis
and review of the various path planning methods can be
found at [35]. In this study, the path planning is based
on a predicted positioning error map and does not require
real-time onboard processing. The complex distribution
of the positioning error level may easily cause the local
minimal problem for a potential field method. Meanwhile,
the positioning error prediction map is usually effective
within an hour, which is suitable for a medium computation
method. Based on the above comparison of different path
planning approaches, the A* method is selected in this study
due to its robustness and moderated computation load.

The target application of this study is parcel delivery
using autonomous quadcopters. A quadcopter has the
advantages of flexibility of its movement and ease of
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control. In general, the flight route of a quadcopter is in
a fixed altitude. This fixed-height route is able to simplify
the mission and movement of a quadcopter. In this paper,
as shown in Fig. 1, the process of a quadcopter flying to
the destination from the starting point will be planned as
follows: 1) take-off and climb to a certain height; 2) fly
based on a pre-planned route at the selected height; and
3) reach the destination horizontally and land vertically.
The vertical movement of the UAV is usually based on
a standalone barometer [36, 37]. In the other words, the
GPS positioning error will only slightly influence the
UAV in the operation of take-off and landing. Moreover,
the UAV altitude is commonly measured by multi-sensor
integrated solutions such as the barometer aided attitude and
heading reference system (AHRS), which is able to achieve 2
meters of nominal height accuracy [38]. Therefore, the path
planning will be processed on a 2Dmapwith a selected height.

Regarding the 2D path planning, this paper uses A* path
planning cooperating with a predicted GNSS localization
error map and building model to plan an optimal path in an
urban area. The first result is reported in [39]. By predicting
the satellites’ positions through almanac data and simulating
signal reflection paths by a 3D building model and ray-
tracing technique, the multipath effect and non-line-of-sight
(NLOS) reception can be modeled. After processing the
predicted line-of-sight (LOS) and the multipath signals
of a specified location, its positioning error can also be
predicted. By processing all locations within the target
area, the positioning error map can be generated. Because
the error map is based on prediction, an offline planning
method is preferred. We hence propose a new A* algorithm
to take advantage of the predicted error distribution. The
positioning error on each grid is used as an additional
factor in the cost function. It means the higher positioning
error denotes the larger traveling cost. By considering

the positioning error, the UAV is able to find a path
between a start point and destination that avoids both the
obstacles (building in urban areas) and hazardous GPS-
biased area at the same time. By comparing the result
with the conventional A* algorithm and the conventional
potential field method, the proposed A* path planning can
plan a path that experiences less GPS error, namely, a path
that is safer with a relatively short traveling distance for the
UAV.

This paper is composed of 5 sections. In Section 2, the gen-
eration of the predicted positioning errormap is introduced. In
Section 3, the details of the proposed A* path planning algo-
rithm based on the error map are presented. In Section 4, the
verification of the multipath prediction model is shown. The
result of the proposed path planning algorithm is evaluated.
Finally, conclusions are drawn in Section 5.

2 Prediction of GPS Positioning Error
in an Urban Canyon

GPS positioning performance is affected by several fac-
tors, including satellite clock/orbit bias, atmospheric delays,
receiver thermal noise andmultipath delays [40]. Themeasure-
ment errors originate from time delays due to the effect of
the error sources mentioned above. The equation is given as
follows:

δtD = δtatm + δtnoise + δtmp + δtsat (1)

The overall time offset δtD is the sum of different delays,
including the atmosphere errors δtatm, the receiver thermal
noise δtnoise, multipath offsetδtmp and satellite clock and
orbit bias δtsat . There are several models to mitigate
or eliminate the errors above. The atmospheric delay is
caused from the signal traveling through the ionosphere and

Fig. 1 Proposed flight
procedure to deliver a parcel by
an autonomous quadcopter
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troposphere layers, where the satellite signals are influenced
by free electrons and free-propagation effects. Fortunately,
these errors can be eliminated by a differential GPS
technique (DGPS) [41]. In general, the receiver thermal
noise in the current device is less than the order of a
decimeter, which is negligible compared to other errors. The
multipath error is caused by receiving the reflected signals.
Due to the extra traveling distance from reflection, the
signal experiences a transporting time error, which further
influences the correctness of the pseudorange measurement.
The multipath effect is highly dependent on the surrounding
environment; hence, DGPS cannot mitigate it. There are
several methods to coarsely mitigate multipath effects,
such as sophisticated discriminator designs and hardware
enhanced antennas [42]. However, there is still no complete
solution to eliminate this effect. When the UAV operation
area is settled in an urban area with many high surrounding
buildings, the multipath effect will be very severe, resulting
in it becoming the dominant factor for GPS positioning
accuracy. In this study, we focus on the positioning error
introduced by the multipath effect. The first goal of this
paper is to construct a predicted GPS positioning error map
in a target area. To accomplish this, we were inspired by
a previously developed 3D map aided by GPS positioning
methods [43]. The 3D building model used is constructed
via Google Earth. We create the outline of the building to fit
in the 3D model in Google Earth. For complicated building
structures with different outlines along their height, the
building is separated into different polygons. The simulated

n

re�l(i)

Fig. 2 Constructed 3-dimensional building model and ray-tracing
simulation

area selected is an urban area in Kowloon, Hong Kong,
which is demonstrated in Fig. 2.

We use the building model and ray-tracing simulation
to track the signal transmission path through a direct and
reflection path. The position of the satellite can be predicted
by the broadcast almanac. Given the satellite and receiver
location, the direct signal transmission path can be easily
determined. The reflection path is simulated by the ray-
tracking technique. We assume that reflection follows the
law of reflection. If we can find a valid reflection point
on the 3D building model, then the reflection path can
be simulated as shown in Fig. 2. If there are multiple
reflection paths that are identified for a single satellite,
then the path with the shortest transporting distance is
regarded as the main multipath effect. This paper not only
simulates the multipath but also NLOS effects. For the
NLOS, its simulation is relatively simple. It is modeled as
the reflection path R

refl(i)
n that subtracts the direct path R

(i)
n

as below:

εrefl(i)n = Rrefl(i)
n − R(i)

n ε
ref l(i)
n ∈ NLOS (2)

where the superscript (i) denotes the index of the satellite
and the subscript n denotes the index of grid points. It is
interesting to note that the NLOS delay can also be modeled
by the elevation angle [44]. In the other words, it is possible
to model without the 3D building model. The multipath
effect on the pseudorange domain is also determined by the
design of the correlator in the receiver code tracking loop.
Different correlator behaviors act differently in terms of the
multipath noise envelope [45]. This paper selects a strobe
correlator [46] to model its noise envelope NE, which is
modeled based on correlator spacing and the relative signal
strength of reflection compared to LOS. Heuristically, we
assume that the multipath effect is approximately 6 dB

Fig. 3 Assumed noise envelope function of the strobe correlator with
0.2 chip spacing for GPS L1 C/A signal
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weaker than the LOS signal, and the spacing of the strobe
correlator is 0.2 chip. The multipathNE function based on
this assumption is depicted in Fig. 3. The x-axis denotes
the multipath relative delay, which is R

refl(i)
n − R

(i)
n , and the

y-axis is the multipath delay in the pseudorange domain.
Thus, the multipath can be modeled as shown below.

εrefl(i)n = NE
(
Rrefl(i)
n − R(i)

n , θdiff

)
ε
ref l(i)
n ∈ Multipath

(3)

where θdiff denotes the carrier phase difference between
the direct and reflected signal. It is very difficult to estimate
the carrier difference by ray-tracing because it requires the
building model at centimeter-level accuracy [Lau Lawance].
Thus, this method only considers the carrier difference of
0◦; in other words, the upper bound of the NE function to
cover the multipath error

Comparing (2) and (3), the NLOS is solely based on the
additional traveling distance. Thus, it would induce a larger
positioning error compared to the multipath. By means of
the strobe correlator, the multipath with a large reflecting
distance will only induce a small pseudorange error [45].
Focusing on the multipath effect on positioning error and
neglecting other errors, the simulated pseudorange is given as:

ρ(i)
n = R(i)

n + εrefl(i)n (4)

where ρ
(i)
n is the predicted pseudorange, determined as the

sum of the geometric distance R
(i)
n , which is determined

via the ground reference location P
(i)
n the satellite position

X
(i)
n and the multipath signal delay distance ε

refl(i)
n . After

simulating all the available satellites, the pseudorange can
be used to calculate the predicted GPS positioning result.
In this study, we assume the user device clock and the
satellite clocks are perfectly synchronized, and hence, the
positioning calculation is given as:

�ρ(i)
n = ρ̂(i)

n − ρ(i)
n (5)

�xn = (HT
n Hn)

−1
HT

n �ρ(i)
n (6)

xn,predict = x̂n + �xn (7)

where the approximate receiver position location is assumed
as x̂(i) with an unknown difference �x(i) to the actual loca-
tion. For the ith satellite, ρ̂(i)

n denotes the geometric distance
between the approximate location and the ith satellite. ρ

(i)
n

denotes the predicted pseudorange. The pseudorange dif-
ference �ρ

(i)
n can be calculated. With the direction cosine

matrix of pseudorange Hn and the pseudorange differences,
the difference �xn can be solved via the iterative least
square method. The predicted positioning solution xn can
be determined by correcting the approximate location with
�xn. After obtaining xn,predict for the nth grid point, the
positioning error ε

pe
n due to the multipath effect can be cal-

culated by comparing it with the real nth location xn,real as
follows:

ε
pe
n = ∥∥xn,predict − xn,real

∥∥ (8)

where ‖·‖ denotes norm calculation. Repeating the process
for all the grids in the target area, the map of the predicted
positioning error can be finally obtained as shown in Fig. 4
below. The color of the right panel of Fig. 4 denotes the
2D positioning error of each grid. It can be seen that the
positioning error exceeds 20 meters in most of the places of
our testing area.

3 Offline Path Planning Based
on the Predicted Positioning Error Map

To ensure the safety of the public, a path planning
method that can identify the obstacles (buildings in
our application) in the operation area is a minimum
requirement. Furthermore, the path planning algorithm
should also consider other factors, such as the shortest path

Fig. 4 Demonstration of the prediction of a 2D GPS positioning error map
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Fig. 5 Flowchart of the proposed 3D path planning for a UAV based
on a positioning error map. h represents the operating height

that experiences a minimum GPS positioning error. The
main process of the overall path planning is shown in Fig. 5.
The range of permitted height for the UAV is defined from
h0 to hmax . After being provided with the starting take-off
point, destination and h0, the previous predicted positioning
error map is used to aid 2D path planning. The path planner
will estimate an ideal path for each height until reaching
the hmax , which is often restricted by governmental law. For
example, UAV operation in Hong Kong is limited to under
approximately 90 meters, as shown in Fig. 1. Afterwards,
we can compare the performance of the optimal path on
each height. Finally, the overall path of the selected height
can be obtained and output as our planned ideal path for the
UAV operation. The proposed 2D path planning algorithm
is introduced in Section 3.1. The height selection algorithm
is detailed in Section 3.2.

3.1 2D Path Planning Based on A* Algorithm

The A* algorithm is a widely used path planning method to
avoid obstacles and reach the destination. This method is a
global scanning method to obtain a globally optimal path.
The overall process of the A* algorithm is shown in Fig. 6.

The conventional A* algorithm constructs a group of
nodes (grid points) on the operating map. From the starting
node, the A* method identifies whether the neighboring

Fig. 6 Flowchart of a conventional 2D A* path planning algorithm

node is available and places all available nodes into an
‘open’ list. Then, it calculates the cost of all available nodes
in the ‘open’ list. The calculation is shown as:

F (n) = G (n) + M(n) (9)

G (n)=G (n − 1) + ‖xn − xn−1‖ (10)

where n denotes the nth predicted node. G(n) is the
minimum traveling distance from the starting node to the
current node, and M(n) is the Manhattan distance from
the current node to the destination node. The A* algorithm
collects all the available nearby nodes into an open list,
and the nodes on obstacles will be considered unavailable
nodes. By comparing the overall cost value F(n) for the
nodes in the ‘open’ list, the lowest overall cost node will
be selected as the next current node and shifted from the
‘open’ to the ‘close’ list. By calculating the cost value again
and selecting the next step until the current node reaches the
destination, the ‘close’ list stores all the selected nodes when
reaching the destination, and the ideal path can be obtained
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via extracting nodes from the destination node backwards in
the ‘close’ list.

With the aid of the predicted positioning error map, the
positioning error for each node is included in the cost func-
tion of the A* algorithm. To ensure the safety of UAVs in an
urban area, the major task is to avoid having UAVs crash
into buildings. Due to the multipath effect, the UAV can still
make contact with buildings by mistakenly recognizing their
location. To decrease the potential contacts between UAVs
and buildings, the number of contact points CP is defined.
It is introduced as shown in Fig. 7. For a specific location,
its predicted positioning error map is used as a radius of the
blue circle, representing the potential GPS positioning error
in that specific grid point. When the error circle overlaps
with a building, it is considered as one contact point. The
number of contact points for a specific location is summed
up as CP. As shown in Fig. 7, the error circle contacts two
neighboring buildings as indicated by the red arrow, namely,
CP is 2 in this case. The algorithm of the CP calculation is
described as follows.

The same CP calculation can be performed for all
locations within the simulated area. Thus, a distribution map
of CP values can be obtained.

The contact number is incorporated into the A* path
planning as a part of the cost function. The equation of the
traveling cost value G(n) is given as:

G(n) = [
(1 − ka) · ‖xn − xn−1‖ + ka · μa · CP (n)

]+G(n−1) (11)

where ‖xn − xn−1‖ is the distance between the current node
and the next available node and μa is a mapping constant
to map the effect from the contact point into meters. In this

Fig. 7 Contact point (indicated as red arrow) between buildings and
error circle (blue circle) on a specific grid point. In this case, CP is 2

Algorithm 1 Calculation of the number of contact points
(CP)

STEP1: Input current location xn and the positioning error
ε
pe
n at this location

STEP2: for the j th building model in the target area
STEP3: Initialize contact point number of the j th building

at nth location cpn,j= 0
STEP4: Obtain all the corner locations of the j th building

and generate several points between two adjacent
corner locations

STEP5: for the lth generated points of the j th building
xj,l

STEP6: if
∥∥xn − xj,l

∥∥ ≤ ε
pe
n then

STEP7: The contact point number of the j th building at
nth location cpn,j= 1break;

STEP8: end if
STEP9: end for of the lth generated points

end for of the j th building model
STEP10: The total contact point number at the nth location

for J total buildings is CP(n)=∑J
j=1 cpn,j

paper, μa is heuristically set as 3.7. The weighting ka can
balance the proportion between a shorter traveling distance
and a lower contact number, which adapts to different flight
requirements. The performance can further adapt to the
flight requirements by tuning the weighting value. In this
paper, we set ka as 0.7. G(n − 1) is the traveling cost of
the parent node with regard to current nth node. To observe
(11), the contact numbers can increase the cost value of
each approaching available node. Thus, the path with a
large contact number will be avoided by the proposed A*
algorithm. G (n) will be further calculated into the overall
cost F (n) as (9) to determine the ideal path with the lowest
cost. Using the proposed A* path planning algorithm, the
ideal 2D path that avoids both the obstacles and the area
with a large GPS positioning error can be planned.

3.2 3D Height Selection

To select the ideal height for the UAV operation, the
proposed 2D A* path planning will first be applied to each
height of the operating area, as shown in Fig. 5. Therefore,
the optimal 2D path at each height can be obtained. The
performance of the planned path of each height should be
evaluated by both the total traveling distance and the total
number of potential contact points. We define a cost function
P(h), which is a function of height, to determine which
height to at which to operate. Its definition is given as:

P (h) = (1 − ka) · d (h)

d0
+ka · μa · ¯CP (h) (12)
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d (h) =
N(h)∑
nh=1

∥∥xnh
− xnh−1

∥∥ + ‖h − hstart‖ + ‖h − hdestination‖ (13)

d0 = ‖xstart − xdestination‖ (14)

¯CP (h) = 1

N (h)

N(h)∑
nh=1

CP(nh) (15)

where d (h) denotes the traveling distance including both
the horizontal and vertical movement on the height h

by following the planned path and d0 denotes the direct
distance between the starting point and destination. We
consider that the lower the cost function is, the better the
performance that can be obtained. Good performance means
the path can avoid crashing into buildings and reduces the
traveling distance at the same time. Hence, we calculate the
cost function for the planned path at each height, and then
select the height with the lowest cost function as the ideal
operating path for the UAV, as shown in (16).

hideal = argP (h) (16)

Finally, the optimal path of the selected height and vertical
movement for the selected height will be combined as the
planned 3D path for UAV operation.

4 Experimental Results and Discussions

4.1 System Architecture of the UAV Applying
the Proposed Path PlanningMethod

The system architecture is shown in Fig. 8 The operations
are divided into online and offline phases. In the offline
phase, GNSS ephemeris data and the 3D building models
of the operating periods and areas should be first prepared.
By applying the raytracing algorithm, the predicted GNSS
pseudorange can be simulated for the operating area with
different heights during a specific time. The predicted
measurements are processed with least square positioning
The predicted positioning solutions of all locations in the
operating areas can be simulated. Afterward, the positioning
errors for all locations are compared with the true position

Fig. 9 u-blox NEO M8T GNSS module with antenna

to generate a positioning error distribution map for different
heights. Then, the proposed A* path planning algorithm is
applied for the error map of each height to plan a path that
optimizes both distance and safety (contact number) on each
height. Finally, the optimal 2D + height path that fulfils the
requirement is determined by the route with the lowest total
cost. After planning the optimal path in the offline phase,
the path is sent to the UAV to guide the online navigation.

4.2 Verification of the Prediction of GPS Positioning
Error

To verify the prediction of the GPS positioning error,
experiments are conducted to collect real GPS data in the
target area. In this study, we use u-blox NEO-M8T GNSS
module as shown in Fig. 9 to receive GPS positioning data.
u-blox is a commercial grade receiver that is popular for
UAV applications.

We selected 2 typical locations, intersection and canyon,
in an urban canyon to collect data for 30 minutes. The
receiver is set at the height of 2 meters to avoid disturbance
from pedestrians. The experiment and predicted positioning
result are shown in Figs. 10 and 11, respectively. The
intersection is in a relatively open area. As shown in Fig. 10,
the result of the experiment shows the positioning error
is smaller compared to that in the narrow canyon. The
left side of Fig. 10 shows that the predicted error is very
similar to the actual positioning error. The narrow canyon
is surrounded by high buildings, which resulted in a larger

Fig. 8 System architecture of
the UAV applying the proposed
path planning method
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Fig. 10 Experimental GPS
positioning result for 30
minutes. The left and right
panels show the results in the
intersection and the narrow
canyon, respectively. Red spots
show the positioning result, and
the blue balloon shows the real
GPS location

Fig. 11 Predicted positioning
error for the experiment location.
The left and right panels show
the results in the intersection and
the narrow canyon, respectively.
The color bar denotes the
positioning error in meters

Table 1 Comparison between actual and predicted GPS positioning error

Experiment Prediction

Mean positioning error (m) Max positioning error (m) Mean positioning error (m)

Intersection (in Fig. 10) 6.38 32.62 5.25

Narrow canyon 1 (in Fig. 10) 24.68 61.81 42.33

Open-sky area 2.64 4.74 0.01

Urban area 1 8.04 28.04 9.67

Urban area 2 14.79 43.53 15.64

Narrow canyon 2 43.05 137.85 42.34

Narrow canyon 3 47.35 76.36 49.06
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positioning error compared to the intersection one. The
predicted error in the narrow canyon in also large, agreeing
with the experimental result. The comparison between the
real (experimental) and predicted GPS positioning error is
listed in Table 1. While the device in the experiment could
be disturbed by other factors such as foliage, our prediction
only considers the multipath effect. Thus, it is reasonable
that the experimental error may larger than the prediction
error. In general, the overall tendency of the positioning

error is similar between prediction and experiment. As a
result, the predicted GPS error is verified to model the
positioning error distribution.

4.3 Processing the Predicted Positioning Error Map

Using the proposed UAV path planning algorithm, the 2D
positioning error maps at different heights are acquired,
as shown in Fig. 12. As the height increases, the overall

Fig. 12 2D positioning error map at heights between 14 and 62 meters. The resolution is 6 meters for each layer. The color in the figures denotes
the predicted positioning error
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Fig. 13 Demonstration of the
relationship between positioning
and flight height. Blue and red
lines indicate the results of
locations at an open area and
nearby buildings, respectively

positioning error is reduced. This is due to the lessened
multipath effect and the increasing number of direct signals
at higher altitude. When the height is over 50 meters, the
predicted error for most of the area is reduced to almost zero
since most of the buildings are built within the height of
50 meters in this experimental area. We select two grids to
better demonstrate the decrease of GPS positioning error, as
shown as Fig. 13. In the case of an open field (blue line), the
multipath signal ratio is increased at the height of 25 meters.
Then, it continues decreasing as the height increases. The
positioning error also follows the same tendency. In the case
of the grid nearing the buildings (red line), the positioning
error is large on the ground. It starts to decrease after
exceeding 22 meters in height. The error slightly increases
between 37 and 47 meters in height due to the increase
in the multipath ratio and total signal. When the height
is increasing, the positioning error can increase in a few
situations. This is due to the receiver receiving more NLOS
signal at the lower altitude. Thus, the ratio of the multipath

Fig. 14 Conventional and proposed A* path planning algorithm based
on a positioning error map. Obstacles (buildings) are constructed as
the white area. The color bar denotes the positioning error in meters

signal is increased, resulting in a larger error. Thus, the
multipath effect cannot always be considered to decrease as
the flying height increases. In the other words, it may not
always follow the rule of the higher the better. This paper
uses path planning performance to select the ideal height for
operation, as described in Section 3.2.

4.4 Evaluation of the Proposed 2D Path Planning
Methods

There are three algorithms that were compared:

1. Conventional A* algorithm – using building informa-
tion as an obstacle

2. Conventional potential field method – using building
information

3. Proposed A* algorithm – using both building informa-
tion and the predicted GPS positioning error map

To apply the proposed path planning algorithm, the
positioning error map is predicted for the operation area
as shown in Fig. 14. The path planning result of the
conventional A* algorithm is shown in Fig. 14. The flight
route starts from the star node to the cross node as the
dashed line. Without considering the GPS positioning error
in path planning, the route is planned directly to the
destination, avoiding buildings. The UAV following the
planned route may fly through a hazardous zone, such as
the red and yellow zones in Fig. 14. The red and yellow
zones represent the area where the GPS error exceeded 60
meters. The UAV may mistakenly estimate its location and
fly towards the obstacles, causing aircraft to crash when
flying through these areas. For the case of the proposed
A* algorithm, the path planning result is presented as
the solid line in Fig. 14. The UAV can identify the high
positioning error area and avoid passing through it. The
planned path may experience a longer traveling distance,
but it significantly reduces the experienced positioning error
in its path. The comparison between the conventional and
proposed A* algorithms is shown in Fig. 15. The number
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Fig. 15 Contact point number and positioning error comparison between the conventional and the proposed A* algorithms. The x-axis denotes
the percentage of the route finished

of contact points experienced and the positioning error
of the proposed A* algorithm are significantly decreased
compared with the conventional A*. In brief, the proposed
A* algorithm is able to plan a path with fewer multipath
effects, which means traveling on a safer path for UAV
operation in an urban area. The performance of each
algorithm is listed in Table 2.

The potential field method has a better performance than
the A* algorithm in terms of traveling distance. From the
point of view of safe operation, the proposed A* algorithm
designed a route that experienced less GPS positioning
error. It results indicate that the potential of contact with
buildings (the probability of a crash) is also lower compared
to other methods. However, the proposed method requires
longer traveling distance to reach the destination. The
potential field method has a major limitation, the local
optimal problem. This phenomenon usually occurred where
the complex geometry of buildings was encountered. Based
on the reasons above, we concluded that the proposed A*
algorithm is preferential for processing the off-line path
planning in an urban area.

4.5 Evaluation of 3D path Planning Result

The 3D path planning means selecting a height layer with
the best 2D planning, as introduced in Figs. 1 and 5. The

conventional and proposed A* algorithms are evaluated in
this subsection. A typical UAV urban transport scenario,
with the UAV starting from a ground location and traveling
to another ground destination, is tested. The results of the
2D path at different heights are listed in Table 3.

In regard to the observations in Table 3, the experienced
positioning error and potential contact number decreased
as the height increased. Namely, the risk is smaller when
the UAV flies higher. Note that the positioning error during
the vertical movement can be neglected because barometer-
aided AHRS are usually implemented for the estimation of
the UAV’s flying altitude. On the other hand, the traveling
distance is increased as the height is increased because the
vertical traveling distance is also considered. By applying
the defined cost function P(h), the compromise between the
traveling distance (cost) and the potential contact number
(risk) can be determined. The minimum P(h) of the
conventional A* is 1.492, which occurred in the layer of 80
meters in height. The proposed A* achieves 0.627 of the
minimum P(h), which occurred in the layer of 45 meters
in height. It is important to note that there is no potential
contact point if it flies the path planned by the proposed
A* algorithm. Thus, the path planned by the proposed A*
not only traveled less distance but also traveled more safely.
The planned 2D paths at 80 and 45 meters are shown in the
left and right panels of Fig. 16, respectively. In Fig. 16, if

Table 2 Performance
comparison between different
path planning algorithms

Traveling distance (m) Mean positioning error (m) Mean contacting point number

A* 183.64 51.92 3.79

Potential field 164.10 49.91 3.29

Proposed A* 241.41 33.95 2.18
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Table 3 Performance of the 2D path at different height layers

Conventional A*

Height (m) 15 25 35 40 45 50 60 70 80 90

Traveling distance(m) 124.6 138.3 158.3 168.3 173.5 183.5 203.5 223.5 243.5 263.5

Mean experienced positioning error (m) 17.29 12.54 8.36 5.55 5.05 3.98 3.93 3.79 3.57 3.37

Mean contact number 1.073 0.921 0.461 0.427 0.360 0.348 0.348 0.326 0.281 0.281

P(h) 3.300 2.927 1.729 1.667 1.498 1.497 1.557 1.555 1.492 1.552

Proposed A*

Height (m) 15 25 35 40 45 50 60 70 80 90

Traveling distance (m) 363.37 241.97 197.53 201.43 210.68 224.43 241.75 259.69 267.17 282.53

Mean experienced positioning error (m) 6.98 7.70 3.43 4.45 3.64 3.08 3.04 2.91 2.41 2.01

Mean contact number 0 0.106 0.062 0.026 0 0 0 0 0 0

P(h) 1.082 1.009 0.757 0.671 0.627 0.668 0.720 0.773 0.796 0.841

Bold is highlighting the selected height for both conventional and proposed A∗

the height of a building is higher than the selected height
of the planed path, the building will be plotted as a white
one. Conversely, when a building is lower than the selected
height, it will be plotted as a transparent one. As shown in
Fig. 16, there is a high building located on the right side
of the planned route. This building reflects GPS signals,
resulting in approximately 20 meters of multipath error
in its vicinity. The path planned by the proposed method
intelligently avoided the area. This capability is important,
especially in flying UAVs in an urban area. It can reduce the
risks of UAV operation.

Different UAV applications have different operating
requirements. For example, an urgent medical delivery
places more emphasis on distance or asset transportation
considers the reliability of operations more than other
features. The value of Ka in the cost function indicates
the weighting between travel cost and risk. The planning
results using different values of Ka are shown in Fig. 17.
The corresponding traveling distance, mean contact number
and the cost P(h) are shown in Table 4. In the case of
Ka = 0.7 (the default setting), the planned path is prone
to focus on safety. As a result, it selects the height at 60

meters, which has a zero contact number. When reducing
Ka to 0.6, the proposed method will determine a height with
a balance between the traveling cost and risk. For the case of
Ka = 0.5, the planned path is prone to focus on shortening
the distance.

4.6 Verification of the Proposed Path Planning
Algorithmwith a Real Dataset

The Hong Kong civil aviation department prohibits UAV
operation in urban areas. A feasible approach to verify
the proposed method is to conduct an experiment on the
ground. In the other words, the quadcopter is carried by a
pedestrian to collect the real data and use it to verify the
approach. First, the starting position and the destination are
selected. GNSS ephemeris is downloaded from the Internet
to simulate the GNSS measurements using the 3D building
model and the ray-tracing algorithm. The simulated GNSS
measurements of different locations are applied with the
least square positioning method to generate a positioning
error distribution map. Based on the positioning error map,
two different paths can be planned by both the conventional

Fig. 16 Results of an operation
scenario where the UAV starts
from the ground and lands on
the ground. Left and right panels
demonstrate the conventional
A* and the proposed A*
methods, respectively
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Fig. 17 The planned path results
when using different values of
Ka. (a), (b) and (c) show the
results with Ka equal to 0.5, 0.6
and 0.7, respectively

Table 4 Performance
comparison between different
Ka used in the proposed A*
path planning method

h (m) d(h) (m) ¯CP(h) P(h)

Ka = 0.5 Ka = 0.6 Ka = 0.7

15 112.45 0.14 1.404 1.224 1.043

20 119.40 0.08 1.363 1.146 0.929

25 113.29 0.11 1.373 1.183 0.993

30 100.81 0.15 1.318 1.168 1.019

35 106.86 0.18 1.435 1.284 1.133

40 153.46 0.08 1.714 1.427 1.141

45 126.29 0.09 1.463 1.238 1.012

50 127.57 0.08 1.462 1.231 1.001

55 130.77 0.07 1.476 1.235 0.994

60 140.77 0 1.443 1.155 0.866

65 150.77 0 1.546 1.237 0.989

Fig. 18 The paths planned by
(a) the conventional A*
algorithm and (b) the proposed
A* algorithm with the predicted
GNSS positioning error map
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Fig. 19 The real GNSS
positioning result provided by
the GNSS receiver embedded on
the quadcopters. (a) and
(b) show the GNSS solutions
collected in the paths planned by
(a) the conventional and (b) the
proposed A* algorithm,
respectively

and the proposed A* algorithms. Afterward, two pedestrians
carry two of the same type of devices and follow the
planned paths from the two A* algorithms to collect the
GNSSmeasurement. Finally, the collected data are analyzed
to compare with the simulation results in terms of the
mean positioning error along the two planned paths. The
paths planned by the conventional and the proposed A*
algorithms are shown in Fig. 18. The GNSS positioning
results of the real dataset collected by following the planned
paths are shown in Fig. 19. The comparison between the
simulation and real experiment is provided in Table 5.

As shown in Fig. 18, the proposed A* algorithm can plan
a safer path to avoid high GNSS error area compared with
the direct path planned by the conventional A* algorithm.
The mean experienced positioning errors are 2.62 and
19.43 meters for the proposed and conventional algorithms,
respectively. By following the planned paths in the real
field test, the GNSS solution with 4.94 meters of mean
positioning error is collected in the path planned by the
proposed A*, while 17.52 meters of that is collected in the
path of the conventional A*. As a result, the predicted and

collected positioning errors are very similar, which verifies
the feasibility of the proposed A* algorithm in planning
safer paths for UAV operation in urban areas.

5 Conclusions

In this study, the multipath effect of GPS positioning
in an urban area is modeled and predicted using a 3D
building model, ray-tracing simulation and the broadcast
almanac. With these tools, the GPS positioning result can
be predicted. The prediction is verified by comparing it with
the actual GPS positioning error at an intersection and a
narrow canyon in the urban area of Kowloon, Hong Kong. In
the verification, the actual and predicted positioning errors
have a similar level and tendency. This paper proposes
a new A* path planning algorithm considering both the
maps of the obstacle and the potential GPS positioning
error. According to the experimental result, the proposed
algorithm is able to determine an ideal path to avoid being
positioned in a hazardous area. Thus, it is more preferable

Table 5 Comparison of the mean predicted positioning error based on the proposed GNSS positioning error map and the mean real collected
positioning error calculated by the GNSS receiver

Simulation Experiment

Conventional A* Proposed A* Conventional A* Proposed A*

19.43 meters 2.62 meters 17.52 meters 4.94 meters
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for the safety of an operation compared with other path
planning algorithms, such as the conventional A* and the
potential field methods. In the UAV mission, we suggest
that the quadcopter first performs its take-offs vertically
to a certain height. Then, it can fly horizontally to the
2D position of the destination. Finally, it lands vertical
to the destination. Based on this idea, a new 3D path
planning method is developed using the result of the 2D A*
algorithm. Typical UAV transporting scenarios are tested.
Comparing the results of the conventional and proposed 3D
A* algorithms, the latter approach achieves higher safety
at a lower height. In other words, the proposed A* path
planning method outperforms the conventional technique.

However, the presented method still has the following
drawbacks: 1) The high computational load for the GPS
error prediction map required preprocessing before the
flight; 2) The planned path may have had a sharp turning
angle, which introduced an energy loss for the quadrotor.
Additionally, other UAV platforms might not be valid for
using the proposed path planning due to the sharp turning
issue; and 3) The proposed method is an offline path
planning approach. The online path planning method is
still required to adjust to changes in the environment.
Regarding the drawbacks, future work will endeavor to
improve the trajectory smoothness in the path planning
algorithm and to integrate sensors for dynamic detection.
On the other hand, the lower bound of the positioning error
for different GNSS receivers should also be different when
applying the prediction of GNSS positioning error in an
actual operation. The relationship between the positioning
error lower bound and different GNSS receiver types is
also worthy of additional investigation. Another interesting
concept for future work is to develop a new path planning
method to optimize the 3D flight path instead of the 2D +
height approach proposed in this paper.

Acknowledgments The authors acknowledge the fund of “Funda-
mental Research on Free Exploration Category of Shenzhen Munic-
ipal Science and Technology Innovation Committee (Project No.
JCYJ20170818103653507)” to support this research.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Erdelj, M., Natalizio, E.: UAV-assisted disaster management:
applications and open issues. In: 2016 International Conference
on Computing, Networking and Communications (ICNC) (2016)

2. Cistone, J.: Next century aerospace traffic management: the sky is
no longer the limit. J. Aircraft 41(1), 36–42 (2004)

3. Chiang, K.-W., Duong, T., Liao, J.-K.: The performance analysis
of a real-time integrated INS/GPS vehicle navigation system with
abnormal GPS measurement elimination. Sensors 13(8), 10599
(2013)

4. Kaplan, E., Hegarty, C.: Understanding GPS: Principles and
Applications. Artech House (2005)

5. Hsu, L.T., et al.: Multiple faulty GNSS measurement exclusion
based on consistency check in Urban Canyons. IEEE Sensors J.
17(6), 1909–1917 (2017)

6. Christian, E., Lasse, K., Heiner, K.: Real-time single-frequency
GPS/MEMS-IMU attitude determination of lightweight UAVs.
Sensors 15(10), 26212–26235 (2015)

7. Birk, A., et al.: Safety, security, and rescue missions with an
unmanned aerial vehicle (UAV). J. Intell. Robot. Syst. 64(1), 57–76
(2011)

8. Song, Y., et al.: Towards autonomous control of quadrotor
unmanned aerial vehicles in a GPS-denied urban area via laser
ranger finder. Optik.-Int. J. Light Electron Opt. 126(23), 3877–
3882 (2015)

9. Leishman, R., McLain, T., Beard, R.: Relative navigation
approach for vision-based aerial GPS-denied navigation. J. Intell.
Robot. Syst. 74(1), 97–111 (2014)

10. Zhu, H., Xin, H., Zheng, C.: Research on UAV path planning.
Appl. Mech. Mater. 58–60, 2351 (2011)

11. Medeiros, F., Silva, J.: Computational modeling for automatic path
planning based on evaluations of the effects of impacts of UAVs
on the ground. J. Intell. Robot. Syst. 61(1), 181–202 (2011)

12. Moon, S., Oh, E., Shim, D.: An integral framework of task assign-
ment and path planning for multiple unmanned aerial vehicles in
dynamic environments. J. Intell. Robot. Syst. 70(1), 303–313 (2013)

13. Dong, Z., et al.: A Hybrid Approach of virtual force and A*
search algorithm for UAV path re-planning. In: 2011 6th IEEE
Conference on Industrial Electronics and Applications (2011)

14. Khuswendi, T., Hindersah, H., Adiprawita, W.: UAV Path
planning using potential field and modified receding horizon
A* 3D algorithm. In: Proceedings of the 2011 International
Conference on Electrical Engineering and Informatics (2011)

15. Lin, C.L., et al.: Flight path planning for mini rotor UAVs. In: 11th
IEEE International Conference on Control & Automation (ICCA)
(2014)

16. Meister, O., et al.: Adaptive path planning for a VTOL-UAV. In:
2008 IEEE/ION Position, Location and Navigation Symposium
(2008)

17. Filippis, L., Guglieri, G., Quagliotti, F.: Path planning strategies
for UAVS in 3D environments. J. Intell. Robot. Syst. 65(1),
247–264 (2012)

18. Xia, L., et al.: Path planning for UAV based on improved heuristic
A* algorithm. In: 2009 9th International Conference on Electronic
Measurement & Instruments (2009)

19. Ten Harmsel, A.J., Olson, I.J., Atkins, E.M.: Emergency flight
planning for an energy-constrained multicopter. J. Intell. Robot
Syst (2016)

20. De Filippis, L., Guglieri, G., Quagliotti, F.: A minimum risk
approach for path planning of UAVs. J. Intell. Robot. Syst. 61(1),
203–219 (2011)

21. Tseng, F.H., et al.: A star search algorithm for civil UAV path
planning with 3G communication. In: 2014 Tenth International
Conference on Intelligent Information Hiding and Multimedia
Signal Processing (2014)

22. Krawiec, B., Kochersberger, K., Conner, D.: Autonomous aerial
radio repeating using an A*-based path planning approach. J.
Intell. Robot. Syst. 74(3), 769–789 (2014)

23. Hawa, M.: Light-assisted a* path planning. Eng. Appl. Artif.
Intell. 26(2), 888–898 (2013)

24. Sun, X., Cai, C., Shen, X.: A new cloud model based human-
machine cooperative path planning method. J. Intell. Robot. Syst.
79(1), 3–19 (2015)

25. Zhan,W., et al.: Efficient UAV path planning with multiconstraints
in a 3D large battlefield environment. Math. Probl. Eng. 2014, 1–12
(2014). https://www.hindawi.com/journals/mpe/2014/597092/cta/

J Intell Robot Syst (2019) 94:219–235234

https://www.hindawi.com/journals/mpe/2014/597092/cta/


26. Kunchev, V., et al.: Path Planning and Obstacle Avoidance for
Autonomous Mobile Robots: a Review International Conference
on Knowledge-Based and Intelligent Information and Engineering
Systems. Springer (2006)

27. Chen, X., Zhang, J.: The three-dimension path planning of
UAV based on improved artificial potential field in dynamic
environment. In: 2013 5Th International Conference on Intelligent
Human-Machine Systems and Cybernetics (2013)
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genetic algorithm and particle swarm optimization for real-time
UAV path planning. IEEE Trans. Ind. Inf. 9(1), 132–141 (2013)

33. Ismail, A., Sheta, A., Al-Weshah, M.: A mobile robot path
planning using genetic algorithm in static environment. J. Comput.
Sci. 4(4), 341–344 (2008)

34. Tsai, C.-C., Huang, H.-C., Chan, C.-K.: Parallel elite genetic
algorithm and its application to global path planning for
autonomous robot navigation. IEEE Trans. Ind. Electron. 58(10),
4813–4821 (2011)

35. Frontera, G., et al.: Approximate 3D Euclidean shortest paths for
unmanned aircraft in urban environments. J. Intell. Robot Syst
(2016)

36. Kim, J.-H., Sukkarieh, S., Wishart, S.: Real-time navigation,
guidance, and control of a UAV using low-cost sensors. In: Yuta,
S.I., et al. (eds.) Field and Service Robotics: Recent Advances in
Reserch and Applications, pp. 299–309. Springer, Berlin (2006)

37. Jan, S.S., et al.: Improving GPS-based landing system perfor-
mance using an empirical barometric altimeter confidence bound.
IEEE Trans. Aerosp. Electron. Syst. 44(1), 127–146 (2008)

38. Albéri, M., et al.: Accuracy of flight altitude measured with low-
cost GNSS, radar and barometer sensors: Implications for airborne
radiometric surveys. Sensors 17(8), 1889 (2017)

39. Zhang, G., Hsu, L.-T.: A new path planning algorithm based on
GNSS localization error map. In: ION GNSS+, Portland (2017)

40. Misra, P., Enge, P. Global Positioning System: Signals, Mea-
surements and Performance, 2nd edn. Ganga-Jamuna Press, Mas-
sachusetts (2006)

41. Parkinson, B.W., Enge, P.K.: Differential gps. Global Positioning.
Syst. Theor. Appl. 2, 3–50 (1996)

42. Veitsel, V.A., Zhdanov, A.V., Zhodzishsky, M.I.: The mitigation
of multipath errors by strobe correlators in GPS/GLONASS
receivers. GPS Solut. 2(2), 38–45 (1998)

43. Hsu, L.-T., Gu, Y., Kamijo, S.: 3D building model-based
pedestrian positioning method using GPS/GLONASS/QZSS and
its reliability calculation. J. Global Navig. Satell. Syst. 20(3),
413–428 (2016)

44. Hsu, L.-T.: Analysis and modeling GPS NLOS effect in highly
urbanized area. GPS Solutions 22(1), 7 (2017)

45. Dierendonck, A.J., Fenton, P., Ford, T.: Theory and performance
of narrow correlator spacing in a GPS receiver. Navigation 39(3),
265–283 (1992)

46. Garin, L., van Diggelen, F., Rousseau, J.-M.: Strobe and edge
correlator multipath mitigation for code. In: ION GPS-96 (1996)

Guohao Zhang received his M.Sc. degree in Mechanical Engineering
from Hong Kong Polytechnic University, Hong Kong. He is currently
a research assistant with Interdisciplinary Division of Aeronautical
and Aviation Engineering, Hong Kong Polytechnic University. His
research interests include GNSS localization, UAV navigation,
robotics, and multi-sensors integration.

Li-Ta Hsu received the B.S. and Ph.D. degrees in aeronautics and
astronautics from National Cheng Kung University, Taiwan, in 2007
and 2013, respectively. He is currently an assistant professor with
Interdisciplinary Division of Aeronautical and Aviation Engineering,
Hong Kong Polytechnic University, before he served as post-doctoral
researcher in Institute of Industrial Science at University of Tokyo,
Japan. In 2012 and 2013, he was a visiting scholar in University
College London, U.K and Tokyo University of Marine Science
and Technology, Japan, respectively. His research interests include
GNSS positioning in challenging environments and localization for
autonomous driving vehicle and unmanned aerial vehicle.

J Intell Robot Syst (2019) 94:219–235 235


	A New Path Planning Algorithm Using a GNSS Localization Error Map for UAVs in an Urban Area
	Abstract
	Abstract
	Introduction
	Prediction of GPS Positioning Error in an Urban Canyon
	Offline Path Planning Based on the Predicted Positioning Error Map
	2D Path Planning Based on A* Algorithm
	3D Height Selection

	Experimental Results and Discussions
	System Architecture of the UAV Applying the Proposed Path Planning Method
	Verification of the Prediction of GPS Positioning Error
	Processing the Predicted Positioning Error Map
	Evaluation of the Proposed 2D Path Planning Methods
	Evaluation of 3D path Planning Result
	Verification of the Proposed Path Planning Algorithm with a Real Dataset

	Conclusions
	Acknowledgments
	Publisher's Note
	References




