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Abstract
This paper presents a kinematic controller for a differentially driven mobile robot. The controller is based on the navigation
function (NF) concept that guarantees goal achievement from almost all initial states. Slow convergence in some cases is a
significant disadvantage of this approach, especially when narrow passages exist in the environment and/or specific values of
design parameters are set. The main reason of this phenomenon is that the velocity control strongly depends on the slope of
the NF. The algorithm proposed in this paper is based on a method introduced in Urakubo (Nonlin. Dyn. 81(3): 1475–1487
2015), that extends NF to nonholonomic mobile platforms and allows stabilizing not only the position of robots but also
their orientation. This algorithm is used as a reference in experimental performance comparison. In the new algorithm, the
gradient of the NF is used to generate motion direction but the velocity is computed as a function of position and orientation
errors. This approach results in much better state converge. Analysis of the convergence shows how the location of the
eigenvalues of linearized system affects time of goal achievement. The paper describes saddle point detection and avoidance
methodology and presents their experimental verification. It also shows what happens in practice if initial position is located
exactly in the saddle point and its detection/avoidance procedures are turned off.

Keywords Mobile robot control · Navigation function · Set point control · Obstacle avoidance · Saddle point detection

1 Introduction

The breakthrough idea to use artificial potential fields to
control manipulators and mobile robots was introduced by
Khatib [4] in 1986. In this approach both attraction to the
goal and repulsion from the obstacles are negated gradients
of the artificial potential functions. The original solution had
one major drawback: local minima may occur depending
on the configuration of obstacles in the task space and
inadequate potential functions choice. The problem is
caused by the fact that attracting and repulsive components
of the control are combined by simple addition. In some
states which are far from the target location the addition of
attracting and repulsive vectors may result in zero vector.
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This causes the robot to get stuck far from the target
location.

The solution of this problem was presented in several
articles published at the turn of the 1980s and 1990s
by Rimon and Koditschek. They introduced navigation
function (NF) [12–14] that solves the problem of local
minima. In this method the addition used to combine
attraction and repulsion was replaced by division. In [12],
the algorithm for the generalized sphere-shaped obstacles
(sphere worlds) was described. It can be directly used to
control mobile robots without nonholonomic constraints. In
the next publications this approach was expanded to include
more complex environments [13, 14] e.g. star-shaped-
obstacles (star worlds) and trees-of-star-shaped-obstacles.
All these cases assume that the shapes enclosing obstacles
can be set by the analytic functions that fulfill given
conditions.

A proposition of the NF extension to nonholonomic
mobile robot was presented by Urakubo [21] in 2004 and
later extended [20]. The Author proposed that state variable
representing orientation be included in the NF that results
in a three dimensional gradient vector for a planar case. The
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gradient cannot be used directly to control the robot like in
[13, 14]. It is used as a reference for a nonlinear controller
that generates linear and angular velocities applied to the
mobile platform. In contrast to the Rimon and Koditschek
algorithm the orientation also converges to the desired
value. Convergence proof was enclosed in the paper.

The author of this paper together with its co-authors
conducted extensive tests of this algorithm including
simulations for sphere worlds [10], star worlds [6], and
experiments for sphere worlds [7–9].

The beginning of the 21st century saw publication of
many propositions of extension of the NF approach for
the groups of mobile robots [2, 15, 16]. The publications
addressed the problem of collision avoidance in multi-agent
robotic systems. The first paper introduces multi-robot
navigation function (MRNF). The second and third use
prioritization to solve conflicts in the case of concurrent
goals. In the [11] a new NF is proposed that can be
computed locally, and only the knowledge of the target and
obstacles in the robots’ neighborhood is required. In [17, 18]
NF is used to control aircrafts.

This work is motivated by the poor time performance of
known NF control methods. This is caused by the direct
dependency of the velocity control on the module of the
NF gradient. The gradient depends on many conditions,
including a number of obstacles, their relative positions,
obstacle functions that avoid collisions, goal location, and
some design parameters that must be tuned to avoid local
minima. As a result, the module of the gradient vector is not
usually the best choice for the velocity control.

The main contribution of this paper is to propose
modification of the method described in [20] that makes
the convergence to desired coordinates much faster.
The convergence of closed-loop system is analyzed by
linearization in the neighborhood of the critical point. It is
shown that by properly selecting the new design parameters,
the real parts of eigenvalues of the linearized system can
be easily moved to greater negative values. This results
in faster convergence of the system to the desired values.
The effectiveness of the proposed method is verified by
experiments. In addition, experimental verification of the
NF saddle point detection and avoidance is included. This
kind of results has never been published previously to the
best of the author’s knowledge.

Section 2 introduces the model of the differentially
driven mobile platform and the environment. Section 3
presents control algorithm. In Section 4 convergence proof
is given. Section 5 describes method of saddle point
detection and avoidance. Section 6 presents experimental
test-bed and results of experiments that illustrate how
convergence of the new algorithm has improved in
comparison to the reference algorithm. Detection of the

saddle point and algorithm that drives the robot out of this
point is presented. The final section includes conclusion.

2Model of the System

A kinematic model of a differentially driven mobile robot is
given by the following equation:

q̇ = B(q)u =
⎡
⎣

cos θ 0
sin θ 0

0 1

⎤
⎦ u (1)

where vector q� � [x y θ ] denotes the pose, x, y

are position coordinates and θ is orientation of the platform
expressed in a global, fixed coordinate frame. Vector u� �[
v ω

]
is the control vector with v denoting linear velocity

and ω denoting angular velocity of the robot.
The obstacles are circle-shaped and modeled with

obstacle function:

βi � ||r − pi ||2 − ρ2
i . (2)

where ρi is the radius of the i-th obstacle (i = 1, ..., N), pi

represents its center, r = [x y]� is the location of the robot
and N is the number of obstacles. The obstacle function has
a zero value at the boundary of the obstacle and increases if
the distance to the obstacle grows. It must be at least twice
differentiable.

The task space has an external boundary described by
the additional obstacle function that can be considered
as representing one more obstacle denoted in the further
equations with index zero:

β0 � ρ2
0 − ||r − p0||2, (3)

where ρ0 is the radius of the task space and p0 is the center
of the task space (usually the origin of the global coordinate
frame).

3 Control Algorithm

The goal is to stabilize robot in the origin with orientation
equal to zero. The total NF is as follows:

V � C

(Cκ + β)
1
κ

, (4)

where κ is a positive, constant design parameter and

C � ||r||2 + θ2 kw

kw + ||r||2 . (5)

Design parameter kw in Eq. 5 is a positive constant that
allows tuning the function representing the importance of
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the orientation with respect to the Euclidean distance to the
target.

A common obstacle function is obtained by the
aggregation of individual obstacle functions with the
following equation:

β �
N∏

i=0

βi . (6)

The internal obstacles are represented by i = 1, ..., N while
index zero denotes the task space boundary.

The new control algorithm is as follows:

u � −
{
a

[
1 0
0 1

]
+ b

[
0 1

−1 0

]}
γ, (7)

where a is a positive, constant design parameter,

b � −b̄
L�∇V

h(g)
(8)

and

γ = B�∇V
(||q�|| + εe

)
(
g2 + εf

) . (9)

Design parameters b̄, εe, εf in Eqs. 8 and 9 are positive
constants, L� � [sin θ − cos θ 0] and g � ||B�∇V || ≥
0. Function h(g) is as follows:

h(g) � g2 + εg
√

g, (10)

where εg is a small positive constant. Note that h(g) is
non-decreasing function and h(0) = 0.

Finally, ∇V denotes the gradient of the navigation
function with respect to variables x, y and θ . Regardless of
the number of obstacles, the gradient can be obtained in the
analytical form as:

∇V = ∇C(Cκ +β)
1
κ − C

κ
(Cκ +β)(

1
κ
−1)(κCκ−1∇C+∇β)

(Cκ +β)(
2
κ
)

,

(11)

where

∇C =

⎡
⎢⎢⎢⎢⎣

∂C
∂x

∂C
∂y

∂C
∂θ

⎤
⎥⎥⎥⎥⎦

�

=

⎡
⎢⎢⎢⎢⎢⎢⎣

2x(1 − kwθ2

(kw+||r||2)2 )

2y(1 − kwθ2

(kw+||r||2)2 )

2θ kw

kw+||r||2

⎤
⎥⎥⎥⎥⎥⎥⎦

�

(12)

and

∇β =
N∑

i=0

⎧⎨
⎩

∂βi

∂q

N∏
j=0,j �=i

βj

⎫⎬
⎭ . (13)

As noted in [14] all undesired local minima of the NF
(4) disappear as the parameter κ is increased. An algorithm
for automatically tuning κ for sphere worlds is presented
in [3]. The tuning parameter must satisfy a lower bound to

ensure convergence to the desired value. For the sufficiently
high value of the parameter κ NF (4) has a critical point
associated with each isolated obstacle, the saddle point. V

has no other critical points other than these points and the
goal.

Saddle points are unstable equilibrium points. Urakubo et
al. [21] proposes a special control procedure for saddle point
avoidance. It uses a time varying trigonometric function to
push the robot away from the unstable equilibrium point. In
Section 5, this method is recalled together with a detailed
description of saddle point detection. Section 6 shows the
results of experimental verification.

The NF V (4) has the following properties:

– V is at least twice continuously differentiable and all
elements of ∇V and Hessian matrix ∂(∇V )/∂q are
bounded

– V ≥ 0, and V = 0 ⇔ q = 0
– the critical points of V are a minimum at q = 0 and

saddle points associated with the obstacles; V does not
have any other critical points

– V is a Morse function - the Hessian matrix is
nonsingular at the critical points

– V ≤ Vb where Vb is the value of the NF at the obstacle
boundary

– ∂V/∂θ = 0 ⇔ θ = 0 ⇒ ∂2V/∂x∂θ = ∂2V/∂y∂θ = 0
and ∂2V/∂θ2 > 0

4 Convergence of the Closed-Loop System

This section presents analysis of the system convergence. It
only includes steps that differ from the analysis shown in
[20]. Substituting (7) with (1) one obtains:

q̇ = −B(q)

{
a

[
1 0
0 1

]
+ b

[
0 1

−1 0

]}
γ . (14)

As the above equation is not differentiable it is modified as
follows to get a differentiable one:

q̇ = −B(q)

{
a

[
1 0
0 1

]
+ tanh

(
h(g)

ε

)
b

[
0 1

−1 0

]}
γ .

(15)

Note that the differentiable model of the closed-loop system
(15) is needed for the further analysis only. It is not used in
the implementation.

For ε → 0 (15) approaches (14). By linearizing (15) in
the neighborhood of equilibrium point q = q0 ∈ H where
set H = {q | B�∇V = 0} one obtains

δq̇ = A(q0)δq. (16)

The A(q0) matrix is computed taking into account that
||B�∇V || → 0 as t → ∞. This condition can be rewritten
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as
√

( ∂V
∂x

cos θ + ∂V
∂y

sin θ)2 + ( ∂V
∂θ

)2 → 0. This leads to

the conclusion that ∂V
∂θ

→ 0 and ∂V
∂x

→ 0 as the system
approaches the equilibrium point. Moreover, assuming that
the nominator of the fraction on the right hand side of Eq. 8
L�∇V → 0 as t → ∞ (that may be rewritten as follows:
∂V
∂x

sin θ− ∂V
∂y

cos θ → 0) and knowing that ∂V
∂x

→ 0, θ → 0

one can state that ∂V
∂y

→ 0. Summarizing, due to the fact that
∇V → 0, the closed-loop system is asymptotically stable
to the equilibrium point (limt→∞ x, y, θ = 0).

Notice that as the denominator of the fraction on the right
hand side of Eq. 8 tends to zero (h(g) → 0) as t → ∞,
the nominator must convergence to zero (L�∇V → 0)
faster then the denominator to avoid b going to infinity and
violating controllability of the system.

For the further analysis the control (7) can be rewritten as
follows:

u = −(γ̄ aĪ + γ̄ bJ̄ ) (17)

where

Ī =
[

1 0
0 1

]
B�∇V, J̄ =

[
0 1

−1 0

]
B�∇V (18)

and γ̄ =
(||q�||+εe

)
(g2+εf )

.

The vectors Ī and J̄ can be expressed as follows:

Ī =
[

cos θ ∂V
∂x

+ sin θ ∂V
∂y

∂V
∂θ

]
(19)

and

J̄ =
[

∂V
∂θ

− cos θ ∂V
∂x

− sin θ ∂V
∂y

]
. (20)

Note that vectors Ī and −J̄ are perpendicular because their
scalar product is zero: Ī · (−J̄ ) = 0. It follows that the
control is a composition of two perpendicular vectors Ī and
J̄ scaled by γ̄ a and γ̄ b, respectively.

Scalar b given by Eq. 8 is computed using Lie bracket
L = adb1b2, where b1 and b2 are columns of matrix
B = [b1(q) b2(q)]. The third vector filed adb1b2 fulfills
controllability condition:

det
[
b1(q) b2(q) adb1b2

] = det

⎡
⎣

cos θ 0 sin θ

sin θ 0 − cos θ

0 1 0

⎤
⎦ = 1.

(21)

Nonlinear control system is controllable.
Assuming that only first part of the control Ī is active

(J̄ = 0) Lyapunov function decreases and stops in the set

{x, y, θ} ∈  :
√

( ∂V
∂x

cos θ + ∂V
∂y

sin θ)2 + ( ∂V
∂θ

)2 = 0 that

is equivalent to ∂V
∂x

= 0 and ∂V
∂θ

= 0. Second component
of the control (that contains b) makes the effect of the
Lie bracket L that is responsible for convergence in the

y coordinate. If both components of the control are active
then V is decreasing and ∂V

∂q
= 0 because the system is

controllable. The condition ∇V = 0 leads to the conclusion
that q̇ = 0 because the system is in set g = 0. It minds
that x = 0, y = 0 and θ = 0. These intuitive arguments
are extended to formal stability analysis that is presented in
[20].

The matrix A(q0) is given by the equation:

A(q0) = εe

ε2
f

(
a

⎡
⎢⎣

− ∂2V

∂x2 − ∂2V
∂x∂y

− ∂V
∂y

0 0 0

0 0 − ∂2V

∂θ2

⎤
⎥⎦

+ b̃

⎡
⎢⎣

0 0 − ∂2V

∂θ2

0 0 0
∂2V

∂x2
∂2V
∂x∂y

∂V
∂y

⎤
⎥⎦
)

.

(22)

In above equation b̃ is as follows:

b̃ = b

ε

∂V

∂y
. (23)

By computing det(λI − A(q0)) = 0 one obtains: λ(λ2 +
ληa + ηb) = 0, where

ηa = εe

ε2
f

[
a

(
∂2V

∂θ2
+ ∂2V

∂x2

)
− b

ε

(
∂V

∂y

)2
]

,

ηb =
(

εe

ε2
f

)2 [
a2 +

(
b

ε

∂V

∂y

)2
]

∂2V

∂x2

∂2V

∂θ2
.

The three eigenvalues of A(q0) are as follows:

λ1 = 0

λ2,3 = − 1
2

(
εe

ε2
f

){
a
(

∂2V

∂θ2 + ∂2V

∂x2

)
− b

ε

(
∂V
∂y

)2

±
[

b2

ε2

(
∂V
∂y

)4 − 2a
(

∂2V

∂θ2 + ∂2V

∂x2

)
b
ε

(
∂V
∂y

)2

+a2
(

∂2V

∂x2 − ∂2V

∂θ2

)2 − 4 b2

ε2

(
∂2V

∂y2

)2
∂2V

∂x2
∂2V

∂θ2

]1/2}
.

Eigenvalues λ2,3 differ from the ones obtained in [20]
only by the coefficient (εe/ε

2
f ). All the conclusions for

linearized system presented in [20] remain the same for the
modified algorithm, in particular the necessary conditions
for an equilibrium point to be stable are:
(

∂V

∂y

)2

≤ εa

b

(
∂2V

∂x2
+ ∂2V

∂θ2

)
,

∂2V

∂x2
≥ 0.

If the system has a zero eigenvalue, there exists in the
neighborhood of 0 a function V (q) such that ∂V

∂q q̇ is negative
for q �= 0 and which has the further property it remains
negative definite for some reasonable class of perturbations
[1]. The experiments carried out seem to confirm that in
presented analysis the higher order terms (rejected as a
result of approximation) belong to this class because the
behavior of the closed-loop system, even for the states far
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from the equilibrium point, is consistent with the results of
the analysis based on the linear approximation. This local
analysis seems to be applicable to the initial state points
being quite far from the equilibrium point. The eigenvector
corresponding to the zero eigenvalue lies in the tangent
space of H set at the equilibrium point. Velocity q̇ in the
direction of the eigenvector of the zero eigenvalue cannot
be generated, even in nonlinear system (14). The motion in
that direction is restricted due to a nonholonomic constraint.
The two non-zero eigenvalues determine stability of the
equilibrium point.

It can be clearly seen from the analysis of λ2,3

eigenvalues that by tuning εe and εf parameters the
term (εe/ε

2
f ) can be increased. This raises both real and

imaginary components of these two eigenvalues. The real
parts are relocated to the left (negative) side of the complex
plane, an operation that allows better convergence of the
system.

The eigenvalues can be ensured to have only real parts by
fulfilling the condition:

2a
(∂2V

∂θ2
+ ∂2V

∂x2

)b

ε

(∂V

∂y

)2 + 4
b2

ε2

(∂2V

∂y2

)2 ∂2V

∂x2

∂2V

∂θ2

≤ b2

ε2

(∂V

∂y

)4 + a2
(∂2V

∂x2
− ∂2V

∂θ2

)2
.

This condition is fulfilled if the following, simpler
inequalities are met:

∂2V

∂x2
≥ 0,

∂2V

∂y2
≥ 0.

In general, designing NF to fulfill these conditions may be
quite difficult; however, they are not necessary to achieve
asymptotic stability. They assure non-oscillatory behavior
of the linearized system, which is a desired property in most
applications.

If the robot is far from the equilibrium point the
linear approximation may not be accurate, and thus, the
improvement of the convergence is deduced by analyzing
nonlinear control (7). In the NF V (4) function of distance
to the goal C (5) and obstacles β (6) is mapped from (0, ∞)

to (0, 1) - the counterdomain of the V . As a result, the
influence of the distance to the goal on the control intensity
(mainly for the locations far from the goal) is reduced.
In the proposed modification the control is extended by
including the term (||q�|| + εe) that introduces dependency
of control intensity on the distance to the goal. The term in
the denominator (g2 + εf ) intensifies the control for small
∇V values (and thus B�∇V ). The described observations
were confirmed by simulations and experiments but of
course this is not formal analysis. Properties of the NF given
in Section 3 are conducive to extend the region in which
desired attributes of the linear approximation (resulting
from the analysis of the eigenvalues) remain in force.

For improperly chosen εe and εf , the proposed algorithm
may also characterize slow convergence, especially for
distances far from the goal. Numerical tests show that
even for these cases (far from the goal) the influence of
(εe/ε

2
f ) was consistent with the conclusions resulting from

the analysis of the linearized system: by increasing (εe/ε
2
f )

the convergence could be significantly improved. Of course,
it is not guaranteed that this property always holds in the
nonlinear system.

5 Saddle Points

Saddle points are unstable equilibrium points that occur
when the attracting vector is balanced by the collision
avoidance vector. There is one such point associated with
each obstacle. From the theoretical point of view the saddle
point is a zero measure set. One might suspect that the
designer does not have to deal with this problem; however,
it is not obvious how the behavior of the robot is affected
in a real application by the saddle point. Some researchers
states that saddle points present no problem in real world
robotics since being trapped by saddle point can only occur
in infinite precision dynamics [19, 22]. On the other hand,
measurement quantization may cause the saddle point to
expand to the some area surrounding its exact, theoretical
location.

In this section some observations made during experi-
ments are presented. It should be noted that behavior of the
system may differ in other test-beds. Especially resolution
of localization system, its precision, noises, repeatability
and resolution of the actuator controllers may influence the
system behavior.

5.1 Saddle Point Detection

The detection of the saddle point is based on analysis of the
gradient ∇V and Hessian of the navigation function H(V ).
The saddle point is detected if two conditions are fulfilled:
1. ∇V = �0 (in practice ||∇V || < εs , where εs - small
positive constant), 2. one eigenvalue of H(V ) is negative.
In Section 6 detailed analysis of the influence of parameter
εs on the process of saddle point detection and avoidance is
presented.

The Hessian of the navigation function is as follows:

H(V ) = ∂(∇V )

∂q
= H(C)

(β + Cκ)1/κ
+

−C(H(β) + κCκ−1H(C) + κCκ−2∇C�∇C(κ − 1))

κ(β + Cκ)
1
κ
+1

−2(∇β + κCκ−1∇C)�∇C

κ(β + Cκ)
1
κ
+1

(24)
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+C( 1
κ

+ 1)(∇β + κCκ−1∇C)�(∇β + κCκ−1∇C)

κ(β + Cκ)
1
κ
+2

.

The Hessian of the attraction function is given by the
following equation:

H(C) = ∂(∇C)

∂q
=
⎡
⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦ =

⎡
⎢⎢⎣

∂2C

∂x2
∂2C
∂x∂y

∂2C
∂x∂θ

∂2C
∂y∂x

∂2C

∂y2
∂2C
∂y∂θ

∂2C
∂θ∂x

∂2C
∂θ∂y

∂2C

∂θ2

⎤
⎥⎥⎦

(25)

where

h11 = 8kwθ2x2

(||r||2 + kw)3
− 2kwθ2

(||r||2 + kw)2
+ 2

h22 = 8kwθ2y2

(||r||2 + kw)3
− 2kwθ2

(||r||2 + kw)2
+ 2

h33 = 2kw

||r||2 + kw

h12 = h21 = 8kwθ2xy

(||r||2 + kw)3

h13 = h31 = − 4kwθx

(||r||2 + kw)2

h23 = h32 = − 4kwθy

(||r||2 + kw)2

Hessian of the obstacle function is given by equation:

H(β)= ∂(∇β)

∂q
= (26)

=
N∑

i=0

⎛
⎝∂2βi

∂q2

N∏
j=0,j �=i

βj + ∂βi

∂q

N∑
k=0

⎧⎨
⎩

∂βk

∂q

N∏
j=0,j �=i,j �=k

βj

⎫⎬
⎭

⎞
⎠ .

5.2 Control in the Saddle Point

The control given by Eq. 7 is temporarily replaced with the
following one [21]:

ua � [a1 sin(wt) + b1 a2 cos(wt)]T (27)

where a1, a2, w and b1 are chosen such that [b1
a1a2
2w

0]T is
parallel to the H(V ) eigenvector of the negative eigenvalue
and | a1

w
| � 1, | a2

w
| � 1 and |b1| � 1. In [21], a

detailed analysis of the system with this control is given. It is
shown that by moving along the eigenvector of the negative
eigenvalue and taking into account that the value of the NF
in the area to which the robot is driven is less than in the
saddle point the proper behavior is obtained: the robot does
not approach the saddle point and it converges to the goal.

6 Experiments

In this section experimental test-bed is described and results
of conducted tests are presented.

6.1 Experimetal Setup

The mobile platform that was used in the presented experi-
ments is the differentially driven MTracker robot (Fig. 1).
It wast designed at Poznan University of Technology. It is
controlled by a two-level hardware controller: the low-level
motion controller uses the signal processor TMS320F28335
150MHz and the high-level one is a single-core Intel
Atom 1.2GHz board, equipped with WiFi radio used
for remote management, task setting and communication
with the external localization system. Depending on the
requirements the high-level controller works on the Linux
Ubuntu or Windows XP operating systems. The MTracker
robot is a small platform: its diameter is 0.14m, its height
is 0.13m, its weight is 1.4kg and its wheels have a diameter
of 0.05m. The on-board power supply is LiIo 3.7Ah battery
that allows two hour active operation.

During the test the robot is localized by the OptiTrack
motion capture system. On the top of the robot four infra-red
reflecting markers were mounted.

Wheel velocity control signals were scaled down when
their value(s) exceeded the limit. This limit was set to
12rd/s, while the physical limitation of actuators is 24rd/s.
The lower value of the limit prevented robot wheels from
longitudinal slip. The obstacles were known a priori to
prevent the influence of measurement inaccuracies on the
experimental results.

A special scaling procedure is applied to the wheel
controls. The desired wheel velocities are scaled down when
at least one of the wheels exceeds the assumed limitation.
The scaled control signal us is calculated as follows:

us = su, (28)

Fig. 1 MTracker robot (Poznan University of Technology)

J Intell Robot Syst (2019) 93:687–697692



-2 -1.5 -1 -0.5 0 0.5 1
x [m]

-1

-0.5

0

0.5

1

y 
[m

]

0 2 4 6 8 10 12 14 16 18 20
t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 
[m

] (
-)

, y
 [m

] (
--

),
 

 [r
d]

 (
...

)

0 2 4 6 8 10 12 14 16 18 20
t [s]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

v 
[m

/s
] (

-)
 

 [r
d/

s]
  (

--
)

0 2 4 6 8 10 12 14 16 18 20
t [s]

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

r [r
d/

s]
 (

-)
 

l [r
d/

s]
 (

--
)

0 2 4 6 8 10 12 14 16 18 20
t [s]

-15

-10

-5

0

5

10

15

sc
al

ed
 

r [r
d/

s]
 (

-)
 

l [r
d/

s]
 (

--
)

Fig. 2 Experiment 1: new algorithm
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Fig. 3 Experiment 2: algorithm from [20]
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where

s =
{ ωmax

ωo
if ωo > ωmax

1 otherwise
, (29)

and

ωo = max{|ωr |, |ωl |}, (30)

where ωr , ωl denote right and left wheel angular velocity,
ωmax is the predefined maximal allowed angular velocity
for each wheel. This scaling procedure preserves the
direction of motion of the mobile platform.

6.2 New Algorithm Comparison

This section discusses results of experiments. In all the
presented cases the desired state was [0.0 0.0 0.0]�. The
circular obstacles (N = 4) were located at the following
locations: [0.0 −1.0]�, [0.0 1.0]�, [−1.0 0.0]�, [1.0 0.0]�,
their radii 0.13m extended with 0.2m safety zone. Task
space is bounded by the circle with the center in the origin
of the coordinate frame and radius 5m. The algorithm
parameters were as follows: κ = 5, kw = 0.1, a = 0.5,
b̄ = 1.5, εg = 10−4, εe = 0.1 and εf = 0.01.

In the first experiment the results for the new control
algorithm are presented. The second experiment shows the
results for the algorithm from [20] that can be obtained by
replacing γ in Eq. 7 with

γ̄ = B�∇V . (31)

In both experiments (x, y)-paths of the platform center
(Figs. 2a, 3a) are similar. The initial position and orientation
vector was [−2.0 −0.48 1.5]�. Figures 2b and 3b show time
graphs of position and orientation coordinates. It can be seen
that the new algorithm drives system error to zero in 15s

while the algorithm from [20] requires 30s to reach this state.
The controls generated by the new algorithm are larger by

the order of magnitude (Figs. 2c and 3c). As a result, also the
controls of robots wheels are much higher (Figs. 2d and 3d).
After transformation by the scaling procedure the control
signal goes into saturation in the beginning and stays in this
state until 12.5s (Figs. 2e and 3e). In the reference algorithm
control was saturated a few times but only during short time
intervals. To summarize, both algorithms produce a similar
path shape but the new algorithm results in twice faster
convergence. As shown in Kowalczyk [5], for the initial
location further from the origin the improvement may even
be much better. In some cases, the new algorithm works
properly even in the cases in which the reference algorithm
may be considered useless. Note that velocity limits on
actuators also reduce the observed improvement. Applying
the new algorithm is more beneficial for larger κ that must
be increased as narrower passages between obstacles exist
in the task space.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 
[m

]

0 2 4 6 8 10 12 14 16 18 20
t [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 
[m

] (
-)

, y
 [m

] (
--

),
 

 [r
d]

 (
...

)

0 2 4 6 8 10 12 14 16 18 20
t [s]

-60

-40

-20

0

20

40

60

v 
[m

/s
] (

-)
 

 [r
d/

s]
  (

--
)

0 2 4 6 8 10 12 14 16 18 20
t [s]

-15

-10

-5

0

5

10

15

sc
al

ed
 

r [r
d/

s]
 (

-)
 

l [r
d/

s]
 (

--
)

0 2 4 6 8 10 12 14 16 18 20
t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sa
dd

le

Fig. 4 Experiment 3: Saddle point - detection level εs = 0.01
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Fig. 5 Experiment 4: Saddle point - detection level εs = 0.05

-2 -1.5 -1 -0.5 0 0.5 1 1.5
x [m]

-1

-0.5

0

0.5

1

y 
[m

]

-1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3
x [m]

-0.3

-0.2

-0.1

0

0.1

0.2

y 
[m

]

0 5 10 15 20 25 30 35
t [s]

-2

-1.5

-1

-0.5

0

0.5

1

x 
[m

] (
-)

, y
 [m

] (
--

),
 

 [r
d]

 (
...

)

0 5 10 15 20 25 30 35
t [s]

-100

-80

-60

-40

-20

0

20

40

v 
[m

/s
] (

-)
 

 [r
d/

s]
  (

--
)

0 5 10 15 20 25 30 35
t [s]

-15

-10

-5

0

5

10

15

sc
al

ed
 

r [r
d/

s]
 (

-)
 

l [r
d/

s]
 (

--
)

Fig. 6 Experiment 5: Saddle point - detection turned off
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6.3 Saddle Point

Saddle point detection and avoidance is presented in the
three subsequent experiments. In the first of them εs = 0.01.
In Fig. 4a gray contour at locations around [0.0 − 1.73]�,
[0.0 1.73]�, [−1.73 0.0]�, [1.73 0.0]� represent areas
where the saddle point avoidance procedure is activated.
This Figure shows also the path of the robot in (x, y)-
plane. It starts from [−1.73 0.0]� (saddle point) with
orientation 0.0rd . Figure 4b presents time graphs of position
and orientation coordinates. They converge to the desired
values in 17s. Figure 4c and d show time graphs of
controls for the platform and wheels after scaling procedure.
Figure 4e presents activity of the saddle point procedure.
As can be observed it is active by the first 0.5s of the
experiment.

The next experiment was conducted for εs = 0.05. In this
case the detection areas surrounding the saddle points are
much larger, marked with dashed lines in Fig. 5a. Figure 5b
shows time graph of robots coordinates. Greater εs resulted
in slower convergence (2s more). Figure 5c shows linear and
angular controls for the platform. Figure 5d presents robot
wheel controls after scaling. Figure 5e shows the saddle
avoidance activation variable. As one can see, the robot was
got into the avoidance area four times in the first 4s of the
experiment.

The last experiment was conducted with the saddle
point avoidance procedure turned off. Figure 6a shows
the (x, y)-path. Figure 6b presents the initial part of
the path. It can be noted that the platform oscillates
around the saddle point and finally leaves its surroundings
and goes to the desired location. Figure 6c shows the
time graph of the position and orientation coordinates.
Note that largest oscillation amplitude can be observed in
orientation signal (±0.25rd). After 16s the robot leaves
the trap. Oscillations are also observed in angular velocity
control signal (Fig. 6d - dashed lines). Figure 6e shows
wheel controls after scaling. By the first 16s wheel
controls switch between positive and negative velocity
limits.

Note that whether the robot was driven left or right side
of the obstacle depended on the time variable in Eq. 27. The
best convergence time (that was mostly dependent on the
time of leaving the saddle point) was obtained for εs = 0.01.
For much larger or smaller values of εs the convergence was
slower.

7 Conclusions

Navigation function algorithms are used for set-point
control of the vehicles moving in 2D and 3D environ-
ments, with and without nonholonomic constraints, with

sphere-shaped obstacles, star-shaped obstacles and more com-
plex environments in which obstacles can be modeled as
trees-of-stars. These methods can be tuned to ensure one
global minimum of the NF; however, in general they do not
guarantee fast convergence to the target.

This paper proposes a rapidly converging NF control
algorithm. The convergence of the closed-loop system
is analyzed. The advantages of the new algorithm are
significant for greater values of the κ parameter that must
be increased if narrow passages between obstacles exist in
the task space. The method was tested by experiments on
an actual robot. It provides not only better convergence
time, but also rapid convergence in cases in which other
methods produce questionable results. The experiments
presented illustrate clear improvement. The paper also
includes experimental verification of the robots behavior in
the saddle point. It was tested for the saddle point procedure
turned off and for two different sizes of the saddle point
detection regions.
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