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Abstract
Robotic harvesters that use visual servoing must choose the best direction from which to approach the fruit to minimize
occlusion and avoid obstacles that might interfere with the detection along the approach. This work proposes different
approach strategies, compares them in terms of cycle times, and presents a failure analysis methodology of the different
approach strategies. The different approach strategies are: in-field assessment by human observers, evaluation based on an
overview image using advanced algorithms or remote human observers, or attempting multiple approach directions until
the fruit is successfully reached. In the latter approach, each attempt costs time, which is a major bottleneck in bringing
harvesting robots into the market. Alternatively, a single approach strategy that only attempts one direction can be applied
if the best approach direction is known a-priori. The different approach strategies were evaluated for a case study of sweet
pepper harvesting in laboratorial and greenhouse conditions. The first experiment, conducted in a commercial greenhouse,
revealed that the fruit approach cycle time increased 8% and 116% for reachable and unreachable fruits respectively when
the multiple approach strategy was applied, compared to the single approach strategy. The second experiment measured
human observers’ ability to provide insights to approach directions based on overview images taken in both greenhouse and
laboratorial conditions. Results revealed that human observers are accurate in detecting unapproachable directions while they
tend to miss approachable directions. By detecting fruits that are unreachable (via automatic algorithms or human operators),
harvesting cycle times can be significantly shortened leading to improved commercial feasibility of harvesting robots.

Keywords Agricultural robotics · Robotic harvesting · Fruit approach · Human-robot collaboration

1 Introduction

Due to the lack of skilled workforce and increasing labour
costs, advanced automation is required for greenhouse
production systems [11]. The development of autonomous
robots [9, 12, 30, 40] for agriculture aims to fulfill that
requirement. Despite intensive R&D on harvesting robots,
there are no commercial harvesting robots to date [1, 4].
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Robotic harvesting includes several tasks: detecting the
fruit, approaching it, deciding whether the fruit is ripe, and
finally grasping the fruit and detaching it from the stem [13].
The steps are further described below.

Detection is considered to be one of the major limitations
preventing commercialization of autonomous harvesting
robots today with state of the art detection rate limited at
85% [4]. A major problem is the unstructured and dynamic
nature of the agricultural environments [24]: fruits have a
high inherent variability in size, shape, texture, and location;
in addition, variable illumination conditions and occlusion
significantly influence the detection performance. Signifi-
cant research have been focused on developing detection
algorithms [4, 18, 22]. Variable illumination conditions have
been overcome using different techniques such as adap-
tive thresholding (e.g. [41]), adding controlled illumination
(e.g. [17]), applying high dynamic range cameras [37], and
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color modification [39]. Attempts to deal with occlusion
have previously been made using hyperspectral imaging
[28]. However, due to the high cost as well as the weight
of hyperspectral cameras, RGB cameras have become the
most commonly used sensor since fruits, particularly ripe,
tend to be different in color than the background [4]. Addi-
tional solutions include mechanical removal of occlusion
in a temporal manner using air blowing [42], or perma-
nently by pruning leaves. Both methods, from internal
conversations with growers and experts in the field, cause
disagreement in the growers community due to the possible
impact on yield and damage to the plant. Pruning of leaves
also involves a lot of manual work which will impact the
economical feasibility of a harvesting robot.

Detecting the fruit is typically done from an overview
waypoint W0 where several plants are visible [9] (Figs. 1 &
5). This can be done either by using external static sensors or
eye-in-hand cameras mounted on a robotic manipulator [9]
with different algorithms [4, 24, 31, 35, 41, 43]. Viewpoints
analyses in harvesting robotics indicate that only 60% of
the fruit can be detected from a single detection direction
[22]. Improved performance can be achieved by including
a human in the interpretation of the visual information
received from the robot sensors [7, 8].

Approaching the fruit when eye-in-hand cameras are used
is often divided into two steps [6, 19]. The first step involves
moving from the overview waypoint W0 to an approach
waypoint W1 where a single fruit is centerd in the image.
This waypoint is identified using the approach direction θ ′

1,
defined as the angle the robot should use to approach the
fruit from, and distance d to the fruit, as seen in Fig. 1. The
second step uses visual servoing [6, 10] to move towards
the fruit until it is reached. The first step is not always used
[25], but can be introduced to shorten the time it takes to

Fig. 1 Overview waypoint W0 (camera facing front direction) and
approach waypoint W1, identified using the distance to fruit d and
approach direction θ ′

1

reach the fruit since the distance needed for visual servoing
will be shorter, while the second step is used to continuously
refine the fruit position detected from the overview image.
The first step is important so as to reduce the long overall
harvesting cycle time which is another major limitation
preventing commercializing harvesting robots [4]. Planning a
path towards the fruit needs to take into account plant stems
and other obstacles to prevent harming the vegetation [1, 3, 5].

When the fruit has been reached, or sometimes on the
approach towards the fruit, the maturity of the fruit must
be evaluated to determine if it should be harvested or not
[20]. If it is determined to be ripe enough, the fruit must
then be grasped. The accurate grasping of a fruit is a
difficult problem due to the limitations of available robotic
grippers and the inherent difficulties of grasp planning
[14, 34]. Eizicovits and Berman [14] developed geometry-
based grasp quality measures based on 3D point cloud
to determine the best grasping pose of different objects,
including sweet peppers. This kind of solution depends
on detailed 3D sensor information of the object [15, 29]
which is very difficult to achieve in dense greenhouse
environments. Obtaining this information in enough detail
prolongs the harvesting cycle. Some gripper solutions that
do not need an accurate grasping pose have been reported,
but currently the harvesting success is limited [2]. Once
the fruit has been grasped, it must be detached without
damaging the plant or fruit. This operation is fruit dependent
(e.g., for sweet peppers the detaching is performed by
cutting the peduncle of the pepper; for apples a twist and
snap operation is needed).

Given the dense environment and the continuous
detection required when using visual servoing, there is
a high risk of losing the fruit along the approach due
to occlusion, regardless of the detection algorithm used.
To reduce the risk of losing a fruit due to occlusion it
is important to approach it from a waypoint from where
the fruit is not occluded by leaves and other obstacles
along the approach. An approach strategy is the method of
finding an approach waypoint from which visual servoing
will not lose the fruit due to occlusion. The aim of
this paper is to propose different approach strategies and
compare them in terms of cycle times and success rates
and identify failure causes. To focus on the approach
task, standard color segmentation algorithms for detecting
fruits and ripeness are used while limitations of grasping
and detaching the fruits are not regarded. The work is
demonstrated for a case study of sweet pepper (Capsicum
annuum) harvesting in a research greenhouse as part of
the Horizon 2020 EU SWEEPER project (G.A. 644313)1

using a robotic manipulator equipped with an eye-in-hand
camera. Previous limited work in lab conditions revealed

1http://www.sweeper-robot.eu

http://www.sweeper-robot.eu
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that the choice of approach strategy influenced cycle time
up to 40–45% but did not influence the success rate,
which was 100% regardless of strategy [33]. However, in
greenhouse conditions one would expect lower success rate
and cycle times. This paper aims to analyze the effect of the
approach direction on performance. Additionally, a failure
analysis methodology of the different approach strategies
provides several conclusions for implementation in robotic
harvesters.

Previous research on human-robot collaboration for
target recognition has indicated that improved performance
can be achieved by including a human in the interpretation
of the visual information received from the robot sensors [7,
8]. Therefore, another aim with this work is to measure the
ability of human observers to provide insights on approach
directions based on overview images taken in the field.

2 Approach Strategies

An approach strategy is the method of finding an approach
waypoint from which visual servoing will not lose the
fruit due to occlusion. It is computed using the approach
direction θ ′

1 and distance to fruit d (Fig. 1). Two approach
strategies are proposed and evaluated:

– Single approach strategy: the robot attempts only one
approach direction which is considered to be the best
one with least occlusion. This direction can be obtained
either by advanced algorithms that map the environment

or by a human operator doing an assessment in-field or
remotely by looking at images taken by the robot at the
overview waypoint.

– Multiple approach strategy: the robot autonomously
attempts each approach direction from a sequence of a-
priori defined approach directions until it finds one that
leads to a successfully reached fruit.

This section describes how approach waypoints are calculated,
and provides a detailed description of the two strategies.

2.1 ApproachWaypoint Calculation

To calculate the pose of the approach waypoint, the following
information must be known: the location of the pepper, the
approach direction, and the visual servoing distance, i.e. the
distance to the fruit from the approach waypoint.

Given position Pi(xi, yi, zi) of (the surface of) fruit i

at approach direction θi = 90◦ the position for approach
waypoint Wi(x

′
i , y

′
i , z

′
i ), located at a predefined distance

d from fruit i at an approach direction θ ′
i , is calculated

according to:

x′
i = xi − (r + d) ∗ cos(θ ′

i ) (1)

y′
i = yi + r − (r + d) ∗ sin(θ ′

i ) (2)

z′
i = zi (3)

where r is the fruit radius.

Fig. 2 Flowchart describing the two different approach strategies. Left: single approach direction; Right: multiple approach direction (differences
marked with dashed lines)
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2.2 Proposed Approach Strategies Description

In the single approach strategy, a single approach direction
θ ′
i should be determined for each fruit i. If possible,

approaching from front (θ ′
i = 90◦) is preferred [5],

otherwise the least occluded direction should be chosen.
The approach cycle starts with moving the end-effector
to a pre-defined overview waypoint W0(x, y, z) where the
location of all visible fruits are recorded. From there, using
the position and selected approach direction of each target
fruit i, the approach waypoint Wi(x

′
i , y

′
i , z

′
i ) is calculated

according to Eqs. 1–3. The control unit plans a path for the
end-effector to the first waypoint. After reaching it, a visual
servo procedure guides the manipulator towards the target
until the end-effector reaches the fruit. If the manipulator is
able to reach the target fruit, the fruit is marked as reachable.
If the manipulator cannot reach the fruit for some reason,
e.g. the view of the fruit is lost during visual servoing or the
controller is not able to plan a path there, the fruit is marked
as unreachable. After the fruit has been marked as either
reachable or unreachable, the approach cycle for fruit i ends.
The next approach cycle starts with the robot moving to the
approach waypoint of the next fruit, Wi+1. The cycle ends
when all fruits detected from the overview image have been
attempted to be approached. The left part of Fig. 2 shows a
flowchart of this approach strategy.

In the multiple approach strategy, the best approach
direction θ ′

i is unknown, and therefore must be searched
from a list of predefined potential approach directions
θ ′
i,1..θ ′

i,k as seen in Fig. 3. For each target fruit i and potential
approach direction θ ′

ij the control unit calculates the path
of the robotic manipulator to a waypoint Wij (x

′
ij , y

′
ij , z

′
ij )

according to Eqs. 1–3. The manipulator moves to each
waypoint in turn for the first fruit until the fruit is marked

as reachable or all waypoints have been tried. In the case
that all approach directions θ ′

i,1..θ ′
i,k have been attempted

without being able to reach the fruit, the target fruit is
marked as unreachable. After success or fail, the path to
the waypoint Wi+1,1 for the next fruit and its first approach
direction θ ′

i+1,1 is calculated. The right part of Fig. 2 shows
a flowchart of this approach strategy.

3 Experimental Methods

Two experiments were conducted to compare the perfor-
mance of the approach strategies. In the first experiment,
the multiple approach strategy is compared to the single
approach strategy assessed by a human operator placed
in the field. In-field human assessment was selected as
opposed to fully autonomous algorithms due to lack of sen-
sor technology and algorithms to date. Current algorithms
are often partially based on manual data [6] and not suf-
ficiently accurate or fast to map greenhouse environments
for determining possible approach directions. Stems are not
detected in the system used in this work and are thereby not
avoided unless they block the view of the fruit.

The second experiment measures the ability of human
observers to provide insights to approach directions
based on overview images collected in laboratorial and
greenhouse conditions.

3.1 Equipment

A 6DOF robotic manipulator Fanuc LR Mate 200iD
equipped with an eye-in hand iDS UI-5250RE RGB camera
and a Sick DT20HI displacement measurement laser sensor
was placed in-front of each scene. The end-effector used in

Fig. 3 For each target fruit i and
potential approach direction θ ′

j

the control unit calculates the
path of the robotic manipulator
to a waypoint Wij (x

′
ij , y

′
ij , z

′
ij )

in the multiple approach
strategy. The figure illustrates a
center-right-left approach
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Fig. 4 The experimental setup in
the greenhouse (left) compared
to the previous experiment in
laboratorial conditions using
artificial fruits and leafs (right)

the greenhouse experiments was slightly different than the
one used in the previous lab experiment [33]. Primarily the
lab version had a suction cup mounted in front that could
touch the peppers while the greenhouse version lacked
this. Therefore, the greenhouse version never touched the
peppers but stopped just before it reached the pepper. In
laboratorial conditions, an artificial plastic pepper crop with
yellow plastic fruits and green plastic leaves were used
for the experiments. An example from the laboratorial and
greenhouse setups can be seen in Fig. 4.

The workflow of the robot was implemented using a
generic ROS software framework for development of agri-
cultural and forestry robots previously developed [21]. The

framework is constructed with a hybrid robot architec-
ture, using a state machine implementing a flowchart as
described by Ringdahl et al. [32].

3.2 In-field Experimental Protocol

The experimental protocol used for the robotic experiments
in the greenhouse resembles the previously described lab-
oratory experiment protocol [33], while addressing some
of the conclusions and their implementation in greenhouse
conditions. Table 1 outlines the protocol used for labora-
torial and greenhouse experiments respectively. The differ-
ence between greenhouse and laboratorial conditions can be

Table 1 Experimental protocol in the greenhouse compared to the laboratory experiments presented in [33]

Laboratorial experiment Greenhouse experiment

Single approach strategy Best approach direction from the set {45◦, 90◦, 135◦} Best approach direction from the set {45◦, 90◦, 135◦}
Multiple approach strategy Potential approach directions: Potential approach directions:

– LF3: θj = {45◦, 90◦, 135◦} (left-center-right) – LF3: θj = {45◦, 90◦, 135◦} (left-center-right)

– CF3: θj = {90◦, 45◦, 135◦} (center-left-right) – CF3: θj = {90◦, 45◦, 135◦} (center-left-right)

– LF5: θj = {25◦, 57.5◦, 90◦ 122.5◦, 155◦} (center-left-right)

– LF5: θj = {90◦ 25◦, 57.5◦, 122.5◦, 155◦} (center-left-right)

Maximal Robotic speed 50% and 100% 25%

Visual servoing distance 5 cm 9 cm/15 cm

Measures per approach – Success/failure – Success/failure

attempt – Reason for failure

Measures per fruit – Fruit approach cycle time – Fruit approach cycle time

– Number of attempted approach directions – Reachable/unreachable

– Number of attempted approach directions
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Fig. 5 An overview image taken
from the robot’s camera looking
at a laboratorial scene (left) and
a greenhouse scene (right)

seen in Fig. 5, which shows overview images taken from the
respective environment.

The greenhouse experiment was conducted in a research
greenhouse at Sint-Katelijne-Waver, Belgium, early in the
season. The robotic manipulator and its sensory system
were placed in an aisle and manually centerd in front of a
pepper or a cluster of peppers, defined as a scene. First, the
locations of all the fruits in the scene were registered. In
this experiment the system was not equipped with a RGB-
D camera, which would typically be used for automatic
registration of fruits locations. Instead, the manipulator
was manually positioned in front of each fruit before the
experiment began. The end-effector was brought close to
the fruit and the position was determined by adding the
distance to the fruit, given by the laser mounted on the
end-effector (Fig. 6), to the current end-effector position.
The system used in the experiment lacked a sensor to
accurately measure the fruit radius, but even with such
sensor it can be difficult to estimate the correct radius due
to occlusion of parts of the fruit. Peppers in a greenhouse
have a natural variation in size but normally have an
average radius r = 0.04m [4, 38], so this value was
used for the calculations in Eqs. 1–3. All fruit locations
were added into the system in form of spheres so that the

Fig. 6 The position of each pepper was measured by manually moving
the robotic arm close to the fruit and using the laser to estimate the
distance to the fruit (the end-effector used in the greenhouse lacked the
suction cup seen in the picture)

robot could avoid them when planning a path. Next, an
approach cycle was performed five times for each fruit;
once for the single approach strategy and four times for the
multiple approach strategy, one for each potential approach
direction (Table 1). Since ripe peppers are in high color
contrast with the foliage and branches around them, color
is the most useful visual cue. Therefore the visual servoing
used for each approach attempt employs a color based
blob detection algorithm for the continuous detection of the
target. Minimum and maximum thresholds of the blobs’
bounding and inner circles radii were introduced to limit
false positive artefacts. Different visual servoing distances
were evaluated in this experiment as opposed to a fixed
distance in the lab, as well as a different number of approach
directions and their order. The list is ordered in two possible
ways: center first (CF) or left first (LF) and can have either 3
or 5 directions. Previous results [33] showed no significant
difference for different robotic maximum speeds, therefore
each configuration is performed at 25% of maximum speed
to assure safe operation in the field.

3.2.1 Measurements

At the end of each approach attempt, the following measures
were registered: the result of the attempt (success/failure)
and the reason of any attempt failure (collision, planning
failure, or lost fruit from sight during visual servoing).
For each fruit, additional measures were registered: the
fruit approach cycle time and the number of attempted
approach directions. Fruit approach cycle time is the time
it takes from when the robot starts moving to the first
waypoint of a fruit until it has been marked as reachable
or unreachable. Additionally, the following measures were
calculated for each approach strategy and are presented in
form of descriptive statistics in the results section:

– Cycle time relative increase. Defined as the ratio
between the average fruit approach cycle time for the
multiple approach strategy and the single approach
strategy. It measures the impact on the fruit approach
cycle time given an approach direction known a-priori.
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– Ratio of reachable fruits in each approach strategy.
Allows a comparison between the success ratio of each
approach strategy.

– Ratio of successfully approach attempts. Allows
insights into which approach directions are most
successful.

– Approach attempt failure ratio. Provides insights into
the reasons an approach attempt fails and the frequency
at which failures occur.

Additionally, the statistical significance of the differences
in the value of the measures was calculated. The fruit
approach cycle time is analysed in a box-cox transformed
linear regression [36]. The reachable fruit rate as function of
approach strategy and visual servoing distance is analysed
in a logistic regression [23].

3.2.2 Failure Analysis

To be able to investigate the reasons leading to unsuccessful
approaches, the following failure analysis methodology
is presented. The failure analysis looks into the reasons
why an approach strategy fails, resulting in a fruit being
marked as unreachable, as well as the reasons for failure
of individual approach attempts in the multiple approach
strategy. The main failure reason this paper addresses is
related to occlusion, but one should consider the tight space
between plant lanes in which the robot has to operate in
a safe manner, minimizing the harm caused to the plants
around. Therefore, other failures, caused by the planner, are
considered and measured. As mentioned in Section 3.2 the
visual servoing failures are registered at the end of each
unsuccessful approach attempt. The failure reasons are then
separated into three categories:

– Occlusion related failure. Cases where the fruit was
lost from sight during the visual servoing stage.

– Visual servoing planning failure. Cases where the
next coordinate generated in the visual servoing path
planner cannot be reached due to physical constraints

of the manipulator, collision between the robot and that
the environment, or the planner fails to find a solution.

– Approach waypoint planning failure. Cases where
approach waypoint Wij is unreachable due to the
physical constraints, collision between the robot and the
environment, or that the planner fails to find a solution.

Looking into the different reasons causing an approach to
fail is important from two aspects. First, it provides insights
into the reasons for failure due to non-occlusion related
issues. It also provides an estimation of the expected success
rate of an approach attempt that has been made with no
prior knowledge about the best approach direction as in
the multiple-approach strategy. The failure analysis presents
the approach attempt failure ratio divided into the three
categories listed above. It also provides analyses of the
difference in success rates for different approach directions
with and without planning related failures.

3.3 Overview Images Evaluation Protocol

To evaluate the human ability to provide insights into
possible approach directions θ ′

i or limiting the number
of directions that should be attempted by determining
directions that are not approachable, two datasets containing
images taken at the overview waypoint W0 were collected:

1. DB-LAB - Laboratorial images acquired at the
overview waypoint W0 in the laboratorial experiment
described in our previous publication [33].

2. DB-Greenhouse - Greenhouse images acquired mid-
season in a commercial greenhouse in Ijsselmuiden,
Netherlands using the same camera as in DB-LAB
mounted on a Fanuc LR Mate 200iD/7L manipulator.
The images were automatically acquired from 14
waypoints [26].

Images from the greenhouse experiment described in
Section 3.2 were not used for the evaluation due to the
excess number of non-visual servoing related failures.

Fig. 7 Example lab image of a
fruit from three different
viewpoints given to the
questionnaire participants. They
were told that the left and right
viewpoints are reachable, while
the center one is not
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A questionnaire was handed out to 13 human observer
participants and included images from the two datasets,
divided into two parts:

1. Laboratory part: contained 6 images: one example
image (Fig. 7) and five from DB-Lab (one of them is
presented in Fig. 5).

2. Greenhouse part: contained 6 images from DB-
Greenhouse. The images were randomly selected with
the following limitations: a) image was taken in
daytime; b) at least 2 ripe peppers were visible from
front view. One of the images is presented in Fig. 8.

The fruits in the images displayed to the participants were
bounded by red boxes. The participants were asked to mark
all directions (if any) from which, in their opinion, each
pepper could be successfully approached (left/front/right).
According to the instructions a pepper must be visible in the
robot camera for a successful approach. They were given
an example image (Fig. 7) with views of one fruit from
the laboratorial setting from the three potential approach
directions. Even if a fruit is partly occluded by a stem
it should still be regarded as approachable, as seen in
Fig. 7 (right). By purpose the participants were not given a
definition of how visible a fruit must be to be approached.
The participants were also asked to indicate if they had any
previous experience working in greenhouse environment or
doing research within agricultural robotics.

By processing the answers an observed approachability
list APijk which defines for each fruit i marked in the
overview image if it is reachable from the approach
direction θj , by the vote of observer k is generated.
Given the results of the approach attempt performed in

Fig. 8 An overview image from a greenhouse scene. The questionnaire
participants were asked to determine all possible approach directions
for the peppers marked with red boxes

the laboratory a ground truth approachability list AP ∗
ij is

defined as the rounded ratio of successful attempts for fruit
i from approach direction θj , to the overall number of
attempts performed for that fruit. Given the ground truth
approachability and the observed approachability list APijk ,
the contribution of a human participant’s ability, from an
overview image only, to predict if an approach direction will
lead to a successful approach is evaluated. The evaluation is
performed using precision and recall measures, defined as
follows:

Precision = NT P /(NT P + NFP ) (4)

Recall = NT P /(NT P + NFN) (5)

Where:

– NT P is the number of correctly classified approachable
directions as approachable by a participant.

– NFP is the number of incorrectly classified unap-
proachable directions as approachable by a participant.

– NFN is the number of incorrectly classified unap-
proachable directions by a participant.

Due to the lack of a ground truth approachability list AP ∗
ij

in DB-Greenhouse, precision and recall are not calculated.
Instead the reliability of agreement Fleiss’ Kappa [16] is
measured for both greenhouse and laboratorial conditions.
This allows us to gain initial insights into the inter-
rater agreement between participants on the choice of
approachable directions. Various scales of Fleiss’ Kappa are
accepted in the literature. In this paper we follow Landis and
Koch’s guidelines [27].

4 Results

4.1 Approach Strategies Cycle Time and Success Rate
Comparison

The in-field experimental protocol yielded 150 fruits that
were attempted to be approached in eight scenes with
2-6 peppers in each scene. The platform was placed in
an aisle orientated approximately southwest – northeast.
A total of 18 peppers facing the aisle approximately
northwest, divided in five scenes, were approached from 9
cm and a total of 12 peppers facing the aisle approximately
southeast, divided in 3 scenes, were approached from 15
cm. This creates a balanced dataset aimed to cancel the
influence of the foliage growth direction (due to sunlight
direction) on approachability. Each pepper was attempted
to be approached five times, one for each approach strategy
described in Section 3.2. In total, 244 approach attempts
were made. The total ratio of reachable fruits was 86%. 84%
and 87% of the fruit are reachable in the single approach
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Table 2 Average fruit approach
cycle times in seconds for the
different approach strategies

Approach strategy Reachable Unreachable

Overall 16.02 (N = 129, SD = 7.67) 18.85 (N = 21, SD = 12.02)

Single 15.04 (N = 25, SD = 5.74) 9.99 (N = 5, SD = 11.15)

Multiple 16.26 (N = 104, SD = 8.08) 21.61 (N = 16, SD = 11.18)

strategy and in the multiple approach strategy respectively
(Table 2). As seen in Fig. 9, the most approachable direction
θi was 90◦, with 74% successful approaches made from that
direction. Very few approaches were made at 135 and 155
degrees, implying that the fruit was successfully approached
at one of the other approach directions (right was always
tested last in all approach strategies). Removing all cases
where the robot failed to plan a safe path or collided with
another fruit in a cluster during approach shows that 125◦ is
the most approachable direction (although only approached
7 times) with 90◦ the second best (approached 93 times).

Comparing performance of the single approach strategy
to the multiple approach strategy revealed that the fruit
approach cycle time increased when a multiple approach
strategy was applied by 8% for reachable and by 116% for
unreachable fruits respectively (Table 2).

In 16% of the cases for the single approach strategy, the
fruit was unreachable even though it was assessed manually
in-field as the best approach direction (see Section 4.1.1
for an analysis of failure cases). For the single approach
strategy, the fruit approach cycle time of unreachable fruits
was 33% shorter than for the reachable fruits. In the multiple
approach strategy, the fruits were unreachable in 13% of the

cases and the fruit approach cycle time was 33% longer for
unreachable fruits than for reachable fruits.

Table 3 shows the average fruit approach cycle time
in seconds for the different approach strategies described
in Table 1 for the two visual servoing distances (9 and
15 cm). The single approach strategy yielded the shortest
overall time for 9 cm visual servoing distance with 13%
shorter time than the next best strategy, CF3. At 15 cm
approach distance, the CF3 and single approach strategy
took approximately the same amount of time on average. As
can be seen in Fig. 10, CF3 and CF5 needed on average only
one approach to succeed, meaning that most of the time it
only needed to go to the center position without needing to
try another direction. The LF5 method needed most trials,
with an average of two approaches before success.

Figure 11 shows the success rate for the different
approach strategies (Table 1) for the two visual servoing
distances in the greenhouse. In general, the success rate
was between 75-95% with slightly lower success when
approaching from 15 cm than when approaching from 9 cm,
with the exception of the LF5 strategy. Using five approach
directions yielded slightly higher success rate than when
using three approach directions.

Fig. 9 Rate of successfully
approach attempts by approach
direction θ ′

i , and the number of
times each approach direction
was attempted. In the right bars,
cases where the robot failed to
plan or collided with other fruits
in the scene were removed
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5) 4.1.1 Failure Analysis of Greenhouse Data

Of the total 244 approach attempts, 30 attempts were part of
a single approach strategy and 214 were part of the multiple
approach strategy. Forty-seven percent (115 approaches) of
the approach attempts failed, indicating the importance of
determining a correct approach. The most common reason
(41%) for failure was due to the robot planner not being
able to find a safe path to the fruit during visual servoing
or while moving to the next approach waypoint. 37% of
the failed approach attempts were because the fruit was lost
from view along the visual servoing. The remaining 22%
of the failures were due to a collision between the robot
and another fruit in the scene. Figure 12 presents the ratio
of all approach attempts outcomes for the two approach
strategies separately. Approach attempts made from an
approach direction obtained by manual in-field assessment
as part of the single approach strategy was successful in
84% of the cases. In 10% of the unsuccessful approaches
the fruit was lost during visual servoing (i.e. the fruit was
no longer detected) while the remaining cases (6%) were a
result of a collision between some part of the robot (usually
the end-effector) and another fruit in the cluster or that the
planner could not find a safe path while moving to the next
approach waypoint.
Looking at each individual approach attempt as part of the
multiple approach strategy, only 49% of the approaches
were successful, while 18% were lost in visual servoing and
10% were lost as a result of planning failure during visual
servoing. While moving to the next approach waypoint,
23% of all approach attempts failed due to planning failure
or collision.

Figure 9 presents the approach success rate by approach
direction θ ′

i . Removing all the cases where the robot failed
to plan a safe path or collided with another fruit in the
cluster during approach shows that almost no planning
related failures happened at 90◦ (81% compared to 74%)
while the side views caused a significant amount of planning
failures, increasing as function of |θ ′

i − 90| (e.g., 65%
compared to 31% for 25◦). This supports the assumption
made in Section 2.2 that approaching from front 90◦ should
be preferred as long as this approach is not occluded. The
low rate of planning related failures for 90◦ can be explained
by the fact that this scene contains much fewer fruits and
other obstacles from the front approach direction, making
the planning task less complex and the risk of colliding with
obstacles lower. When side approach directions are applied
(|θ ′

i−90| > 0) the robotic manipulator needs to reach deeper
into the plant making it more likely to cause collisions
between the robot and other fruits. Additionally, it seems
the approach directions from the right (θ ′

i > 90◦) fail more
often due to planning than from the left. Important to note
that these differences are not due to any botanical changes
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Fig. 10 Average number of
approaches till successful fruit
approach for the different
potential approach directions of
the multiple approach strategy
described in Table 1 for two
visual servoing distances

Fig. 11 Success rate for the
different approach strategies
described in Table 1 for two
different approach distances

Fig. 12 Ratio of all approach
attempts outcomes for the two
approach strategies separately.
Lost in VS means the fruit was
no longer detected while doing
visual servoing. Failure occurred
due to not finding a safe path or
due to collision between the
end-effector and a fruit
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since these are planning failures, which are not connected to
the growth of foliage in greenhouse conditions. Since much
fewer attempts were made from the right this needs to be
verified in future work.

4.1.2 Approach Cycle Times and Fruit Reachability Analyses

The results of a Box-Cox transformed (λ = 0.44) fruit
approach cycle time regression shows statistical significant
(sig < 0.0001) differences between the multiple approach
strategies (CF and LF) and the single approach strategy.
The multiple approach strategy adds on average 3.5 seconds
to the fruit approach cycle time as compared to the single
approach strategy. No statistical significant differences were
found between the CF and LF approach direction sorting
(sig = 0.72). The number of approach directions were
not statistically significant either (sig = 0.18). The visual
servoing distance was found to be a significant factor (sig =
0.001), increasing the fruit approach cycle time by 0.28
seconds for each extra cm of visual servoing. The approach
cycle time of a reachable fruit was on average 2.4 seconds
longer than an unreachable fruit. Significant differences in
approach cycle time between scenes were found, implying
that additional variations between the scenes also affects
the cycle time. This requires further investigation on larger
datasets.

Looking into the interaction between the approach
strategy and if the pepper was reachable or unreachable
(Fig. 13), reachable fruits yield shorter approach cycle times
than unreachable fruits for the multiple approach strategy.
In the single approach strategy, unreachable fruits yield
shorter approach cycle time than reachable fruits. These

Fig. 13 Interaction plot of fruit approach cycle time as function of
approach strategy for reachable and unreachable fruits

results support the conclusions drawn from Table 2 and
found statistically significant (sig = 0.001).

The result of a logistic regression on reachable fruit
rate as function of approach strategy and visual servoing
distance revealed no statistically significant differences.
This might be due to the relatively small dataset gathered in
the greenhouse experiment.

4.2 Human Contribution to Approach Direction
Assessment

In both the greenhouse and the previous laboratory
experiments, the average fruit approach cycle time increased
for the multiple approach strategy as compared to the single
approach strategy using in-field assessment by human
observer. In this section the human ability to determine the
best approach direction from overview images is evaluated.

All 13 participants answered all questions. Four partici-
pants had prior experience of work in greenhouse conditions
and 9 never worked in greenhouses before.

In laboratorial images collected, the average precision
per person (Eq. 4) was 92% (min = 85%, max = 97%)
and the average recall per person (Eq. 5) was 71% (min
= 40%, max = 83%). No significant differences were
found between the four participants who had prior work
experience in greenhouse conditions, to the nine who were
not.
As aforementioned, the precision and recall on the
greenhouse data cannot be calculated due to the lack of
ground truth information. Instead, the evaluation includes
investigation of the degree of agreeability between the
participants, e.g. if all answered front as an approachable
direction for fruit i. Fleiss’ Kappa for the laboratorial
images is 0.514, corresponding to moderate agreement
level, and for the greenhouse collected data was 0.217
which corresponds to a slight-to-fair agreement. This is a
significant reduction in the inter-rater agreement between
participants which indicates that as expected the greenhouse
task is by far more difficult to analyse. A closer look into
the measured Kappa as a function of approach direction and
the participants work experience in greenhouse conditions
can be found in Table 4.

5 Discussion

5.1 Approach Strategies Experiments

The results from the greenhouse experiments support pre-
viously reported results [33] indicating an increased fruit
approach cycle time when using the multiple approach strat-
egy as compared to a single approach direction yielded from
manual-infield assessment of human observers. Therefore,
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Table 4 Fleiss’ Kappa values
for data collected in the
laboratory and greenhouse

Laboratorial conditions Greenhouse conditions

All data 0.514 0.217

Front approachability 0.739 0.168

Side approachability (left/right) 0.402 0.201

Expert participants all data 0.48 0.37

Non-expert participants all data 0.52 0.15

additional information about approachable directions is nec-
essary to shorten robotic harvesting times. The data from
the greenhouse experiment showed a less prominent time
increase (ca 8%) compared to the previously published lab-
oratorial experiment (ca 40–45%). Even so, it was found to
be statistically significant. Longer visual servoing distances
was also found to increase fruit approach cycle time. On the
other hand, the number of approach directions (3 or 5) or
their order in the multiple approach strategy did not signifi-
cantly influence the fruit approach cycle time. This validates
the conclusions reported from the laboratorial experiments.

While the robot eventually managed to approach all
peppers in the laboratorial experiment, in the greenhouse
each approach strategy resulted in only between 75-
95% approachable peppers. The most successful approach
direction was from front, supporting the decision to
prioritise it in the single approach strategy. Failure analysis
showed multiple reasons for failure during an approach
attempt. The most common failure (41%) was the inability
to plan a safe path in the tight space between plant lanes and
stems in the greenhouse. Another reason for failure was that
the end-effector collided with another fruit in a cluster while
moving towards the next approach viewpoint. This failure
is expected to happen much less often in a real application
where the peppers are harvested and thereby would not be
in the way for the robot when moving towards the next fruit.
Only 37% of all failures were due to fruit loss from view
due to occlusion during visual servoing towards the fruit. In
ideal conditions, one would expect this to be the only reason
for not being able to approach the pepper. This is also the
only failure one could expect a human observer to predict
in field or by observing overview images. If we remove all
other reasons for failure (73 cases of the total 244 approach
attempts), the robot not reaching the fruit due to occlusion
only occurs in 25% of all approach attempts.

Results showed slightly lower reachable fruit rate for
the single approach strategy than for the multiple approach
strategy. However, no statistically significant difference
could be seen in the greenhouse data, probably due to the
limited size of the dataset. Since only one approach attempt
is made per fruit in single approach strategy, slightly lower
fruit reachability is to be expected since it cannot attempt
any other approach directions if the first was unsuccessful.
Furthermore, the non-occlusion related failures mentioned

above were not considered when best approach direction
was chosen by an in-field human observer for the single
approach strategy.

5.2 Human Contribution

The evaluation of the human ability to assist in determin-
ing the best approach direction in laboratorial conditions
revealed high precision (92%), implying that the partici-
pants rarely predicted non approachable directions to be
approachable. Consequently, the participants showed a high
ability to detect unapproachable directions. On the other
hand, the 70% recall suggests that they tend to miss possible
approach directions. The implications of these conclusions
are that one should consider humans for reducing the list
of possible approach directions used in the search pattern,
but should not rely on a human operator to define the best
approach direction. The greenhouse experiment showed that
an increased number of approach directions does not signif-
icantly increase fruit approach cycle time. The implication
of this is that the system would be best served by let-
ting humans determine which peppers are unreachable and
thereby saving a considerable amount of time, especially
since the multiple approach strategy takes significantly
longer time to fail.
A deeper view into the values of the kappa for front/side
approach directions reveals significant agreement on the
front direction in laboratorial conditions, and lower agree-
ment on the side views. This implies that a human finds
the side view to be more complex for approachability
prediction. This difference was not found in greenhouse
conditions, where the agreement level remained low for
both front and side approach directions. In greenhouse
conditions though, participants with prior experience in
agricultural robotics or greenhouse environments showed
greater agreement among themselves compared to the non-
experienced participants. No such difference is seen in the
laboratorial setting. The results imply that though no sig-
nificant difference was found in precision and recall in
laboratorial conditions for experienced and non-experienced
participants, these differences might become significant
when the experiment is performed in the more compli-
cated greenhouse conditions where experience can become
advantageous.
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5.3 Limitations

This work aimed to evaluate the human’s ability to
determine that a pepper is not approachable at all by a
robot. As concluded in Section 5.2 the laboratorial tests
showed that the humans are quite good at this. The data
from the greenhouse experiment described in Section 3.2
was unfortunately not sufficient to generalize these results
to greenhouse conditions due to multiple non-occlusion
failures as noted in Section 5.1. Future work with a more
optimal harvesting system should reduce these failures and
allow for a fair comparison.

In this work, stems were not avoided unless they covered
significant parts of the fruit and thereby causing the
visual servoing to lose the fruit from sight. Future work
on selecting approach directions should incorporate stem
detection in the robotic harvesting cycle to avoid stems that
are between the fruit and the approach waypoint in order
not to damage them. Some initial work on detecting and
avoiding stems has been done [3] and could be extended to
be used in this application in the future.

Sunlight is a significant factor in the botanical growth
models of the leaves. As mentioned in Section 4.1, the
protocol aimed at creating a balanced dataset to cancel
the influences of growth direction of the foliage due to
different sunlight direction. The results showed that the vast
majority of the successful approaches were for θ ′

i <= 90,
regardless of side of aisle (and thereby sunlight direction).
One would expect that if the sunlight direction was a factor
in approachability, there would be a difference in which
angles are more successful for different sides of the aisle.
The results showed no significant differences in which
directions were successful and not between the different
sides of the aisle, indicating that the sunlight direction did
not matter. However, since the visual servoing distance were
different for the different sides of the aisle it is not possible
to prove explicitly that sunlight did not play a part.

Current detection rates (up to 85% [4, 9, 24]) allow
evaluation of the approach direction strategies independent
of detection performance. Any effect of sunlight direction
(or other environmental conditions) on the visual servoing
performance is not addressed in this paper (e.g. if the fruit
was lost from sight due to the sunlight).

6 Conclusions

The main contribution of this work is to suggest and com-
pare approach strategies, while measuring cycle times
and success rate as well as analyzing causes of approach
attempt failures. For the proposed greenhouse environment
and hardware configuration it was shown that a multiple
approach strategy results in 8% longer cycle time than a

single approach strategy and that the most common fail-
ure was the inability to plan a safe path in the tight space
between plant lanes and stems in the greenhouse. The exact
measures might vary between different harvesting systems,
but the evaluation method of different approach strategies
can be applied to any robotic system using visual servoing
in highly cluttered environments.

The issue of human in the loop is a question that is
often raised in the literature as a possible alternative to fully
autonomous systems which have limited performance. The
slight increase in fruit approach cycle time in the multiple
approach direction strategy is highly unlikely to justify the
inclusion of a human observer in the field to assess the best
approach direction. Therefore, it is important to develop
algorithms that will be able to provide this information
in shorter times and lower costs. For other hardware
configurations and greenhouse environments, the increase
might be significant enough to justify a human in the loop.
To identify these cases one should consider comparing the
different approach strategies using the methods proposed in
this work.

Since the ability to detect fruits that are unreachable
from overview images can significantly shorten the overall
harvesting cycle time methods should be explored to
determine this. More research is needed to investigate
the times it takes for a human to detect unreachable
fruits in order to analyse the economics of human robot
collaboration for the proposed tasks.

Given the high failure rate of the single approach
direction due to non-occlusion related failures, one should
consider a hybrid approach strategy. This strategy would
start with using the single approach strategy, since it yields
the shortest cycle times. If the direction assessed to be
the best one fails, the multiple approach strategy can be
applied to search for a possible approach direction. The
hybrid approach aims to increase the ratio of reachable
fruits and should be investigated further. If no information
about the best approach direction is available, the multiple
approach strategy should be considered to lower the rate of
unreachable fruits. If a fixed approach direction is the only
applicable strategy then the proposed approach direction for
sweet pepper harvesting is from the front (90◦).
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