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Abstract
This paper presents new efficient guidance algorithms allowing Unmanned Aircraft Systems (UAS) to avoid a variety of
Global Navigation Satellite System (GNSS) continuity and integrity performance threats detected by an Aircraft Based
Augmentation System (ABAS). In particular, the UAS guidance problem is formulated as an optimal control-based
Multi-Objective Trajectory Optimization (MOTO) problem subject to suitable dynamic and geometric constraints. Direct
transcription methods of the global orthogonal collocation (pseudospectral) family are exploited for the solution of the
MOTO problem, generating optimal trajectories for curved GNSS approaches in real-time. Three degrees-of-freedom aircraft
dynamics models and suitable GNSS satellite visibility models based on Global Positioning System (GPS) constellation
ephemeris data are utilised in the MOTO solution algorithm. The performance of the proposed MOTO algorithm is
evaluated in representative simulation case studies adopting the JAVELIN UAS as the reference platform. The paper
focusses on descent and initial curved GNSS approach phases in a Terminal Maneuvering Area (TMA) scenario, where
multiple manned/unmanned aircraft converge on the same short and curved final GNSS approach leg. The results show
that the adoption of MOTO based on pseudospectral methods allows an efficient exploitation of ABAS model-predictive
augmentation features in online GNSS guidance tasks, supporting the calculation of suitable arrival trajectories in 7 to 16 s
using a normal PC.

Keywords GNSS integrity · GNSS augmentation · Avionics based integrity augmentation · Unmanned aircraft systems ·
Trajectory optimization · Flight planning

1 Introduction

Realistic Unmanned Aircraft Systems (UAS) flight maneu-
vers are prone to Global Navigation Satellite Systems
(GNSS) outages or severe performance degradations due to
the separate or combined effect of various adverse condi-
tions including antenna obscuration, bad satellite geome-
tries, low Carrier-to-Noise ratios (C/N0), Doppler shifts,
interference and multipath [22]. While some of these prob-
lems can be mitigated thanks to opportune design provi-
sions (i.e., signal filtering, antenna position optimization,
etc.), little can be done to prevent critical signal losses
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during realistic maneuvers even when considering the avail-
ability of Satellite- and Ground-Based Augmentation Sys-
tems (SBAS/GBAS). Typically, airworthiness regulations
impose stringent GNSS navigation performance require-
ments, which cannot be fulfilled by current SBAS and
GBAS technologies in some of the most demanding oper-
ational tasks such as precision approaches or UAS Sense-
and-Avoid (SAA) [16, 20, 22]. For instance, the approach
and landing phases of both manned aircraft and UAS present
a number of challenges as degradations in navigation per-
formance can easily lead to safety-critical conditions. Sim-
ilar issues can occur in congested airspace sectors where
high levels of Required Navigation Performance (RNP) are
implemented such as in the case of dense Terminal Maneu-
vering Areas (TMA), as any departure from the relatively
small protection buffers may lead to potential collisions
with other traffic. These issues are adequately resolved for
manned aircraft either by relying on the manual interven-
tion by the pilot or by integrating high-reliability equipment
and implementing adequate levels of redundancy. The first
strategy is adopted, for instance, in the case of non-precision
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approaches and up to Category 2 (CAT II) Instrument Landing
Systems (ILS), hence with a decision height and a runway
visual range of at least 200 ft and 300 m respectively. The
second strategy is adopted in the case of Category 3 (CAT III)
precision ILS approaches, hence with zero visibility and
decision height. However, these strategies are largely unfea-
sible for UAS. The research community is therefore inves-
tigating new technologies and operational measures to
enhance the levels of safety of manned aircraft and, most
importantly, support the safe operation of UAS in all classes
of airspace and in a variety of adverse weather conditions
such as in the case of low visibility, cloudiness and precip-
itations. A very promising strategy to prevent incurring in
safety-critical conditions consists in implementing naviga-
tion Continuity and Integrity Monitoring and Augmentation
(CIMA) technologies on board manned and unmanned air-
craft. While considerable work is being done on Receiver-
Autonomous Integrity Monitoring (RAIM) technology, this
approach has some known limitations [22]. Aircraft-Based
Augmentation Systems (ABAS), on the other hand, can
support the real-time avoidance of safety-critical flight
conditions and a fast recovery of the required naviga-
tion performance in case of GNSS data losses. For these
reasons, ABAS is well-suited to increase the levels of nav-
igation continuity, integrity and accuracy, complementing
RAIM as well as GBAS/SBAS, also known as Local-Area
and Wide-Area Augmentation Systems (LAAS/WAAS) to
fulfill the stringent requirements for some of the most
demanding operational tasks, such as sense-and-avoid, low-
visibility landing, etc. [22]. The research community has
also recognized a variety of disadvantages associated with
the current long, straight and shallow paths followed by
instrument flights for precision approach and landing [10,
13]. This shallow approach profile is in fact responsible
for operational, environmental and economic inefficiencies
and prevent precision approaches to be implemented in
topographically-constrained airports [2]. In this respect, the
major aviation modernization initiatives around the world
(including SESAR/NextGen) are now targeting the required
technological and regulatory evolutions that will also sup-
port the introduction of steeper and curved precision GNSS
approach and landing procedures [15, 23]. The greatest
prospective benefits of steeper and curved GNSS approach
and landing procedures are related to aircraft noise mitiga-
tion strategies in densely inhabited regions and to relieving
wake turbulence separation constraints by lateral and ver-
tical displacements of the approach path with respect to
the preceding aircraft. Steeper and curved approach proce-
dures crucially rely on satellite navigation technology and
on opportune implementations of GBAS, ABAS and 4DT
optimization techniques, which are the focus of this article.

This article is an extended version of Gardi and
Sabatini [11], addressing some of the key developments

required along the research on ABAS to introduce
curved and steeper GNSS approaches for both manned
aircraft and UAS. In particular, we present a detailed
UAS guidance solution considering realistic operational
constraints, multiple objectives and targeting the avoidance
of GNSS signal degradations. The reference platform for
this study is the Javelin (Fig. 1), a small-size fixed-
wing UAS belonging to RMIT’s unmanned aircraft fleet.
The presented solution fulfills not only the conventional
constraints for the smoothness of the aircraft trajectory, but
also the ones associated with GNSS signal performance.
While elements of novelty are also introduced in the set
of equations used to model three degrees of freedom
aircraft dynamics (particularly by integrating the geometric
curvature of the trajectory), the main scientific contributions
brought about in our approach are related to the tight
integration of GNSS signal degradation models as path
constraints in the pseudospectral-based optimal control
framework. The results presented in this article demonstrate
that our proposed approach is not only technically feasible
but can also, if properly implemented, achieve very
satisfactory computational performances, indeed very close
to the standard 4D trajectory optimization model set used in
our research for terminal maneuvering area operations.

2 GBAS and ABAS Overview

GBAS provides differential GNSS corrections and integrity
monitoring features at airports where this system is available
[22]. GBAS technology is essential to advance GNSS per-
formance in approach beyond ILS CAT I, hence supporting
precision approach in low visibility conditions, potentially
replacing ILS altogether. This is particularly interesting
for UAS manufacturers and operators due to the imprac-
ticality of miniaturized high-performance ILS receivers
certified for precision approaches onboard unmanned plat-
forms. The availability of GBAS at the considered airport
is assumed for precision GNSS approaches, though the
guidance techniques presented in this paper can equally

Fig. 1 Javelin UAS
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Fig. 2 Top-level ABAS
architecture
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apply to non-precision GNSS approaches, provided that
SBAS is available to support Localizer Performance with
Vertical guidance (LPV) approaches or a Vertical Naviga-
tion (VNAV)-capable altimeter is equipped on the UAS for
Approach with Vertical Guidance (APV) following the so-
called baro-VNAV provisions [8]. In both cases, the UAS is
assumed to be equipped with an ABAS capable of predict-
ing and/or detecting GNSS signal performance degradations
and subsequently initiating a real-time avoidance of safety-
critical flight conditions and fast recovery of the required
navigation performance. This is performed by implementing
two complementary strategies in mission- and safety-critical
UAS applications: prediction and avoidance, or reaction and
correction. The principles of the ABAS are extensively cov-
ered in Sabatini et al. [22]. The architecture of the ABAS
for UAS is depicted in Fig. 2. The ABAS does neither
require GBAS nor SBAS to be available, though can work
synergically with these if available [21].

In case of any predicted or detected GNSS performance
threshold violation, ABAS dispatches suitable warning or
caution signals to the Autopilot & Flight Director System
(A&FDS) and to the human flight crew on board or on the

ground, thereby allowing timely correction maneuvers to be
performed. Research in ABAS addressed various potential
GNSS signal degradations such as the ones associated with
antenna obscuration, Doppler shift, multipath, signal-to-
noise ratio, jamming and others. Research also evaluated the
opportunities of expanding the concept to communication
and surveillance systems. In this particular research activity,
we focus on Caution/Warning Flags (CF/WF) generated in
relation to satellite visibility, masking, Dilution of Precision
(DOP) and tracking errors, according to the criteria listed
respectively in Tables 1 and 2, where EHE is the Estimated
Horizontal Error; EVE is the Estimated Vertical Error; HAL
is the Horizontal Alert Limit; VAL is the Vertical Alert
Limit; DLL is the Delay Lock Loop; FLL is the Frequency
Lock Loop; PLL is the Phase Lock Loop; and T is the pre-
detection integration time. These are very important causes
of GNSS signal degradation in low altitude maneuvering
flight in the TMA. In the implementation presented here,
a geometric path constraint on the elevation of satellites in
view is introduced in the trajectory optimization model set,
as this requirement can simultaneously contribute to prevent
errors and losses associated with satellite visibility, masking

Table 1 CF criteria [21]
CF type CF generation criteria

Satellite visibility When one satellite elevation angle (in the antenna frame) is less than 10 degrees

Masking When the current aircraft maneuver will lead to less than 4 satellites in view

DOP When the EHE3σ exceeds the HAL or EVE3σ exceeds the VAL

Tracking loops When either: 42.25◦ ≤ 3σPLL≤45
◦
or 0.2375T ≤ 3σFLL≤ 0.25T or 0.05d ≤ 3σDLL≤ d
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Table 2 WF criteria [21]
WF Type WF generation criteria

Satellite visibility When one satellite elevation angle (in the antenna frame) is less than 5 degrees

Masking When less than 4 satellites are in view

DOP When the EHE2σ exceeds the HAL or the EVE2σ exceeds the VAL

Tracking loops When either: 3σPLL>45◦ or 3σFLL> 1/4T or 3σDLL> d

and DOP and, in conjunction with smooth variations of
relative satellite bearing, can also mitigate errors and
losses associated with the tracking loops. In particular, the
introduced constraint limits the relative deviations of the
elevation angle in the receiver antenna reference frame with
respect to the initial value (i.e., at the beginning of the
approach phase). In our particular case, these deviations
from the initial value are constrained not to exceed the
interval [− 5◦; + 10◦].

3 UAS GuidanceModule

The purpose of the UAS guidance algorithm is to find
the inputs to the given system characterized by a set
of equations of motion and path constraints, which will
maximize or minimize specific parameters (e.g., time,
fuel consumption, distance from another UAS, relative
velocities). As reviewed in great detail in Mujumdar
and Padhi [18], Tsourdos et al. [24] a wide variety
of tree-based, geometric, kinematic and energy-based
methods have been proposed for UAS path-planning,
showing notable advantages in various contexts, but these
methods are inherently incapable of incorporating complex
constraints, such as the ones associated with the attitude
of the aircraft. On the other hand, while slightly more
complex mathematically and computationally, the Optimal
Control Problem (OCP) formulation can natively entail
dynamics, geometric and operational constraints. Suitable
models, constraints, objectives and numerical OCP solution
algorithms can therefore allow determining optimal GNSS
lossless flight trajectories. A single-objective OCP is stated
as: determine the states x(t) and the controls u(t) that
optimize the performance index

J = �[x(tf ),u(tf )] +
∫ tf

t0

�[x(t), u(t)]dt (1)

subject to the dynamic constraints

ẋ(t) = f [x(t), u(t), t] (2)

and to the path constraints

Cmin≤C[x(t), u(t), t] ≤Cmax (3)

where t0 and tf are the initial and final time, � is the
Mayer cost function and � is the Lagrange cost function;

f and C represent generic functions, which are at least
continuous in t . Initial and boundary conditions are also
introduced including minimum, maximum, initial and final
values for the various state and control variables involved.
In safety-critical applications such as curved and steeper
precision GNSS approaches, all the necessary constraints
associated to GNSS signal degradations are included
in the path constraints and the trajectory is optimized
for minimum time and/or fuel to destination waypoint.
However, more complex criteria can be set based on
the actual aircraft performance parameters (e.g., minimum
noise or pollutant emissions) or on the characteristics of
the mission (i.e., to maximize distance from conflicting
traffic, to minimize the distance from the initial waypoint,
etc.). One of the key challenges in the development of
online trajectory optimization algorithms is to produce
results in real-time (real-time here is intended for the
specific application/scenario involved), since the numerical
solvers have to be capable of producing accurate and
usable outputs in a relatively short time. Optimal control
problems can be solved using various methods and the
two main categories are direct methods and indirect
methods. Direct methods are recently prevailing due to very
efficient and accurate discretization schemes. In this class
of methods, the UAS dynamics (continuous) variables are
translated into a number of discretized state and command
parameters. The original OCP is thereby transformed
into a finite-dimensional Non-Linear Programming (NLP)
problem and the states are implicitly integrated with a
quadrature method (or sometimes explicitly integrated)
for an arbitrary but finite number of intervals. The most
computationally efficient direct collocation methods adopt
linearly independent (orthogonal) polynomial functions and
are therefore called pseudospectral, and are presented in
more detail in Section 3.2.

Planning or optimizing a new trajectory for an UAS
is subject to numerous objectives and constraints. Those
can be derived from Air Traffic Management (ATM)
sequencing and spacing/de-confliction constraints, flight
plan/mission objectives, autonomous Separation Assur-
ance and Collision Avoidance (SA/CA), and environmen-
tal restrictions/objectives. Thus, the optimization process
needs to find the best trade-off between all objectives
subject to the dynamics/operational constraints associated
with the platform, the planned mission and the current
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flight profile/phase. Clearly, different sets of data (from
widely differing sources) and significantly different objec-
tives/constraints can be used at the mission planning stage
and in real-time flight trajectory optimization tasks. ABAS
offer the advantage of meeting the requirements of strate-
gic and tactical air operation tasks, with also the possibility
to enhance the performance of SA/CA systems that rely
on GNSS as the primary source of navigation data. These
include modern cooperative SA/CA systems (e.g., ADS-
B) or non-cooperative sensors integrated with GNSS-driven
Guidance, Navigation and Control (GNC) systems.

3.1 UAS Flight Dynamics

For the real-time trajectory planning performed by the UAS
guidance module we focus on Three Degrees-of-Freedom
(3-DoF) dynamics models, which are widely available in
the literature and can be derived from Six Degrees-of-
Freedom (6-DoF) models as necessary. The 3-DoF model
is formulated following a simplified approach based on
Newton’s second law expressed along the coordinate axes
of the body frame and on the motion of such frame with
respect to an inertial reference frame of convenience. To
simplify the numerical implementation and particularly
the operational 4DT realization stage, an alternative
formulation of 3-DoF dynamics adopting the geometric
trajectory curvature (κ) in place of the bank angle (μ) as
the lateral control variable is proposed here. The principal
advantage is that the geometric trajectory curvature is the
inverse of the local turn radius, which thus can be directly
computed from the optimization results. Additionally, while
the turn radius feature a mathematical singularity in the
admissible domain (i.e., R → ∞ for straight segments),
the curvature does not feature mathematical singularities.
The full set of Differential Algebraic Equations (DAE)
expressing 3-DoF flight dynamics can be written as:

v̇ = T − D

m
− g sin γ (4)

γ̇ = g

v

⎡
⎣

(
N2 − κ2v4 cos2 γ

g2

) 1
2

− cos γ

⎤
⎦ (5)

χ̇ = κ · v (6)

φ̇ = v cos γ cosχ + vwφ

RE + Z
(7)

λ̇ = v cos γ sinχ + vwλ

(RE + z) cosφ
(8)

z = v sin γ + vwz (9)

ṁ = −FF (10)

where the state vector consists of: True Air Speed (TAS) v

[m s−1], flight path angle γ [deg]; track angle (clockwise
from North) χ [deg]; geodetic latitude φ [deg]; geodetic
longitude λ [deg]; altitude z [m]; aircraft mass m [kg];
whereas the control vector includes: thrust force T [N];
load factor N [ ]; geometric trajectory curvature κ [m−1].
Other variables and parameters include aerodynamic drag
D [N]; wind velocity vw in its three scalar components [m
s−1]; gravitational acceleration g [m s−2]; local Earth radius
RE [m]; fuel flow FF [kg s−1]. The aerodynamic drag is
modeled as

D = 1

2
ρv2S(CD0 + CD2C

2
L) (11)

where ρ = ρ(φ, λ, z, t) is the local air density retrieved
from weather input data grid or a weather model, S is the
reference wing surface, CD0 and CD2 are the parabolic drag
coefficients. The lift coefficient CL can be calculated from:

N m g = 1

2
ρv2SCL (12)

The thrust force magnitude is expressed as the product
of a throttle coefficient τ (defined as dimensionless and
ranging between 0 and 1) and a maximum thrust TMAX, plus
an eventual residual thrust term at zero throttle (T0), as in:

T (t) = τ(t) · TMAX + T0 (13)

In the JAVELIN case, the maximum thrust is provided in
tabular values as a function of TAS and of the shaft rotation
speed ω, moderated by the local ρ.

As the Javelin UAS is piston-powered, the fuel flow
FF is computed using the following empirical model that
interpolates the experimental data for the Javelin UAS
consistently with [25]:

FF(τ) = −1.563τ 2FFMax + 2.5τFFMax (14)

Table 3 summarizes the fundamental design characteris-
tics of RMIT’s JAVELIN UAS.

3.2 Direct Transcription and Numerical Solution
Algorithms

The OCP formulation offers a variety of advantages in
realistic 4D guidance scenarios such as the ones investigated
here. For instance, optimal control-based techniques allow
accurate continuous curved descent profiles for short final
GNSS approaches to be natively generated as well as
optimized path stretching to be determined as necessary
to achieve the set constraints for Terminal Sequencing
and Spacing (TSS). Direct transcription methods are
preferred as they are more capable of handling complex
trajectory optimization problems. In these methods, the
continuous system dynamics are transcribed into a number
of discretized state and command parameters, so that a
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Table 3 Assumed JAVELIN technical specifications [6]

Parameter Value

Maximum take-off mass (mMax) 15 kg

Dry mass (mMin) 8.7 kg

Wingspan (λ) 1.8 m

Aspect ratio (AR) 11

Lift coefficient at minimum drag (cLminD) 0.33

Minimum drag coefficient (cDmin) 0.03

Lift coefficient derivative (cL,α) 4.97 /rad

Propeller radius (rP rop) 0.254 m

Oswald coefficient (e) 0.75

Maximum airspeed (vMax) 37 m/s

Engine displacement (V ) 20 cm3

Maximum power (PMax) 1.28 kW

Fuel capacity (mFuel) 2 kg

Endurance (tMax) 2 hours

system of nonlinear equations can be obtained by implicit
integration along a set of time intervals. The original OCP
is therefore transformed into a finite-dimensional nonlinear
optimization problem. Direct collocation methods adopt
piecewise polynomial functions to parameterize both states
and control. The most computationally efficient class of
collocation methods adopts linearly independent N-th order
polynomial functions and for this reason are called Pseudo-
Spectral Methods (PSM) [3, 4, 19]. These interpolation
polynomials must be an orthogonal basis in the discretised
space, i.e., they satisfy the null scalar product property:

Pi

(
xj

) ∗Pk (xl) = 0 ∀ i �=j, ∀ k, l ∈ {1, . . N + 1} (15)

The best implementations in terms of computational effi-
ciency adopt simple interpolation polynomials in conjunc-
tion with a careful selection of the distribution of the
N + 1 collocation nodes [19]. For such reasons, Lagrange
polynomials are frequently adopted for the interpolation
of states and controls and a Gaussian quadrature rule is
adopted for exact implicit integration. Assuming τ to be the
scaled non-dimensional time and adopting the interpolation
polynomials Pk(τ) on the time intervals τk , the states are
approximated as:

x̃i (τ ) =
∑N

k=1
x̃i (τk) · Pi,k(τ ) (16)

and the controls are approximated as:

ũj (τ ) =
∑N

k=1
ũj (τk) · Pj,k(τ ) (17)

Lagrange polynomials of order N are expressed as:

Pk(τ) =
∏

j �=k

τ − τj

τk − τj

, ∀j ∈ [0, N ] (18)

Chebychev PSM involve the evaluation of the N-th order
Chebyshev trigonometric polynomials:

PN(τ) = cos (N cos−1 τ) (19)

in the N + 1 nodes:

τk = cos
kπ

N
, k ∈ [0, N ]. (20)

Two recently adopted PSM variants are the Gauss PSM and
the Legendre-Gauss-Lobatto (LGL) PSM [1]. Gauss PSM
are based on the Gauss-Legendre quadrature, whereas the
LGL PSM are based on the LGL quadrature, also simply
known as Lobatto quadrature. Gauss PSM are conceived to
ensure that the Karush-Kuhn-Tucker (KKT) conditions are
identical to the discretised first-order optimality conditions.
Legendre polynomials may be calculated by using the
Rodrigues formula:

PN (τ) = 1

2Nk!
d(N)

dτ (N)
[(τ 2−1)

N ] (21)

The Legendre-Gauss-Lobatto (LGL) nodes are the N + 1
zeros of the polynomial:

LN(τ) = (1 − τ 2)ṖN (τ ) (22)

where ṖN (τ ) is the first derivative of the Legendre
polynomial of degree N [5]. In Gauss PSM the dynamic
constraints are not collocated at the boundary nodes,
whereas in the LGL PSM the evaluation of states and
controls is performed also at the boundary nodes, thereby
the dimension of the NLP problem is increased by 2
additional nodes.

Based on the literature [19], the Radau PSM was
selected for the GNSS loss less trajectory planning. This
widely used method employs orthogonal collocation and
Gaussian quadrature implicit integration, where collocation
is performed at the Legendre-Gauss-Radau points. Publicly
available pseudospectral optimal control solvers were
chosen due to their suitability for aerospace applications.
The user can also define a number of parameters used in
the optimization process, including the quadrature mesh
characteristics, the maximum number of iterations and the
numerical differentiation method. The suitability of these
techniques for ATM and Air Traffic Flow Management
(ATFM) online strategic and tactical operations [14]
has been demonstrated in recent research [12]. The
pseudospectral transcription process of the general OCP
formulated in the previous sections commences with the
introduction of the following transformation:

τ = 2

tf −t0
t− tf +t0

tf −t0
, t ∈ [t0, tf ] (23)

The solution process is now to find the state and
control trajectories x(τ) and u(τ) respectively, in the
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interval τ∈ [−1, 1], and times t0 and tf , minimizing the
performance index

J = φ[x(1),tf ] + tf −t0

2

∫ 1

−1
L[x(τ), u(τ), τ ]dτ (24)

subject to the following constraints and bounds:

ẋ (τ ) = tf −t0

2
f [x (τ) , u (τ ) , τ ] , τ∈ [−1, 1] (25)

hl ≤ h[x(τ), u(τ), τ ] ≤ hu, τ ∈ [−1, 1] (26)

el ≤ e[x(−1), x(1), u(−1),u(1),t0, tf ] ≤ eu (27)

ul ≤ u (τ) ≤uu, τ ∈ [−1, 1] (28)

xl ≤ x (τ) ≤ xu, τ ∈ [−1, 1] (29)

t0l ≤ t0 ≤ t0u (30)

tf l ≤ tf ≤ tf u (31)

tf −t0 ≥ 0. (32)

Subdividing the continuous time domain in N + 1
intervals τk , the original continuous functions f (t) can be
approximated by a unique polynomial p(τk) of degree N
whose evaluations at the intervals correspond to the values
of the original function, as in [9]:

f (τk) = p(τk) for k = 0, 1, . . . , N (33)

A system of Lagrange polynomials {pk}k=0,1,... (with
degree k) are adopted in Eq. 33, given by:

P(τ) =
∑N

k=0
f (τk)Lk(τ ) (34)

where

Lk(τ) =
∏

k �= l

0 ≤ k, l ≤ N

(τ − τk)

(τl − τk)
(35)

These are mutually orthogonal over the interval (−1, 1)
with respect to a weight function w �= 0 [7]:∫ 1

−1
pk(τ)pm(τ)w d τ = 0 when m�=k (36)

The use of polynomial interpolation to approximate a
function using the LGL points is known in the literature
as the Legendre pseudospectral approximation method.
In the Legendre pseudospectral approximation, the state
and control trajectories x(τ) and u(τ) respectively, in
the interval τ ∈ [−1, 1], are approximated by Nth

order Lagrange polynomials xN(τ) and uN(τ) based on
interpolation at the Legendre-Gauss-Lobatto nodes [9]:

x(τ) ≈ xN(τ) =
∑N

k=0
x(τk)ϕk(τ ) (37)

u(τ) ≈ uN(τ) =
∑N

k=0
x(τk)ϕk(τ ) (38)

where xN(τ) and uN(τ) are the Lagrange interpolating
polynomials, and ϕk(τ ) are known as Lagrange basis
polynomials. It should be noted that ϕk(τj ) = 1 if k = j

and ϕk(τj ) = 0 if k �= j such that:

xN(τk) = x(τk) and uN(τk) = u(τk). (39)

The derivative of the state vector is approximated as
follows:

ẋ(τk) ≈ ẋN (τk) =
∑N

i=0
Dkix(τi), i = 0, 1, . . . , N (40)

where D is (N + 1) × (N + 1) differentiation matrix
corresponding to the LGL nodes.

The objective function of the OCP is therefore approxi-
mated as follows:

J ≈ φ[xN(1),tf ] + tf −t0

2

∑N

k=0
L[xN(τk), u

N(τk), τk]ωk

(41)

where the weights ωk are defined at the LGL nodes.
For a practical implementation, some additional consid-

erations have to be followed. The new trajectory determined
by the UAS guidance module shall be completely fly-
able by the aircraft systems/pilots and the mission defined
in the FMS flight plan shall not be compromised by the
new trajectory. Additionally, the new trajectory shall not
lead to other hazards like terrain, traffic or weather. These
requirements are implemented in the 4DT optimization
algorithm by suitable models and a solution is pursued
through the Pseudo-Spectral Optimization (PSO) method,
which shows very impressive computational performances.
The 4DT optimization algorithm considers the controlled
time of arrival target defined by ATM, FMS or ABAS. This
is used as the final time constraint by the 4DT optimiza-
tion algorithm. An Estimated Time of Arrival (ETA), on
the other hand, may be computed for each intermediate fix
along the flight path. To further enhance the algorithm sta-
bility and convergence performances, path constraints and
boundary conditions are automatically strengthened on all
state and control variables to restrict the search domain as
much as feasible.

3.3 Multi-objective Optimality

Conflicting objectives arising when introducing multiple
operational criteria, which require multi-objective articula-
tion of preference schemes, also known as multi-criteria
decision methods. An a priori articulation of prefer-
ence scheme (also known as scalarization technique) was
selected to combine multiple objectives into an individual
one that the trajectory optimization algorithm will pur-
sue, as this choice supports efficient implementations of
non-population-based optimization algorithms. Among the
various possible a priori schemes, the weighted product was
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Fig. 3 JAVELIN UAS 3D model

selected [17]. An advantage of this formulation compared
to the more popular weighted sum is the diminished sensi-
tivity on the absolute values of the cost terms, which proves
useful when the range of the objective function is unknown
or unbounded [12]. Known limitation, on the other hand,
include a high probability of incurring in numerical satura-
tion and a higher complexity of the cost function seen by
the solution algorithm. Adopting the weighted product, the
combined performance index is expressed as a product of all
the cost terms, to the power of the assigned weight wi , as in:

J̃ =
nJ∏
i=1

[Qi(p)]wi (42)

To avoid mathematical singularities the following condition
on non-null cost terms shall be enforced:

Qi(p) > 0, ∀i (43)

In general, a specific performance objective can be defined
for each route segment. This performance objective is
a multi-objective generalization of the Cost Index (CI)
implemented in current generation FMS. Also, in general,
the weightings can be varied dynamically among the
different phases of the flight. Since computational times
are a crucial aspect in online 4DT planning applications,

an a priori articulation of preference involving the
weighted product of the various performance indexes Ji is
employed to combine the multiple conflicting operational,
economic and environmental objectives. For a more detailed
discussion, the reader is referred to Gardi et al. [12].

The conventional fuel and time objectives are adopted
here to show-case the capabilities of the implemented
UAS guidance algorithm, whereas the GNSS signal loss
mitigation criteria are formulated as path constrains based
on CF/WF criteria (Tables 1 and 2) presented in Section 2,
and in particular:

• With 5 satellites in view, the elevation angle for each
satellite tracked shall be 5 degrees greater than the
threshold value causing the activation of any CF;

• With 4 satellites in view, the elevation angle for each
satellite tracked shall be 10 degrees greater than the
threshold value causing the activation of any CF;

• The minimum elevation of any GNSS satellite is set to
5 degrees.

4 Simulation Case Studies

Some detailed simulation case studies were performed
adopting the JAVELIN UAS as reference platform and eval-
uating the performance of the GNSS-lossless guidance algo-
rithm described in the previous sections. The investigation
focused on curved and segmented GNSS approaches. The
relevant geometric, aerodynamic and inertial characteristics
were retrieved to implement detailed 3D shape model and
3-DoF/6-DoF flight dynamics models of this UAS [6]. The
geometric characteristics were summarized in Table 3 and
the 3D CATIA model is shown in Fig. 3. For the avionics
GPS receiver characteristics, we used a C/A code receiver
with a flat random vibration power curve from 20 to 2000

Fig. 4 Original arrival
trajectories without GNSS
optimization criteria
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Fig. 5 Sky plots for the original
minimum fuel (a) and minimum
time (b) intents

Hz with amplitude of 0.005 g2Hz−1 and the oscillator vibra-
tion sensitivity Sυ(fm)= 1×10−9 parts/g. Additionally, a
third-order loop noise bandwidth of 18 Hz was considered
and a maximum LOS jerk dynamic stress of 10 gs−1 =
98 ms−3 was assumed. Finally, the following simplified
antenna gain pattern was adopted:

GR(dB) = 7.8659 ∗ sinE − 4.3659 (44)

The initial point of the arrival trajectory is set in
proximity of the Waranga Basin UAS flight test range,
defined as the Melbourne Flight Information Region (FIR)
Danger Area YMMM D-333 - WGS84 coordinates 36.5◦
S 145.1◦ E. The initial altitude is set at 1277 ft Above
Ground Level (AGL), while the final approach fix is set
approximately 3 nautical miles (nmi) to the southwest
at an altitude of 76.7 ft AGL. The initial conditions
of the aircraft are set to a trimmed descent flight. The
GPS constellation available is simulated using the YUMA
almanac data. As discussed previously, the availability of
GBAS at the considered location is assumed, though the

MOTO-based guidance techniques presented in this paper
can be equally applied to LPV and APV approaches. In
this case, the final approach will have to rely on Vision-
Based Navigation (VBN) or line-of-sight remote control by
the ground pilot as the performance of GNSS navigation
alone will not ensure a safe alignment with the runway
[22]. The original 4DT intents were calculated using the
pseudospectral MOTO algorithm described in the previous
section in a MATLAB prototyping environment running on
a consumer-grade PC equipped with an Intel i7 quad-core
processor and 8 GB RAM. Figure 4 depicts the descent
4D trajectories calculated without considering the GNSS
lossless constraints and Fig. 5 shows the corresponding sky
plots in the antenna relative reference frame of the four
satellites characterized by the maximum elevation for the
minimum fuel (5a) and minimum time (5b) intents. wf and
wt represent the fuel and time weightings used in Eq. 42
and 43 respectively. These sky plots highlight the substantial
variations in elevation angles affecting all four satellites,
exceeding 20 degrees relative to the initial elevation,

Fig. 6 Optimal arrival
trajectories fulfilling GNSS
optimization criteria
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Fig. 7 Sky plots for the optimal
GNSS lossless minimum fuel (a)
and minimum time (b) intents

potentially affecting the PDOP and compromising the
successful completion of a curved GNSS approach.

Figure 6 shows the trajectories resulting from the opti-
mization process considering the elevation angle constraints

specified in Section 2, and namely that deviations from
the initial value shall not exceed the interval [− 5◦; + 10◦]
throughout the entire trajectory. In particular, as in the case
of the original intents, six trajectories were generated as a

Fig. 8 Fuel and time
performance respectively
associated to the original intents
(a) and to the GNSS lossless
intents (b)
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function of the relative weightings given to the fuel and time
costs, wf and wt respectively, as specified in the legend. In
this case, the number of intervals was set to 155 and the
optimization processes took 49 s on average to complete. By
halving the number of intervals to 79, hence relinquishing
some of the accuracy in the solution, the calculation time
decreases to below 16 s. Since this number of intervals still
provides a very good resolution, it was used in all subse-
quent calculations. Figure 7 depicts the sky plots of the same
four satellites in the antenna reference frame associated with
the minimum fuel (7a) and minimum time (7b) intents. It is
evident that the variations in satellite elevation are now sig-
nificantly mitigated, remaining in a 10-degree band around
the initial elevations.

Finally, Fig. 8 represents a comparison of the original
Pareto front (8a) against the one associated with GNSS
lossless trajectories (8b). With respect to equations (42) and
(43), the figure details the weightings associated with time
and fuel performances, respectively wf and wt, which were
used for the calculation, ranging from 0 to 2 in steps of 0.4.
While both fuel and time performance are by approximately
10% worse as a result of the longer and shallower flight
profiles, these performance degradations are unavoidable
from the safety perspective. Further simulations showed that
by reducing the length of the arrival segment from 3 to
2 nmi and enforcing tighter path constraints on the control
variables, the average time required for the pseudospectral
MOTO process was decreased below 4 s. It is therefore
concluded that an efficient exploitation of the ABASmodel-
predictive features and the adoption of pseudospectral
algorithms in the UAS guidance module allows fulfilling the
requirements for UAS guidance in terminal flight phases,
potentially meeting GNSS performance requirements for
curved GNSS approaches.

5 Conclusions and FutureWork

This paper addressed in detail the Multi-Objective Trajec-
tory Optimization (MOTO) algorithm developed to pre-
vent a number of Global Navigation Satellite Systems
(GNSS) signal degradation and losses in Unmanned Air-
craft Systems (UAS) guidance applications. The algorithm
exploits the predictive features implemented in Aircraft
Based Augmentation Systems (ABAS) to avoid the occur-
rence of GNSS signal degradations, thereby supporting
high integrity applications including precision approach and
landing. After summarizing the various causes of GNSS sig-
nal degradations or losses, geometric trajectory constraints
were defined in terms of satellite elevation angles in the
antenna frame, as these constraints allow to address some
of the most significant signal degradation and loss effects
at once. Adopting these criteria and adequate forms of the

aircraft dynamics models, an approach based on a multi-
objective and multi-constrained optimal control problem
formulation and on a pseudospectral MOTO solution algo-
rithm was selected. Simulation case studies were accom-
plished on the JAVELIN UAS to verify the suitability of
the proposed techniques in realistic operational scenarios,
particularly focusing on terminal flight guidance for curved
precision GNSS approaches. The implemented pseudospec-
tral MOTO technique converged to a mathematical optimum
within 7 to 16 s on average depending on the length and
complexity of the flight path to be optimized. Further
research is focussing on the following areas:

• Assess the potential synergies between ABAS and
RAIM technologies, particularly looking at enhanced
RAIM (eRAIM) and predictive RAIM (pRAIM) in a
multi-constellation GNSS environment.

• Extend the ABAS concept to other Communication
Navigation and Surveillance (CNS) applications in the
CNS/Air Traffic Management (ATM) and Avionics
(CNS+A) context.

• Evaluate the potential of ABAS to enhance the
performance of next generation CNS+A decision
support tools for Performance/Intent Based Operations
(PBO/IBO) and 4DT management.

• Further investigate the potential of ABAS to support
UAS SAA applications in the UAS Traffic Management
(UTM) context.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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