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Abstract
Autonomy and autonomous systems are occupying central stage in the research community, as autonomous vehicles are
proliferating and their utility in all aspects of the military and civilian domains are increasing exponentially from one year
to the next. The development and application of resiliency and safety technologies to autonomous systems is, unfortunately,
not keeping pace with their growth rate. Several factors impede the deployment and adoption of autonomous systems.
Among them is the absence of an adequately high level of autonomy that can be relied upon, significant challenges in the
area of human-machine interface requiring significant human intervention to operate and interpret sensor data, the need
for emerging machine learning technologies and, most importantly, the resilient design and operation of complex systems
to assure their safety, reliability and availability when executing missions in unstructured and cluttered environments.
Recent advances in resiliency and safety of complex engineered systems have focused on methods/tools to tradeoff system
performance for increased time to failure aiming at mission completion or trial and error methods to arrive at a suboptimal
policy for system self-organization in the presence of a failure mode. This paper introduces a novel framework for the
resilient design and operation of such complex systems via self-organization and control reconfiguration strategies that avoid
empirical trial and error techniques and may be implemented and perform in real time on-platform. The main theme is
summarized as: “a healthy and resilient system is a safe system”. To accomplish this objective, we introduce an integrated
and rigorous approach to resilient design while safety considerations ascertain that the targeted system is contained within a
safe envelope. A resilient system is robustly and flexibly monitoring its internal and external environment, it can detect and
anticipate disturbances that may affect its operational integrity and take appropriate action to compensate for the disturbance.
Resilience enhances safety while improving risk factors and assures that vehicles subjected to extreme disturbances remain
within their safe envelope. The enabling technologies begin with graph spectral and epidemic spreading modeling tools to
represent the system behaviors under normal and faulty conditions; a Markov Decision Process is the basic self-organization
module. We are introducing a novel approach to fault-tolerance by considering the impacts of severe fault modes on system
performance as inputs to a Reinforcement Learning (RL) strategy that trades off system performance with control activity
in order to extend the Remaining Useful Life (RUL) of the unmanned system. Performance metrics are defined and assist in
the algorithmic developments and their validation. We pursue an integrated and verifiable methodology to safety assurance
that enables the evaluation of the effectiveness of risk management strategies. Several unmanned autonomous systems are
used for demonstration purposes.
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1 Introduction/Motivation

A cyber-physical system (CPS) is an integration of
computational with physical processes. Modern CPSs are
increasingly complex, combining hardware/software with
human intervention, interfacing commands and assessment
strategies with decision-making. The CPS concept map
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includes a large spectrum of physical/engineering systems
from a “smart” campus to unmanned autonomous systems,
swarms of autonomous systems, manufacturing processes,
among others. Unmanned robotic platforms (UAVs, UUVs,
UGVs) operating as a single vehicle or in swarm formation,
are complex CPSs. UAVs place significant demands to
human (sensor, pilot) operators who are required to make
informed decisions in (almost) hard real-time, and require
significant computational resources for data/information
processing. It was suggested by an Autonomous Vehicle
Operator (AVO) that, at times, “he’s been more overcome
by the torrent of information pouring in during a drone
flight than he was in the cockpit”. Currently, limitations in
autonomy lead to operator work time exceeding the time
of unmanned system deployment and gains in the field
of autonomy are required to reverse the current trend. The
final report of the Defense Science Board Summer Study
on Autonomy, June 2016, provides recommendations for
“accelerating DoD’s adoption of autonomous capabilities” [1].

Cyber physical systems are designed to perform
tasks/missions under nominal conditions – absence of inter-
nal/external severe disturbances. It is documented though
that a significant percentage of Class A air mishaps are
attributed to Unmanned Aerial Vehicles (UAVs). There is
a need to design and operate unmanned systems capable
of withstanding severe disturbances that may endanger the
integrity of the vehicle. The proposed framework is founded
on rigorous and verifiable technologies for endowing UAVs
(and other unmanned systems/cyber physical systems) with
capabilities that go beyond the “normal” operating regime
and posses the ability to perform missions in the presense of
extreme hazardous environments.

Achieving these gains will require developing new and
innovative methods and tools to endow complex unmanned
systems with attributes of resilience and safety assurance,
risk assessment and management enabling them to operate
across a range of functional capabilities. Resilient design
and operation of UAS is the first step towards extending the
system’s operational envelope in the presence of extreme
disturbances and assuring that safety margins are adhered
to. The link between resilience and safety is a natural
one with the former contributing to the latter’s capability
to maintain stability requirements. Learning strategies are
contributing to a dynamic updating of design for resilience
and safety of UAS algorithms ascertaining that “smart”
knowledge bases are kept current, data are interpreted
correctly and accurate decisions are made to support the
operator. Multiple learning tools/methods are called upon
depending on the case at hand.

This paper proposes the development and evaluation
of a holistic, rigorous and verifiable framework for the
resilient design and operation of high-confidence engineering
systems. The proposed formalism aims to provide an

understanding of complex system behaviors and the means
for robust design and operation of such complex systems.
The emphasis is in capitalizing on fundamentals of
Complexity Theory for the resilient design of cyber physical
systems (CPSs), with a focus on autonomous unmanned
systems as the application domain. The foundations of the
proposed design for resilience build upon lessons learned
from early successes/failures of the interplay between life
sciences and complex engineered systems, and rely upon
characteristic attributes of the biological world such as
immunity and self-healing to withstand and absorb severe
disturbances. It builds upon studies conducted by an
international group of researchers - led by two noted ecolo-
gists, Lance Gunderson and C. S. Holling - who investigated
extensively the concept of resilience and its applicability to
ecological, social, and management systems [2, 3].

The paper is organized as follows: Section 2 introduces
the fundamental concepts of resilience and its application to
engineering problems. The application of resilience is formu-
lated as a novel approach to safety assurance in autonomy.
Section 3 states the overall framework for resilience and
safety of UAS, along with the state of the art enabling techno-
logies. Section 4 proposes the resilient design and operation
of autonomous systems with proper evaluation criteria for
performance verification. The experimental platforms and
results are also presented afterwards. Section 5 presents the
safety assurance techniques in hostile environments, inclu-
ding risk assessment, evaluation, and control. A Conclusion
section then finalizes the discussion of this paper (Fig. 1).

2 Resilient Systems and Resilience
Engineering – Fundamental Concepts

Resilience engineering is an emerging discipline, which can
be viewed as an evolution to traditional safety and surviv-
ability engineering practices. It brings a new perspective
in understanding and analyzing system uncertainty, risk,

Fig. 1 MQ-1 predator control station (pilot and sensor) courtesy of
general atomics
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and furthermore assessing safety and survivability. It has
been established under a set of premises, which stem from
limitations in understanding of how risk and uncertainty
affect safety, or how system complexity may lead to acci-
dents. Additional issues about complex system interactions
in large scale operating environments contribute to over-
all uncertainty and nonlinear, dynamic system behavior.
Hollnagel has summarized the basic premises of resilience
engineering, in the following statements [4]:

1. Performance conditions are always underspecified.
2. Adverse events can be attributed to an unexpected

combination of normal performance variability.
3. Safety management cannot be based on hindsight nor

solely rely on error tabulation and failure probability
calculations

These statements reflect limitations in current safety
engineering practice. They are the fundamental directions,
which resilience engineering has been addressing as
continuously evolving, and emerging discipline.

2.1 Overview of System Resilience

A resilient system can adjust its functioning prior to or
following changes and disturbances so that it can go on
working even after a major mishap or in the presence of
continuous stress, mainly by being able to be proactive
on safety [4]. The ability to be proactive is emphasizing

the reduction in system susceptibility, by either preventing
unwanted events and outcomes or eliminating hazards in the
operating environment. Hollnagel has provided a template
of the fundamental functionality that resilient systems must
possess, shown in Fig. 2 [34]:

Anticipate disturbances. That includes potential threats,
various disruptions and any other destabilizing conditions.
Implementing this function relies on what model is selected
to predict the future and under what tolerance for risk.

Monitor performance. Except for mission performance
and system health monitoring, a resilient system must
also be able to monitor risks and threats and continuously
revise its ownmodel of risk identification. This will allow
for revealing of non-profound transient effects, that even
though are not permanent, they can still contribute to
failures and accidents.

Respond to threats. This function implies an intrinsic
readiness, along with an inherent flexibility and adapt-
ability in response to regular, irregular or unexpected, and
unexampled events.

We pursue in this paper an integrated framework for
resilient design and operation of complex unmanned sys-
tems that begins with monitoring, modeling and under-
standing the potential impact of threats/disturbances on
the operational integrity of such critical assets followed

Fig. 2 The three basic functions
of a resilient system
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by a proactive approach to threat response via appropriate
self-organization and control reconfiguration strategies, in
difference to actions intrinsically generated.

2.2 Autonomy, Assurance and Risk: Challenges
and Enabling Technologies

Several factors impede the deployment and adoption of
autonomous systems:

1. In the absence of an adequately high level of
autonomy that can be relied upon, substantial operator
involvement is required, creating significant new
challenges in the areas of human-machine interface and
mixed initiative control.

2. Achieving higher levels of autonomy in uncertain,
unstructured, hazardous and dynamic environments
involves data-driven machine learning techniques with
many open systems science and systems engineering
challenges.

3. Machine learning techniques widely used today are
inherently unpredictable and lack the necessary math-
ematical framework to provide guarantees on correct-
ness, while DoD and industrial applications that depend
on safe and correct operation for mission success
require predictable behavior and strong assurance.

4. Unmanned systems operate now in uncertain and
noisy environments subjected to hazards/dangers that
endanger their operational integrity. New methods must
be developed and implemented to impart attributes of
resilience and safety to these critical asserts.

A few decades ago when academic institutions and gov-
ernment agencies began developing unmanned system tech-
nologies and testing UAVs, it was customary to perform
field tests under almost “perfect”weather conditions. The
rapid proliferation of UAVs and the ever expanding applica-
tion domain for military and civilian missions are requiring
that such autonomous systems must fly under “all weather”
conditions. Achieving these objectives, while avoiding class
A mishaps, requires the development of new technologies
imparting on these complex systems properties of resilience
to extreme hazards/disturbances (internal and external),
means to assure that UAVs are maintaining their opera-
tional integrity even when subjected to fault/failure modes,
and remain within a safe envelope meeting stability bounds.

2.3 The Concept of Autonomy

Autonomy, in the context of an unmanned autonomous
system, is the capability of its components/systems to
operate independently from external control. For military

and civilian missions there is a spectrum of autonomy in
a system from basic automation (mechanistic execution of
action or response to stimuli) through partial autonomy,
flexible autonomy and fully autonomous systems able to act
independently in dynamic and uncertain environments.

An autonomous system must be capable of:

• Monitoring its internal and external environment and its
own performance; establishing a harmonious interface
with human operators

• Detecting, isolating and identifying incipient failure
modes and extreme external disturbances

• Predicting the remaining useful life of failing components
• Taking appropriate corrective action to safeguard

the integrity of the vehicle for the duration of the
contingency

The integration of different hardware/software resources to
provide a consistent management function under internal
and external stresses have not yet fully been accomplished.
We propose to address these challenges through the intro-
duction of robust, rigorous and verifiable resiliency tech-
nologies. Our specific objective is to increase the level of
autonomy in adapting the control of critical systems to
respond to online estimates of current fault states and pre-
dictions of future fault growth. We apply a rigorous and
analytical approach to developing, testing and evaluating
novel enabling technologies to improve / enhance auto-
mated fault/failure adaptation methods. Learning strategies
are contributing to hazard/threat detection, identification
and prediction of their potential impact on UAS safety and
resiliency. Reinforcement learning strategies are called upon
to enhance and update the cases in the DCBR case library.
Deep reinforcement learning is a valuable tool for feature
extraction and selection as well as for “best” control actions.

3 The Framework for Resilience and Safety
of UAS/State of the Art

Resilience is a key driver in the design of systems that
are subjected to severe fault/failure modes or external dis-
turbances (wind gusts for an unmanned aerial vehicle).
Resilience is a measure of the persistence of systems and
of their ability to absorb change and disturbance and still
maintain the same relationships between state variables
[2]. A resilient UAS monitors its own performance, it can
anticipate pressures/disruptions and responds to irregular or
regular threats/hazards. Safety management for engineer-
ing systems is proactive not reactive. Resilience enhances
the system’s robustness, monitors, revises risk models, and
uses resources (software based) proactively in the face of
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disruptions/hazards. Resilience is a foundational technol-
ogy for safety. Safety concerns for UAS executing extreme
maneuvers in unstructured environments raises issues of
assurance and risk assessment/management. Risk reduc-
tion via resilient design and operation, involves protection
against unwanted outcomes and reduces detrimental conse-
quences.

We introduce a thorough and proactive methodology to
resilient design and operation of autonomous systems for
improved safety and risk assurance/management that entails
the following major steps:

1. Threat/hazard characterization - detection, identifica-
tion, prediction of hazard evolution; performance met-
rics are specified and used in the development and
validation process.

2. Self-organization strategy for systems subjected to
severe disturbances (internal or external) with perfor-
mance metrics/stability conditions

3. Reconfigurable control strategy for systems subjected
to severe fault modes

4. Safety assurance and risk assessment/management
methodology

Safety Risk Management provides a workflow for a formal
process to describe the system, identify hazards, assess
risk, and control/minimize risk. We define possible hazard
scenarios, quantify their frequency of occurrence and
estimate/predict their consequences. Once the hazard
analysis tasks are set in probabilistic terms, the design
for risk assessment takes over and addresses quantitative
and qualitative risk factors. Risk assessment requires an
adequate representation/model of the future events. A
prognostic method is pursued to accomplish this task while
representing and managing the inherent uncertainty in
prognosis. Safety Assurance enables the evaluation of the
effectiveness of risk management strategies and ensures
compliance with oversight entities. Risk reduction via
resilient design and operation, involves protection against
unwanted outcomes and reduces detrimental consequences.

Design for resilience builds on concepts of self-
organization and control reconfiguration for cyber physical
systems. We introduce a self-organizing strategy in the form
of a Markov Decision Process (MDP) with dynamic pro-
gramming for optimal performance. A system is considered
organized if it has certain structure and functionality, and
self-organization implies that the organization of the sys-
tem occurs internally, without any external or centralized
control unit [6]. In the simplest case, a self-organization
strategy consists of two components: response and adapta-

tion, responding to the system’s functionality. Along with
a reduced computational burden due to the targeted oper-
ation, a self-organization method provides the benefit of
random noise adaptation, since the process is spontaneous
with intrinsic update rules [7]. an optimal control approach
with Reinforcement Learning (RL), Differential Dynamic
Programming (DDP) and Model Predictive Control (MPC)
is considered as a means for control authority redistri-
bution and reconfiguration when the targeted system is
subjected to severe threats/hazards. Prognostic knowledge
is incorporated in a quadratic cost function of the optimal
control problem as a soft constraint, thus providing a link
between health management and reconfigurable control.
Success criteria are founded on Lyapunov stability condi-
tions setting the stage for a rigorous approach to verifying
the efficacy of the proposed methodology and allowing
for comparisons with robust and other classical control
methods.

There is a rich literature describing proper adjustments to
control actions that assure resilient behaviors. Fault Tolerant
Control System (FTCS), motivated by commercial aircraft
accidents [8], has been researched extensively. Clements
developed a hierarchical control architecture showing the
interconnections among fault detection & identification, set-
point controller, control redistribution, control gain adap-
tation, and component restructuring [9]. Ge, Kacprzyn-
ski, Roemer, and Vachtsevanos introduced a higher-level
adaptive system framework using an Automated Contin-
gency Management (ACM) concept [10]. Drozeski, Saha,
and Vachtsevanos proposed a three-tier hierarchical con-
trol scheme as Active FTCS [11]. Tang, Kacprzynski,
Goebel, Saxena, Saha, and Vachtsevanos extended the ACM
framework by integrating it with a prognostics module
[12]. Brown, Georgoulas, Bole, Pei, Orchard, Tang, Saha,
Saxena, Goebel, and Vachtsevanos proposed prognostics
enhanced low-level reconfigurable control for an avion-
ics component [13]. Bole, Tang, Goebel, and Vachtsevanos
described a fault adaptive control architecture, and Bole
addressed uncertainties in prognostics and reconfigurable
control allocation strategies [14, 15]. We introduce in this
paper a novel framework for resilient design and operation
of UAS realized in terms of two complementary strategies:
Self-organization and control reconfiguration. Resilience
contributes to system safety properties by assuring that the
system is capable of mitigating large-scale disturbances.
Learning strategies are an essential component of the pro-
posed architecture borrowing from the cognitive engineer-
ing domain. A reasoning paradigm, called Dynamic Case
Based Reasoning, entails attributes of learning and adapta-
tion and constitutes the “smart” knowledge base for deci-
sion support. The human is always in the loop receiving
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Fig. 3 Media photos of UAV incidents

the actionable information gathered by the resilience/safety
modules to arrive at “best” decisions.

3.1 UAV Failure Modes

“Drone lands on the White House lawn: January 2015—this
one made national news. A Defense Department employee
in Washington, D.C., crash-landed his personal drone on the
White House lawn. He was, he admitted, intoxicated” [16].

The UAV numbers and categories have been increasing
exponentially worldwide over the recent past but their
reliability, resilience and sustainability have not kept pace
with their growth motivating research and development
efforts to improve their operational integrity and safety. It
has been reported that more than 40% of all Class A air
mishaps are attributed to UAVs (Fig. 3).

3.2 Disturbance/Hazard Analysis

Disturbance/hazard analysis considers the impact of varied
operational and environmental disturbance factors on
system safety. A degrading system affected by hazards can
be expressed as

L(t+1) =f (L(t),U, )+ω1(t+1) (1)

U=g(σ ,t)+ω2 (2)

y(t+1) =h(L(t))+ω3(t+1), (3)

where L(t) denotes a time-varying life state, for example,
a life degradation or loss condition; σ= {σ1,σ2, . . . ,σn is a
series of environmental and operational disturbance/hazard
factors that affect the time evolution of system degradation,
such as fault/failure modes; U is the disturbance factor
severity function; y represents system output; ω1,2,3 are
noises. In real applications, the degradation model f(·)
usually assumes a nonlinear function, has non-monotonic
attributes (for example, recovery effects), corrupted by non-
Gaussian noise, and is appropriately represented by pdfs

to indicate the underlying uncertainty. We use a particle
filtering formulation for the solution of the stochastic
equations listed above, as detailed in the sequel.

3.3 Hazard/Threat/Dissturbance Characterization,
Detection and Prediction

Hardware, software, the environment, and human factors are
major sources of hazards. For the CPS under consideration,
we seek historical hazard data and categorize them as
to their severity, frequency of occurrence, and testability.
It is, of course, true that “you can onlymanage what
you canmeasure” and data/information regarding hazards
and their potential impact on system safety are absolute
requirements to modeling, representation and control of
hazards and safety margins, as detailed in the sequel.

3.4 Prognostics and Health Management
Technologies

The foundation for the development and application of PHM
technologies is a thorough understanding of the physics
of failure mechanisms, as critical systems are subjected
to disturbances/stress/usage patterns. From the physical
components/systems themselves to a good understanding of
how such systems fail and under what conditions leads to
optimum Condition Indicator (CI) extraction and selection
and, eventually, to accurate diagnostics and prognostics.

We introduced and will take advantage of an integrated
and rigorous architecture for health management of critical
assets [17]. The on-line modules of the architecture begin
with pre-processing of raw data in order to reduce the
data dimensionality and improve the Signal to Noise
Ratio (SNR). Typical pre-processing routines include data
compression and filtering, de-noising, FFTs, among others
[18]. Data mining is a crucial step in the PHM process.
Deep Learned Features (DLF) and Deep Reinforcement
Learning produce optimum results for Condition Indicator
(CI) extraction and selection. We pursue two fundamental
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Fig. 4 The prognostic architecture using particle filtering

approaches to the data mining problem: A data mining
formalism in order to determine the ”best” features that
are descriptive of the faulty behavior of critical UAV
components/subsystems using Kolmogorov Complexity to
process large volumes of data, i.e. perform such functions
as data compression, clustering, classification, anomaly
detection, forecasting. We pursue a novel approach for
feature extraction that builds upon concepts of Deep
Learning [19–21]. Our goal is a Deep-Learned Features
(DLF) framework that automatically learns neural features
from data, to enhance the engineered feature library.
The methodology to derive an optimum feature vector
is hierarchically represented and automatically learned,
as happens in natural biological vision systems (LeCun
cat’s visual cortex). Additionally, DP methods are used
for enhanced situational awareness and decision support.
Advantages of this approach include: (1) ability to learn
from data even if a large fraction is unlabeled (no ground-
truth labels/classes of corrosion available); (2) scalability
to very large problems (e.g., 1000-class recognition,
using GPUs if needed); (3) hierarchical representations in
which some neurons may respond selectively to particular
localized problems, as well as more global, proto-detector
types of features to include in our library. We begin
with rigorous and verifiable methods to detect, identify
and isolate fault/failure modes. We then predict their time
evolution. The enabling technologies borrow from physics
of failure mechanisms for critical component/subsystem
modeling, feature or condition indicator selection based
on data mining, incipient failure diagnosis and prognosis
algorithms, and fault-tolerance methods using real-time
prognostic estimates and Model Predictive Control (MPC)
routines to assure system stability and survivability.

Prediction of Remaining Useful Life is a major component
of the framework for hazard analysis and accurate
prediction of a failing component’s remaining useful life..
Risk assessment is based and quantified on prognostic
information. These concepts are detailed and quantifiable
metrics suggested in the sequel. Root causes are determined
by tracing back from the (failing) component to the
level using a fault tree analysis technique. Threats/hazards
in engineering systems (unmanned autonomous vehicles)
are characterized by their probability of failure. The
analysis/design methods and variables/parameters are all
probabilistic notions expressed as PDFs.

Failure Prognosis [22–24] Input from the diagnostic block is
combined with stress profiles and feeds into the fault growth
model. An estimation method (in this case particle filtering)
is called upon to propagate the fault model initially one step
at a time while model parameters are updated on-line in
real-time as new sensor data become available. Eventually,
the model is allowed to perform long-term prognosis with
confidence bounds. The fault model PDF is convolved
with the hazard zone PDF when the former reaches the
threshold bounds and the resultant PDF is projected along
the time axis (which is usually measured in “cycles” of
operation) depicting the system’s remaining life statistics.
Prognosis is achieved by performing two sequential steps,
prediction and filtering or update. Figure 4 depicts the
particle filtering module including the essential steps of
degradation modeling, resampling, auto-tuning and state
update.

Figure 5 illustrates the predicted fault growth of a
system where a fault is detected at time tdetect and a
prediction of the RUL is made at time tprognosis . When
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Fig. 5 Illustration of long-term
prediction

the hazard is detected and its time evolution predicted,
control reconfiguration and self-organization strategies are
called upon to ascertain that the targeted unmanned system
maintains its safe operation.

Small UAVs in swarm formation are tasked to execute
surveillance and reconnaissance missions in a cluttered and
uncertain environment. The UAVs are optimally located
for maximum area coverage and a small number of
them in the perimeter of the swarm are equipped with
instruments to detect approaching wind gusts. A vertical
wind gust is modeled as a power spectral density, in
Dryden form [25, 26]. The formation control problem
is addressed via cooperative game concepts. The swarm
self-organizes as it moves from one designated area
to the next. We take advantage of a Markov Decision
Process (MDP) to enable the computation of the optimal
value function, optimal policy, number of iterations
taken, etc. Intra-UAV interactions are modeled as a
strongly connected graph consisting of a number of nodes
(UAVs) and edges that represent inter-agent information
exchange links. Success criteria are formulated as Lyapunov
functions. The compensation mechanism is implemented as
a behavioral/reactive control problem realized as a neuro-
fuzzy paradigm, thus accounting for uncertainty conditions.
Failure conditions are compensated via re-allocation of
tasks between healthy UAVs and spatially redistributing
them to achieve set objectives.

3.5 Integrity Management Metrics – Risk,
Confidence and Trust Consensus

We introduce quantifiable metrics for such integrity
management attributes as risk, confidence and trust
consensus, providing assurance that autonomy attributes are
achieved. In summary, we:

Estimate trust consensus (an attribute of integrity
management) from contributing sources of data/information
(sensors, controllers, classifiers, etc.) [27]. For guaranteed

performance, and in the presence of adverse conditions
(fault modes, large-grain uncertainty, etc.), a trust consensus
must be reached by the decision support system that
determines which sources of data/information (sensors)
to trust, which to disregard, and which to avoid. We
propose to develop a framework for trust propagation and
maintenance that yields global consensus of trust under
rich enough sensor structure graphs. We leverage pioneering
work conducted in the area of supervisory control of
mobile sensor networks, material handling processes and
communication networks [28–30].

Determine confidence (another integrity management
attribute) in decision outcomes, control output, prognostics,
etc.

Evaluate risk (an integrity management attribute) in
decision making to safeguard the integrity of the asset, i.e.,
taking action (control reconfiguration, for example) based
on fault/failure evidence, prognostic information, etc. We
exploit the same concept in safety analysis.

3.6 Uncertainty Representation, Propagation
andManagement

Uncertainty in Prognosis is Probably the Most Significant
Challenge Facing the PHM System Designer Uncertainty
management tools seek to improve the fault signal to
noise (uncertainty) ratio. They begin by determining the
uncertainty sources in terms of an uncertainty tree and then
exploit filtering or kernel-based methods for uncertainty
management [31, 32]. We use particle filtering, as a
nonlinear filtering method employing noisy observation
data to estimate at least the first two moments of a state
vector governed by a dynamic nonlinear, non-Gaussian
state-space model.

Within the particle filtering framework, the Epanech-
nikov kernel is well suited for uncertainty representation in
long-term prediction. Given initial conditions, it is possible
to represent the uncertainty inherent to the predicted state
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pdf by performing an inverse transform resampling proce-
dure for the particle population [33]. This method obtains
a fixed number of samples for each future time instant,
avoiding problems of excessive computational effort. Fur-
thermore, if only Epanechnikov kernels are used, it is
ensured that the representation of the uncertainty will be
bounded. These bounds intrinsically incorporate, measure,
and represent model uncertainty (through the estimation of
unknown parameters) and measurement noise (since the ini-
tial condition for long-term predictions corresponds to the
output of the particle filtering procedure).

The issue of uncertainty management is related to a set
of techniques aimed to improve the estimate at the current
time instant, since both the expectation of the predicted
trajectories for particles and bandwidth of Epanechnikov
kernels depend on that pdf estimate.

In this sense, it is important to distinguish between two
main types of adjustments that may be implemented to
improve the current representation of uncertainty for future
time instants:

• Adjustments in unknown parameters in the state equation.
• Adjustments in the parameters that define the noise

PDFs embedded in the state equation, known as “hyper-
parameters”.

Outer correction loops may be also implemented using
neural networks, fuzzy expert systems, PID controllers,
among others. Additional correction loops include the
modification of the number of particles used for 1-step or
long-term prediction purposes.

4 Resilient Design and Operation
of Autonomous Systems

TheModeling Framework We take advantage of a rich array
of modeling tools and methods representing the physi-
cal connections and dependencies of complex unmanned
systems. We pursue in parallel Markov modeling-a proba-
bilistic approach to represent complex systems, their states
and state transitions. We formulate an Epidemic Spreading
Model to estimate a probabilistic measure of system immu-
nity and recovery time (i.e. self-healing). In the epidemic
spreading model, disturbances are cascaded within the sys-
tem model, and system components take on one of three
states: susceptible, failed, or fixed (SFF model). Suscepti-
ble components are those that can be infected by a failed
component, whereas fixed components are those that have
healed. The densities of susceptible, failed, and fixed com-
ponents change over time based on the system dynamics.
The model is probabilistic due to the uncertainties (e.g.
model uncertainty, state transitions), providing probabilis-
tic measures of system immunity as well as recovery time

(i.e. self-healing). The modeling toolset includes also struc-
tural and functional representations and dynamical system
models that integrate disturbance factors into their structure.

In the context of a cyber-physical system’s life degra-
dation, we introduce a generalized heuristic modeling
approach with consideration of critical disturbance/stress
factors. Disturbance factor analysis considers the impact of
varied operational and environmental disturbance factors on
system end-of-life (EOL).

The Resilience Framework Resilience has been defined as
the intrinsic ability of a system to adjust its functioning
prior to, during, or following changes and disturbances,
and thus, to sustain required operations even after a
major mishap or in the presence of continuous stress
[5]. Balchanos thoroughly reviewed various resilience-
related research findings and addressed an assessment
method of complex dynamic system resilience, which
embraces system capability [34]. Tran also suggested a
resilience assessment method based on time-dependent
system reliability employing a probabilistic measure [35].
Situational awareness, prediction, planning, and action
are required capabilities for a resilient system. A fault
diagnosis and failure prognosis framework is assumed that
has been implemented to provide situational awareness, and
assess potential threats/hazards and their impact on system
integrity [17].

The theoretical underpinnings for resilience evaluation
borrow from Complexity Theory (“Critically interacting
components self-organize to form potentially evolving
structures exhibiting a hierarchy of emergent system
behaviors”) to set the stage for a rigorous understanding
of complex system behaviors (“system-wide ”emergent”
behaviors which are difficult to predict from the behavior
of any one element) and establish a basis for modeling
of such platforms leading to the discovery of pertinent
knowledge [36]. We use Kolmogorov Complexity (KC) as
a metric of complexity. The full, or ultimate, exploitation
of emergence is self-organization; a system aligns itself to
a problem (internal or external disturbances) and is self-
sustaining, even when the environment changes. We view
self-organization as the basic principle for self-healing and
immunity-the foundational elements in design of resilient
systems.

4.1 Design for Resilience: the Enabling Technologies

Self-Organization The field of self-organization seeks
general rules about the growth and evolution of systemic
structure, the forms it might take, and finally methods
that predict the future organization that will result from
changes made to the underlying components under the
influence of severe disturbances. Self-organization implies
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that a system aligns itself to a problem and is self-
sustaining, even when the environment changes under
severe disturbance conditions. The enabling technologies
begin with graph spectral and epidemic spreading modeling
tools to represent the system behaviors under normal
and faulty conditions; a Markov Decision Process is the
basic self-organization module; decision-making is based
on the current state only. The connectivity of a graph
is an important measure of its resilience, as it indicates
how much more node/edge disconnections can be tolerated
until the graph is disconnected overall. Hence, the goal
for a robust, reliable and resilient system under fault
impacts would be to reorganize the graph and maximize
the connectivity while observing the system constraints. A
graph can be mathematically represented with the Laplacian
matrix, which is defined as L = D – A, where L is
the Laplacian matrix, D is the degree matrix (diagonal
matrix showing the number of edges at each node), and
A is the adjacency matrix (square matrix indicating the
connection between nodes with 1s and 0s). The connectivity
of a graph can be algebraically obtained by taking the
second-smallest eigenvalue of the Laplacian matrix. The
occurrence of severe disturbances can be represented with
disconnections of corresponding nodes/edges, resulting in
greatly reduced algebraic connectivity of the graph. To
begin looking into the behavior of how a fault epidemic
affects and spreads through a system, the transition matrix
is defined as a square matrix with elements indicating
the probability of traveling from node i to node j. The
probabilities can be obtained through the derivation of a
random walk normalized Laplacian, which can be written
as D−1A. This matrix serves as the transition matrix of
a random walker on the graph, containing the likelihood
of the epidemic spreading direction. Gathering the various
matrices defined so far, a Markov Decision Process (MDP)
can be constructed to observe the overall system behavior.
MDP is a tuple consisting of {S, A, T, R, γ }, where:
– S = set of system states
– A = set of state-transitioning actions
– T = state transition matrix
– R(s,a) = reward for taking action a at state s
– γ = discount factor (to be further explained below)

In the MDP construction above, the reward function gives
scalar values for each state transition, with greater value
awarded to state transitions that result in moving toward the
ideal behavior. A good definition of the reward function is
the key to designing a resilient system, as the reward values
can be constantly updated to optimize system resilience.
The solution of the MDP will be in a form of a “policy,”
denoted by π and is the mapping from S to A, such that
the system operation will proceed by repeating two steps:
determine current state and execute actionπ (s) = a. Note

here that the action is determined by only the current state
and not the history of previous states, since the process is
Markovian. To determine the policy, define a value function
V(s) that accumulates the immediate rewards from each
state along a series of state transitions. The optimal policy
for a resilient autonomous system operation can be obtained
by a dynamic programming method, namely the Bellman
equation, written as

V (s) = max (R(s, a) + γ
∑

s
′

T
(
s

′ |s, a
)

V (s
′
)) (4)

Here, the discount factor γ ∈ [0, 1] suppresses the effect
of future iterations to ensure convergence to a solution.
The resulting system behavior following the obtained
policy can be evaluated with proper resilience metrics.
Due to limited resources (time, energy, etc.) or functional
capabilities (joint angles, motor speed, etc.), tradeoff among
the resources is inevitable in establishing system resilience.
Some conditions for resilience metrics can be considered so
that the metrics must be useful for decision making; should
result in values so that the performance can be quantitatively
assessed and compared; reflect uncertainty of the result; and
consider failure recovery time. Overall, the optimal policy
from MDP and the resilience metrics can be combined to
ensure the system maintains its mission profile under severe
disturbances.

Fault Tolerance Reconfigurable design of systems centers
on incorporating autonomy and resilience, sustainment and
reliability under changing operational requirements, severe
disturbances (internal and external) and uncertain/dynamic
environments or mission profiles, without major changes
to the system’s initial design. We address such challenging
questions as i.) How does reconfiguration of one component
affect the operation of other, neighboring, components? ii.)
What is an appropriate strategy to maintain desired system
behavior? We present a methodology for reconfigurable
design and performance evaluation of complex systems
paving the way for the design and construction of resilient,
high-confidence autonomous systems. We are introducing
a novel approach to fault-tolerance by considering the
impacts of severe fault modes on system performances
as inputs to Reinforcement Learning (RL) strategy that
trades off system performances with control activity in
order to extend the Remaining Useful Life (RUL) of
the unmanned system so that a detrimental event does
not occur in the presence of severe fault modes. The
proposed approach employs a software solution and does
not require a hardware complement to be integrated in
the system design. The proposed architecture performs
one of three actions, low-level control reconfiguration at
the component level, mid-level control redistribution at
the sub-system level and high-level mission adaptation



J Intell Robot Syst (2018) 91:59–83 69

Fig. 6 Reconfiguration
framework for resilient systems

at the highest echelon of the architecture. The fault-
tolerant control begins with reconfiguration at the low-
level since the impact of reconfiguration is localized to
the individual component. If component reconfiguration
is not sufficient to meet the mission objectives, control
redistribution is performed at the middle level. The impact
of control redistribution affects all components within
the subsystem. This action provides more flexibility over
component reconfiguration at the expense of increased
computational complexity. Finally, if the previous actions
are insufficient in achieving the desired objectives, mission
adaptation is performed. During this action, lower-priority
mission objectives are compromised or traded-off to achieve
higher priority objectives. To handle sever disturbances,
the middle-level reconfiguration plays critical roles for
resilience in that trade-offs of system performances are
actively considered. The theoretical underpinnings for the
proposed resilience-based reconfiguration rely on concepts
of DCBR, RL, and MPC-DDP as depicted in Fig. 6. The
integrated framework of the three modules described above
is a decision-making process, which optimizes control
actions and system behaviors in order to extend RUL under
severe fault modes. What distinguishes this framework from
traditional reconfigurable control methods is to consider not
only the current degraded states, but also consequences of
them after all by RL.

RL is a supervised learning algorithm, seeking actions
in environments (or mappings from states to actions) to
maximize given rewards [37]. In RL, an agent takes an
action in environments and observe changes of states
accordingly. The observed states are translated into rewards,

then an agent takes another action to collect maximum
rewards over a given mission. What distinguishes it from
typical optimal control methods is that the environment is
not known to an agent; thus, the agent learns dynamics
of environments by interacting with environments, so that
it can choose optimal actions, which can produce the
maximum rewards after all. In this sense, RL explicitly
considers the whole picture of a mission.

RL utilizes the concepts of DP and Bellman’s principle
based on the MDP formulation of an environment, without
the knowledge of system dynamics, but measurement data
coming from interactions with environments. Since the
environment is unknown, learning is realized by exploiting

Fig. 7 Steps for resilience calculations and assessment
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learnt policies and exploring an unknown state-action space
[38]. There are two approaches: off-policy and on-policy
methods. Off-policy methods, also called “an estimation
policy”, use a greedy search to determine control actions.
A behavior policy makes decisions about control actions
among all possible actions having a finite probability of
being selected. On-policy methods, on the other hand,
evaluate and improve control policies at the same time
with a ε-greedy method, which chooses control actions by
the probability, ε, to determine whether it takes a greedy
action or random move. Both approaches include random
moves, and it may cause unstable system behaviors during
the exploring phase. To address this issue, RL learns the
level of adaptation by adjusting an adaptation parameter of a
cost function in MPC-DDP, in the proposed reconfigurable
control framework. A general formulation of MPC in this
framework addresses the solution of:

V (x(t0), t0) = min
u

[
tf∫

t0

l(x(τ ),u(τ ), τ )dτ + �(x(tf ), tf )] (5)

subject to:

dx
dt

= F(x(t), u(t)) (6)

g(x(t), u(t)) ≤ 0 (7)

where t0 is an initial time and tf is a terminal time. l(·)
is a scalar running cost, �(·) is a scalar terminal cost,
F(x(t),u(t)) is a generic nonlinear system dynamics as
an equality constraint of the optimization problem, and
g(x(t),u(t)) is a general function for inequality constraints.

The running cost function, l(x(τ ),u(τ ),τ ), typically
formulated as a quadratic function as shown in Equation 3.
It is a linear combination of two terms: system performances
and control efforts.

l(x(t),u(t), t) = 1

2
(x (t) − r(t))T K(x(t) − r(t)) + α · 1

2
u(t)T Ru(t)

(8)

where r(t) is a reference, K and R are coefficient matrices,
and α is an adaptation parameter. The right hand-side
of Eq. 3 refers to the energy of the states and control
inputs at each time instance. The adaptation parameter
determines the trade-offs between system performances and
control efforts. In this way, model-free and model-based
optimal control techniques complement each other; MPC-
DDP utilizes system dynamics to produce control actions
stabilizing system behaviors for a finite time, and RL finds
optimal weightings for the entire mission while it does not
incur unstable behaviors during the exploration. Among RL
methods, Q-learning is one of the most popular methods
using TD learning. A general Q-learning formulation is:

(9)

The action a to be learned in the Q-learning process is α in
the MPC formulation.

4.2 ResilienceMetrics / Evaluation Criteria

The proposed resilience evaluation is composed of five
steps, as illustrated in Fig. 7. The framework enables
quantitative comparisons of potential system designs, with
respect to their resilience to a set of disruptions (e.g.
resource, hazards/threats, with multiple recovery actions
considered). Each factor quantifies a particular aspect of
system resilience. The approach uses system performance
data to calculate a set of resilience factors and is
independent of system complexity or heterogeneity. System
performance is defined as a time-varying measure of
how well a system is achieving a desired capability at a
given time t. When assessing the resilience of a system,
what the system is resilient to must be considered, since
resilience of a system can be measured only in terms of the

specific threat, requiring identification of potential threats,
or disruptions. The framework also requires identification
of potential recovery actions. These recovery actions
enable a system to respond to disruptions and recover
lost capabilities. In our case, the recovery actions refer
to self-organization and control reconfiguration strategies,
implemented after the disruption is identified. The notional
data in Fig. 8 shows clear trends and smooth transitions
in system performance. However, actual measured or
simulated data is often volatile or noisy, due to the stochastic
nature of many real or simulated processes/systems (UAVs),
hence a Savitzky-Golay (S-G) filter method is used to
smooth the performance data.

We introduce a resilience metric, R, in order to
quantify a system’s resilience to one disruption event.
The metric R is formulated by identifying important
characteristics of a resilient system, which are quantified
by a set of resilience factors that contribute to system
resilience, R.
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Fig. 8 Notional plots of system
performance data with and
without reconfiguration

The total performance factor, σ , accounts for the
performance maintained by a system throughout the time
period of interest. This factor is calculated as

σ =
∑tf inal

t=t0
y(t)

yD(tf inal − t0)
(10)

where 0 ≤ σ ≤ ∞, and has a value of one in a normal
operating scenario. It is a function of the recovery factor,
accounting for the end state of the system, the absorption
factor accounting for the ability of the system to absorb the
effects of a disruption.

Spectral matching is used to check if the self-
organization method derived is proper at all. The spectral
decomposition of the graph Laplacian associated with com-
plex shapes provides eigenfunctions (modes) which are
invariant to isometries. Each vertex on the shape could be
uniquely represented with combinations of the eigenmodal
values at each point, sometimes called spectral coordinates.
Spectral matching consists of establishing the point corre-
spondences by pairing vertices on different shapes that have
the most similar spectral coordinates. Measuring consensus
via system entropy allows evaluating the evolution of the
distribution of nodal values, rather than the specific nodal
values themselves. In addition, it will enable us to under-
stand the structure of the underlying network in terms of its
efficiency in attaining a consensus.

Table 1 Effect of failure mode on algebraic connectivity

# of failure mode λ2

0 0.3384

1 0.04874

2 −3.0199e − 16 ≈ 0

4.3 The Experimental Platforms

We have used a number of laboratory UAS platforms in
the development and validation of the resilience framework.
The first is a model hovercraft designed and built under
NASA sponsorship and used for control reconfiguration
purposes while the second is a typical ground UAS used
to develop and demonstrate the self-organization strategy.
The proposed self-organization method can combine
the Markov Decision Process with Lyapunov stability
conditions for a complex system to maintain stability under
a severe failure mode. Test results indicate the robustness,
stability and resilience characteristics while the modules
of the framework performed in real time minimizing the
computational burden. To illustrate the proposed self-
organization method, a hexapod robot is selected as the test
system. The mission profile is set for the hexapod to travel
from a current point A to a goal point B in a straight-line
path. Cully et al. suggest an improved trial and error method
to determine the optimal action for a walking hexapod
with a broken leg [39], but the large original search space
and several minutes of lengthy adaptation time to the next
step hamper their development. Instead, a self-organization
method that spontaneously generates the optimal action
can provide an alternative to decrease significantly the
computational burden. An example of a possible failure
mode in a hexapod is the locked joint failure, where a joint
angle is fixed at a certain state and cannot be controlled. In
the work of Yang, locked joint failures of different joints
are shown to result in different effects on the leg workspace
[40]. Since the Coxa joint is in charge of the horizontal
swinging movement of the leg, locked joint failure at the
Coxa joint completely disables the leg’s swinging motion
and the leg can only lift and plant itself vertically. On the
other hand, locked joint failure at the vertically operating
Femur and Tibia joints will have no effect on the swinging
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Fig. 9 Example visualization of the hexapod MDP

motion, but will diminish the leg’s stretchable length, so
the upper view of the leg’s workspace will have the same
arc shape but with reduced size. The impact of locked joint
failures on the leg’s workspace will cause the hexapod to
derail from its original path in an unexpected manner.

To examine the effect of locked joint failure in a graph
theoretic aspect, we can consider one unit of a hexapod
robot as a graph with 18 nodes (6 legs × 3 joints).
The aforementioned algebraic connectivity can be used to
observe the effect of locked joint failure on the hexapod’s
resilience. Demonstration of the effect of locked joint failure
on algebraic connectivity is shown in Table 1, where λ2 is
measured in normal condition, then with one joint failure,
and finally with two joint failures.

It can be seen that the incremental addition of failure
modes decreases the algebraic connectivity, and when
there are two failure modes present, the graph becomes
disconnected overall.

An MDP (Markov Decision Process) is formulated as
the self-organization strategy for a hexapod under locked
joint failure. The state space S can be defined as the
global position of the hexapod, and the action space A
as the necessary control inputs that enable the robot to
move from one valid state to another. More specifically, the
state refers to the global x, y, and θ (orientation) of the
hexapod, and the corresponding actions are the Cartesian
and angular velocities to be applied. As shown in Fig. 9, the
desired path from initial position to goal position is known,
and the reward function is defined so that higher reward
(or probability) is assigned to action resulting toward the
desired path. Finite deterministic case (discrete state/action
space) of the MDP algorithm is assumed for simplicity. The
solution of the MDP will be a policy that maps the optimal
action for each state for the hexapod to move along the
desired path.

The self-organization strategy for a hexapod is tested
in VREP (Virtual Robot Experimentation Platform), which
is an open source robot simulator with an integrated
development environment. The hexapod starts at the origin
and the diagonal path of y = x on the XY plane is assumed
to be the desired path for the hexapod to travel. A failure
mode is then implemented to the hexapod by dislocating
the left-front Coxa joint as the locked joint failure in the
corresponding leg. Finally, the proposed self-organization
method is applied in the simulator, where the hexapod’s

Fig. 10 Self-organizing
hexapod path under failure mode
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Fig. 11 The autonomously
operable hovercraft with two
differential thrusts (left), and 2D
hovercraft dynamics and
kinematics representation (right)

traveling behavior is governed by an MDP. The resulting
path is shown in Fig. 10, where the hexapod starts away
from the desired path but steadily turns its direction in the
process to reach the desired path. In terms of resilience, the
main goal for the hexapod was to reach the desired path, so
the trajectory in this case may not be ideal in the perspective
of time or total travel distance.

To demonstrate the efficacy of the reconfiguration strat-
egy, an autonomously operable under-actuated hovercraft
is used as a testbed [41, 42]. The hovercraft operates with
two differential thrust fans with electrical motors and a
LIDAR sensor for simultaneous localization and mapping,
as depicted in Fig. 11

The hovercraft is assumed to move in two-dimensional
planar motion; thus, it is an under-actuated system given
two input controls. Equations 11 are the system dynamics
model; x and y are absolute positions on the ground
fixed coordinate, θ is a heading angle, Ẋ is a velocity,
Ẍ is an acceleration, m is the mass, J is the moment
of inertia of the hovercraft, d is the distance between a
thruster and an imaginary longitudinal line crossing the
mass center while assuming that the mass center coincides
with the geometric center, and Fl & Fr are left and right
thrust forces, respectively. Based on the system dynamics

equations, the state is x={x,y,θ,ẋ,ẏ,θ̇}T , and the input is
u={Fl,Fr }T . Han, and Zhao evaluated the underactuated
hovercraft controllability [43]. The analysis showed that

Table 2 System properties

Parameters Values Description

m (kg) 11.8 Vehicle mass

J (kg · m2) 1 Moment of Inertia

d (m) 0.25 Moment arm

dt (–) 0.05 Frictional damping (translation)

dr (–) 0.005 Frictional damping (rotation)

Fmax (N) 2 Control input constraint (max.)

Fmin (N) 0 Control input constraint (min.)

the existence of the yaw torque can guarantee the system
controllability. It implies that one thrust motor failure does
not affect the controllability as long as the other motor can
produce proper torque values.

ẍ = − dt

m
ẋ + Fl · cos θ + Fr · cos θ

ÿ = − dt

m
ẏ + Fl · sin θ + Fr · sin θ

θ̈ = − dr

J
θ̇ + d(Fr − Fl)

(11)

Table 2 shows the system properties used for the following
experiments.

The hovercraft test mission is to take off at origin (0, 0)
and follows waypoints (80, 80), finally reach the destination
(160, 80). During the mission, the right thrust motor
degrades due to an armature winding short as illustrated in
Fig. 12.

As a pre-identified critical fault mode, armature winding
short is selected at a thrust motor. A winding short increases
effective resistance of a motor circuit. It implies the waste
of electric energy: i.e., the loss of efficiency. Because of
the inefficiency, eventually, the effective thrust force of the
faulty motor decreases causing control asymmetry. If the
winding short gets intense, then it is no longer possible
to produce any thrust forces, and it makes the hovercraft
uncontrollable anymore.

Waypoint 1 Waypoint 2

Fault ini�ated

Fig. 12 Test mission and scenario
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Fig. 13 Q-value table

For the given scenario, RL states were formulated below:

sRL
t = {dt , ḋt , σt , σ̇t }T (12)

where dt is a remaining distance (shortest), and σt is a state
of fault estimated by a fault diagnosis module.

Actions are:

α={αL,αR}T (13)

whereL andR denote left and right adaptation, respectively.
For a simple proof of concept, a tabular-based Q-learning

was used as shown in Fig. 13. State and action spaces were

discretized into 20 and 2 levels, respectively; thus, (20C2-by-4)
Q-value table was made. Through training, the Q-value table
was gradually updated until converged.

Figure 14 shows comparisons of hovercraft trajectories.
Figure 14a is a trajectory of healthy hovercraft controller
by a dynamic-inversion controller. It successfully followed
waypoints as designed. Figure 14b is a case when the right
thrust motor went degraded gradually during the operation
without control reconfiguration. As expected, it eventually
got unstable and could not reach the target. Figure 14c
shows a trajectory when the hovercraft used an MPC-
DDP controller without adjusting the adaptation parameter.
The trajectory shows that an MPC-DDP controller could
guide the hovercraft to the direction of a target after
the fault mode, but still could not reach the destination
at the end. It was because the right fault motor went
completely off (failure) before completing the mission, and
so the hovercraft lost its controllability. Figure 14d is a
successful reconfiguration accomplishing the mission with
proper adjustment of the adaptation parameter by RL.

The reconfigurable control strategy was tested also on the
Georgia Tech VTOL UAV called GTMax (Fig. 15). Under
the auspices of the DARPA Software Enabled Control
(SEC) program, the GTMax was instrumented appropriately

Fig. 14 Comparisons of hovercraft trajectories: a Healthy, b Faulty without reconfiguration, c Faulty with a fixed adaptation parameter, and d
Faulty with RL-based adaptation
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Fig. 15 The Georgia Tech VTOL UAV

and flown to execute a bob-up maneuver. During flight, a
failure mode was injected in the collective and a variable
rotor speed used to stabilize the vehicle.

5 Safety in Hostile Environments – Risk
Assessment, Evaluation, Assurance
and Control

Healthy and Resilient Assets Mean Safer Operations We
pursue an integrated and verifiable methodology to safety
assurance (Fig. 16). Safety assurance enables the evalua-
tion of the effectiveness of risk management strategies.

The basic constituents of the framework include:

• The process begins with the identification of potential
hazards - hardware, software, the environment, and
human factors are major sources of hazards. We adopt
Predictive Models to analyze hazards and assess their
impact on vehicle safety.

• Define safety margins - Safety margins are defined
and designed as an automatic envelope protection
system. We will adopt a probabilistic approach to safety
assurance and define appropriate safety margins in the
context of risk assessment.

• Safety assurance: A probabilistic approach is pursued
for safety assurance.

• Risk index and risk control - Risk is quantified in terms
of the scenario of events leading to hazard exposure,

Fig. 16 Safety

the likelihood of the scenario and a measure of its
consequences. Concepts of envelope protection make
use of on-line learning adaptive neural networks to
generate on-line dynamic models exploited to estimate
limits on controller commands.

• Optimize system design on the basis of safety analysis
methods

5.1 Safety Assurance: Confidence, Risk and Risk
Control

Confidence is a measure of reliability, i.e. how reliable a
statistical result is, expressed as a percentage, and indicating
the probability of the outcome from a decision system
(fault declaration, control effectiveness, prognostic horizon,
safety assurance) being correct. Confidence is usually
linked to the concept of risk. The latter, with focus on
aerospace applications, is associated with the probability of
component/subsystem failures and the probability of aircraft
loss-of-control for a chosen control configuration. Consider
the notion of a safe set, depicted in Fig. 17, and employed
to quantify criteria associated with risk.

A number of safety and hard limits, i.e. reduced aircraft
envelope, are employed to define the safe set. The control
objective is to derive the optimal reconfiguration policy
that minimizes the probability of excursion outside of a
predetermined safe set, or maintain the vehicle dynamics
within the safe set. It is commonly anticipated that the
flight envelope or safe set may shrink in the presence of
a severe fault/failure condition. Under these circumstances,
the reconfiguration strategy’s intent is to bring the aircraft
back within the redefined safe set. In this case, the concept
of risk is associated with the inverse of the distance
between the current state of the system and a critical safe
envelope, assuming certain operating conditions, as it will
be detailed in the sequel. Confidence, on the other hand, is

Fig. 17 Safe set definition
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the probability that the system is bounded by an interval that
is obtained from the conditional distribution.

Optimal risk management policies are aiming to recon-
figure the aircraft flight controller appropriately when dam-
age/hazard is detected/isolated and is severe enough to
compromise the operational response of the asset. In such
situations, the probability of component failure and the
probability of aircraft loss-of-control for a chosen control
configuration may be estimated as:

p
g
s0 = Prob

g
s0sk ∈ A for all k ∈ [ON]|s0 ∈ A (14)

This is a stochastic reachability problem, where sk is a state
at time k, A is a safe set, and g is a control policy (control
gain selection for linear case).

We choose the reconfiguration policy (detailed in the
resilient design and operation of a UAS section of this
document) such that this probability is maximized (thus risk
is minimized).

The control mode is selected to minimize the probability
of mission failure and may be computed on-line as:

V ∗
o = sup

g
p

g
so(A) (15)

Vkis a value function at time k.V ∗
N(sk) is initialized as

V ∗
N(sk) = 1A(sk). 1Ais an indicator function (1 if sk is

within A, 0 otherwise).
This control policy formulation maximizes the proba-

bility of remaining inside the safe set A defined by the
stability limits and the Remaining Useful Life (RUL) limit
of the failing component/subsystem. Examples from the air-
craft domain are plentiful addressing issues of actuator and
control faults, among others.

Within the general framework for risk assessment and
risk management, we explore means to take corrective
action with acceptable risk, i.e. we are seeking an essential
link between failure prognosis and reconfigurable control.
Towards that goal, we suggest ways to quantify risk and
uncertainty. The notion of confidence may come in two
different perspectives: In the first one, the user specifies
an acceptable level of confidence and we are seeking to
quantify risk, while in the second, an acceptable risk level
is given and the confidence in taking a corresponding
corrective action is sought.

For that purpose, we borrow concepts from actuarial
science and we define a quantity called Fault Value at Risk
(FVaR) to provide on-line an estimate of the severity of
the fault/failure condition under study. FVaR(t, tprognosis)

is the maximum increase in fault dimension l(t) that can
occur within timet after the time of tprognosis . The FVaR at
the confidence level α is given by the smallest number l(t)

such that the probability that the damage (degradation, fault
dimension) L(t) exceeds l(t) is not larger than (1- α), i.e.

FV aR(ttprognosis ) = inf(l(t) ∈ R : PL(t) > l(t)|ytprognosis
≤ 1−α)

(16)

Assuming that the fault dimension coincides with the first
component x1

t of the state vector, then the 95% confidence
FVaR can be computed as:

FV aR(ttprognosis ) ⇔ α= 0.95 =
∫ FV aR(t,tprognosis )

−∞
p̂(x1

t |ytprognosis
)dx1

t

(17)

The FVaR function provides information about the future
condition of the system. Based on this fact, it is also
possible to create a risk index that would consider the
difference between the expected value of the hazard zone
(which generally defines the most frequent value of the
fault dimension at the failure time instant) and the FVaR
computed with 95% confidence.

RiskFV aR(ttprognosis ) = (E{HazardZone} − FV aR(t, tprognosis ))
−1

(18)

Different load conditions will lead to dissimilar risk
functions. The risk measurement is calculated via an
estimate of the probability of violating specified limits.

Fault Value at Risk (FVaR):

α =
FV aR(tf uture, tprognosis )∫

−∞
p̂(xtf uture

|vtprognosis
)dxtf uture

(19)

For a given confidence α, compute: FVaR(tf uture-tprognosis)

Solve via a recursive algorithm – The argument is the
predicted pdf (Fig. 18).

Safety Margins and Risk Assessment The objective is to
evaluate risk in decision making to safeguard the safety
of the asset, i.e., taking action (control reconfiguration, for
example) based on fault/failure evidence, prognostic infor-
mation, etc. Safety margins are defined and designed as
an automatic envelope protection system. Within the sys-
tem’s operating envelope, it may be possible for the system’s
behavioral modes to escape from the stable region of oper-
ation, under severe stress conditions, endangering its safety
and survivability. Concepts of envelope protection make
use of on-line learning adaptive neural networks to gen-
erate on-line dynamic models exploited to estimate limits
on controller commands. The work borrows from research
conducted at Georgia Tech and implemented on the Geor-
gia Tech’s GTMax, a VTOL UAV [44]. Recent advances in
flight control systems enable autonomous maneuvering that
can challenge an Unmanned Aerial Vehicle’s (UAV) flight
envelope [45]. Typically, conservative hard limits are set
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Fig. 18 Fault value at risk for
varying confidence levels
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in a UAV’s flight control channels as maximum and min-
imum allowable command inputs. An effective automatic
envelope protection system will reduce the compromise
between safety and performance, thus improving the over-
all confidence of safe operations of UAVs especially during
aggressive maneuvering close to their operational limits.
The limit avoidance via command limiting is evaluated in
flight for the case of rotor stall limit avoidance, as an exam-
ple, on the Georgia Tech unmanned helicopter test bed. The
Envelope Protection System (EPS) was evaluated as part
of the GTMax Rotary Wing Experiments during the initial,
mid-term and final demonstration of the SEC program [46].
We consider an envelope protection strategy via command
limiting algorithms, their integration with the low-level
adaptive flight control algorithms, and software-in-the-loop
(SITL) simulation for demonstration purposes. The proxim-
ity of a limit parameter to its limit boundary is called the
limit margin. The limit margin is easily determined when
the instantaneous value of the limit parameter can be calcu-
lated directly using sensor measurements. However, a chal-
lenge is the determination of future limit margins to prevent
limit violations due to the dynamic nature of limit parameter
response. In an unmanned vehicle application, where enve-
lope protection is to be automated, the system can be set-up
in two fundamental architectures to incorporate a modu-
lar envelope protection design into a UAV’s existing flight

control system: Control Limiting and Command Limiting.
Figure 19 depicts the control limiting architecture. A pre-
ferred method for an automatic EPS is the use of command
limiting, shown schematically in Fig. 20. In this architec-
ture, the model is viewed as a combination of the low-level
controller and the vehicle, instead of the vehicle dynamics
only. We pursue appropriate modeling, estimation and con-
trol methods in defining and implementing safety margins
via control and command limiting techniques. The scheme
is used to address two types of potential UAV hazards while
the vehicle is executing extreme maneuvers: A load factor
limit and a rotor stall limit.

Safety Assurance: A Probabilistic Approach The objective
is to optimize system design and UAS operations based
on safety analysis methods. In probabilistic design, the
probability of failure is defined as the probability of
violating a set of engineering criteria called “limit state”.
Let the state of the component be described by the
parameters,X = {x1,x2, . . . ,xk. These design variables
represent the time-dependent demands and capacities of the
component/system under test. Demands can be expressed
in terms of loads, stresses, hazards or other draws on
the component/system. Capacities are the ability of the
component to meet these demands, and are expressed as

Fig. 19 Control limiting
architecture



78 J Intell Robot Syst (2018) 91:59–83

Fig. 20 Command limiting
architecture

strengths, resistances, etc. These design variables are often
stochastic, due to inherent uncertainties.

The safety of a component is quantified as a function of
its design variables, g(X). This limit state function describes
three regions in the design space, as shown in Fig. 21.

Any component state that lies in the g(X)<0 region
is said to be unsafe or failed. Usually, the limit state
function is described as a classic stress-strength problem,
such that theprobability of failure, pf , described by overlap
of component state PDF, fX, and limit state function g(X).

g(σR(X)σS(X)) =σR(X)−σS(X) (20)

where σR(X) and σS(X) are the cumulative strengths
(capacities) and stresses (demands), respectively, and the
unsafe region is described as any state where the component
stress exceeds its strength.

Because the design variables x1,x2, . . . ,xk are stochastic,
the component state must be represented as a joint
probability density function (PDF),fX(x1,x2, . . . ,xk). The
amount of this PDF that lies in the unsafe region is the same
as the probability that the component is in a failing state,
and thus the probability of failure, pf is expressed via the
integral:

pf=
∫

· · ·
∫

g(X)<0

fx(X1X2, . . . ,Xn)dx1dx2. . .dxn (21)

Issues to consider are how the design space and limit state
function are defined, how to describe or estimate the pdf,

Fig. 21 Definition of three limit states

fX(x1,x2, . . . ,xk), and how to solve the integral and obtain
pf. Solution of the integral numerically or analytically is
a daunting task. We seek therefore approximations to a
feasible solution.

The first-order safety/reliability method (FOSM) pre-
serves only the first-order terms of g(X), linearizing the
limit state function about what is called the design point.

g(X) ≈ g(μX)+
n∑

i=1

∂g

∂Xi
(Xi−μXi) + · · · (22)

The design point, denoted by X*, is chosen as the
nearest point to the component state, X, on the limit state
curve g(X) = 0. For convex regions defining pf, linearizing
about the nearest point produces the best possible first-
order approximation for pf. The distance from the current
component state, X, to the nearest point on the limit
state curve, X*, is proportional the safety/reliability of
X. A term, β, is defined as the safety index of the
current state, such that β ∝ ||X∗−X||. Formally, the safety
index is the unitized risk, the dimensionless coefficient of
variationβ =μZ

σZ
, where Z ≡ g(X).

If Z is normally distributed and g(X) is linear, then pf
is simply defined as the cumulative distribution function
(CDF) at the first coefficient of variation,

pf= �(−μZ

σZ
) = �(−β) = 1 − �(β) (23)

where �(·) is the CDF of the standard normal variant
(Fig. 22).

Fig. 22 g(X) linearized about X*
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Many algorithms are available to solve for μZ and σZ
or β—or its variants. Three standard approaches are the
mean value first-order second-moment (MVFOSM) and
the advanced first-order second moment (AFOSM) for
normal variables and AFOSM for non-normal variables.
Two steps are involved in these approximation methods to
compute easily the integral. The first step is to simplify the
integrand fX(X) so that its contours become more regular
and symmetric, and the second step is to approximate the
integration boundary g(X)=0.

We introduce a time-dependent FOSM to calculate the
probability of failure as a function of time.

Step One: Formulate the time-dependent limit state func-
tion g(X, t)

We assume all the random variables X are mutually
independent, and the limit state can be written as a time-
dependent classic “stress-strength” problem of the form

g(σR(X, t)σS(Xt)) =σR(X, t)−σS(Xt) (24)

where σR(Xt) and σS(Xt)are the cumulative strengths
(capacities) and stresses (demands) at time t.

For each time increment, the random design variable is
calculated using the component/system degradation model
as a function of the previous damage status, time increment,
model parameters � and load profile U:

X
(t+�t)
i = η(X

(t)
i , �t, U, �) (25)

The limit state is updated g(σR(X, t)σS(Xt))for each point
in time.

Step Two: calculate the probability of failure at each time
point pf (ti) using the FOSM algorithm:

Simplify the integrand fX(X):
Transform the original random variables from the

original design space (X-space) to standard normal space
(U-space) by Rosenblatt transformation, which preserves
the same quantity of the cdfs of the random variables before
and after the transformation [47],

FXi
(xi) = φ(ui) (26)

φ(·) is the cdf of the standard normal distribution.
After the transformation, the limit state function becomes

g(U), and the probability integration reduces to

Pf= Prob{g(U) ≤ 0} =
∫

. . .

∫

g(U)≤0

φU(u)du (27)

Approximate the integration boundary g(U)=0.
FOSM uses a linear approximation (the first order Taylor

expansion). To minimize the accuracy loss, it is preferable
to expand the limit state function g(U) at a point that has the
highest value of the probability density, which is termed as
the Most Probable Point (MPP).

The solution to the model, MPP, is denoted by u∗ =
(u∗

1, u
∗
2, . . . , u

∗
n). The MPP is the shortest distance point

from the limit state g(U)=0 to the origin O in U-space. The
minimum distance β = ||u∗|| is called the safety/reliability
index.

Step Three: Repeat Step 2 until a time trace of failure
distribution pf (t) is obtained.

Step Four: Fit a life distribution to get the time-
dependent safety/reliability distribution F(t).

g(X) is linearized about the “design point” X* on the
limit state. The distance between state X and the nearest
design point X* is the “safety” of the component state.

Let β be the safety index:

β = μz

σz
min imize ||X − X∗||

β ∝ ||X − X∗ g(X∗) = 0
(28)

Risk Index and Risk Control A risk index considers the
difference between the expected value of the hazard zone
(which generally defines the most frequent value of the fault
dimension or safety margin at the failure time instant) and
the FVaR computed with 95% confidence,

RiskFV aR(t, tprognosis ) = (E[HazardZone] − FV aR(t, tprognosis ))
−1

(29)

A risk score may be defined as:

RiskScore = (SererityV alue) × (LikelihoodV alue)

(30)

The severity value is estimated from the fault/failure
analysis while a likelihood value is calculated from the
proximity of the current state to the limit state.

Risk Assessment begins with the definition of a risk
matrix whose columns describe the risk categories from
catastrophic to negligible and rows designate frequency of
occurrence from frequent to extremely improbable. The
numerical entries start with a score of 1 for the extremely
improbable and negligible risk ending with a score of 25
for the most frequent and catastrophic. The color coding
suggests areas of high risk (red), medium risk (yellow) and
low risk factors (green). A detailed risk analysis requires
a statistically sufficient data base to arrive at an accurate
risk matrix whose entries are probability density functions.
Risk management or risk control is intended to limit risk to
aceptable bounds by developing and aplying tools/methods
for improved system safety. The FAA lists in the System
Safety Handbook severity definitions. Figure 23 is a typical
risk matrix.

Safety hazards include: lost UAV – out of range or
to the enemy, UAV in erroneous state, unexpected human
interaction with UAV, erroneous target discrimination,
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Fig. 23 The risk matrix

enemy jamming or taking control, loss or inadequate
situational awareness, battle damage to UAV, provision for
emergency safety operator/pilot, UAV exposure to toxic
substances.

We propose to pursue appropriate modeling, estimation
and control methods in defining and implementing safety
margins via control and command limiting techniques. The
scheme is used to address two types of potential UAV
hazards while the vehicle is executing extreme maneuvers:
A load factor limit and a rotor stall limit.

Safety Risk Management provides a workflow for a formal
process to describe the system, identify hazards, assess
risk, and control/minimize risk. We define possible hazard
scenarios, quantify their frequency of occurrence and
estimate/predict their consequences. Once the hazard
analysis tasks are set in probabilistic terms, the design
for risk assessment takes over and addresses quantitative
and qualitative risk factors. Safety Assurance enables
the evaluation of the effectiveness of risk management
strategies and ensures compliance with oversight entities.
The process begins with the identification of potential
hazards, as noted previously. The safety nmanagement
and assurance framework incorporates a dynamic risk
management system that is dynamically updated and scales
appropriately to risk. We will adopt Predictive Models to
analyze hazards and assess their impact on UAS safety.
Figure depicts a Risk Matrix listing potential hazard
categories vs frequency of occurrence. Because of the
inherent uncertainty associated with hazards, models and
risk assessment, the variables/parameters are expressed as
PDFs.

Confidence is a measure of safety/reliability, i.e. how
reliable/safe a statistical result is, expressed as a percentage,
and indicating the probability of the outcome from a
decision system (fault declaration, prognostic horizon, etc.)
being correct. Confidence is usually linked to the concept
of risk. Within the general framework for risk assessment
and risk management, we will explore means to take

corrective action with acceptable risk, i.e. we are seeking
an essential link between failure prognosis, exceedance of
safety margins and reconfigurable control to maintain the
system integrity.

For that purpose, we borrow concepts from actuarial
science [14] and we define a quantity called Fault Value
at Risk (FVaR) to provide on-line an estimate of the
severity of the fault/failure condition or safety margin
exceedance.FVaR(t, tprognosis) is the maximum increase in
fault dimension l(t) that can occur within timet after the
time of tprognosis . The FVaR at the confidence level α is
given by the smallest number l(t) such that the probability
that the damage (degradation, fault dimension)L(t) exceeds
l(t) is not larger than (1- α).

We intend to apply these algorithmic developments to
prognostic routines, safety assessment for critical unmanned
system components / subsystems.

The Application Domain Resilience and safety methods are
finding a rich application domain in rotor wing and other
aircraft, unmanned autonomous systems, “smart” manufac-
turing processes, industrial processes, among others.

Modeling/Simulation/Visualization Platforms To demon-
strate the efficacy of the research, high fidelity modeling,
simulation and visualization tools are ready in mature states.
Microsoft Excel is a great simulation and visualization tool
with the power of macro capability. For more math-oriented
tasks, Matlab and Simulink are highly popular in the lab
from data acquisition, manipulation and system dynamics
modeling to data analysis, visualization and user-friendly
Graphical User Interfaces (GUIs). Powerful math and engi-
neering library enables users easily write scripts. Simulink
in Matlab allows even easier ways of modeling by a drag-
and-drop and connection interface for electrical, pneumatic
and many other systems. For the cases when statistically
enhanced analysis is required, SAS-JMP is used. It has var-
ious statistical function libraries handling large-size data.
In addition, JMP has flexible charting capability and its
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own script language. It enables our lab to show statisti-
cal results in a custom-designed GUI. Robotics simulation
is carried out with Robot Operating Systems (ROS) and
Gazebo environment. ROS is a middle-ware, which handles
message packets from/to each different component module
including sensors and controllers. Gazebo is a high-fidelity
3D rigid body dynamics simulator. It runs in ROS; thus,
each module does not have to be different between software
simulations and hardware tests. As system-of-systems sim-
ulation capability, ModelCenter is an integration framework
of multiple and cascading simulations. It allows multiple
case simulations at once by Monte Carlos simulation or a
Design-of-Experiments setup.

With missions and parameters defined, the next step
is to consider several possible modeling approaches. The
possible options are:

• Physics Based: Gazebo/ROS, USARSim
• Analytical: Using closed-loop equations and experi-

mental data to run sizing analyses on changing config-
uration.

• Matlab/Simulink with CAD: Virtual design of the
vehicle in CAD with configurations and use a Mat-
lab/Simulink model to see the performance variations
based on the setup.

6 Conclusions

Unmanned autonomous systems are making their presence
felt in all sectors of our economy from the military to
civilian and the industrial arenas. Unfortunately, technolo-
gies to assure their resilience to extreme internal/external
disturbances are not keeping pace with their exponen-
tially increasing numbers. It is documented that unmanned
systems too frequently are failing to execute their desig-
nated mission. To improve UAS availability, safety and
reliability when operating in uncertain and cluttered envi-
ronments, this paper introduced a holistic framework for
the design and operation of unmanned systems even when
subjected to hazards/threats that may endanger their oper-
ational integrity. Hazard analysis and prognostics methods
for reliability were stated. The enabling technologies of the
resilient UAS control methods borrowed from immunity
and self-healing concepts as well as control techniques to
impart on such critical systems properties of resilience and
safety. The design and operation of resilient and healthy
systems assures their safety. Probabilistic methods serve
as the risk assessment criteria which is crucial to safety
assurance/management. Open questions remain on the the-
oretical front to expand the introduction of verifiable algo-
rithms and ascertain that they can be fully implemented
on-platform meeting stringent computational requirements.

Success stories will assist to show proof of concept and
make these emerging technologies acceptable to the user.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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