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Abstract
Nowadays, it exists path planning strategies dedicated to generate trajectories considering different navigation issues in UAV
multirotors, such as 3D navigation in cluttered and uncluttered environments, obstacle avoidance, and path re-planning.
Such path generators are mainly based on the dynamics associated to position and orientation of the UAV, and the attenuation
of external disturbances as the wind. However, one of the main limitations of these methods is that they do not take into
account the relationship between the path planning task and the energy consumption associated with the battery performance
or State of Health (SoH). In this work, a path planning generation algorithm that take into account the evolution of the battery
performance is presented. First, the computation of the battery SoH is realized by introducing two degradation models.
Subsequently, the path planning algorithm is defined as a multi-objective optimization problem where the objective is to find
a feasible trajectory between way-points whiles minimizing the energy consumed and the mission final time depending on
the variation of the battery SoH. Finally, the proposed path planning algorithm is compared with a classical path generation
method based on polynomial functions to evaluate the minimization of the energy consumption. The simulation results
demonstrate that the proposed path planning algorithm is able to generate feasible and minimum energy trajectories despite
the constraints in the battery SoH.

Keywords UAV · Path planning · Energy minimization · Lithium batteries · State of health · Optimization

1 Introduction

Recent advances in the development of Unmanned Aerial
Vehicle multirotors powered by Lithium Polymer batter-
ies have made it possible to extend its use in a variety
of civilian applications. In these applications, the UAV
is used as a data source to carry out inspection, surveil-
lance, and mapping tasks by developing autonomous or
semi-autonomous flight mission [1], e.g. monitoring of
crops and forest [2], exploring of archaeological areas [3,
4], monitoring of geothermal environments [5], surveillance
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[6] and topography studies [7]. Usually, the mission for
such applications is defined as the UAV navigation through
a set of paths connected by n targets or way-points inside
a limited workspace which can be known or unknown. In
addition, path planning task consists of determining the
adequate path to connect the ways-points satisfying the
mission requirements and the physical constraints of the
UAV [8]. The mission requirements can be considered as
the minimum and maximum altitude and flight speed, the
maximum flight endurance and minimum energy to ful-
fill the mission. Likewise, the physical constraints of the
UAV are mainly associated to the minimum and maximum
orientation and control inputs, and minimum battery volt-
age. Such requirements are linked to the UAV application
and define the path characteristics that the UAV has to track.

According to [9], the main issues that a path plan-
ning algorithm for UAV multirotors must consider are: the
autonomous navigation in three dimensions (3D) inside a
cluttered or uncluttered environment, the obstacle avoid-
ance, and the dynamical constraints of the UAV. In order
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to solve such issues, different path planning algorithms
have been developed. In [10], a path planning algorithm for
autonomous robotic exploration and inspection based on an
on-line planning method in a receding horizon fashion by
sampling possible future configuration in geometric random
tree was introduced. The authors in [11] presented a method
to path definition based on a Cascaded control architecture
and using a nonlinear control technique for both control
loops (position and attitude) taking into account obstacles
perceived in real-time and avoids collisions. In [12], the
authors focused on the analysis of different algorithms ded-
icated to path planning considering the flight time and the
distance traveled from one point to another and evaluating
the autonomously avoiding obstacles. In [13], an algo-
rithm for trajectory generation based on the differentially
flat quadrotor model through complex real-world environ-
ments with an optimizing polynomial path segments was
presented. As it can be noticed, in these works the path plan-
ning is developed with the consideration of the trajectory
characteristics and the UAV dynamics constraints. How-
ever, they do not take into account the dependency between
the energy consumed during the flight and the battery
performance. In this work we are focused on path planning
algorithms dedicated to minimize the energy consump-
tion.

1.1 RelatedWork

One way to consider the dependency between energy con-
sumed during the flight and the battery performance is to
determine the maximum flight endurance. According to
[14], the flight endurance is mainly determinate by two
power-related factors: the required power to sustain the
desired flight profile and the battery discharge performance.
The power required is associated to the total energy nec-
essary to take-off, move between way-points and landing,
i.e the elements which define the trajectory, and the bat-
tery discharge performance which depends on the actual
condition of the battery or State of Health (SoH) and deter-
mine the battery aging rate. The battery aging is mainly
caused by two factors: the storage and the use (cyclic
charge/discharge) [15]. However, other factors contribute to
increase the battery aging such as deep discharges, inade-
quate charging methods, and operating temperature varia-
tions. In that sense, it is necessary to quantify the battery
aging by defining the SoH between flights in order to use
this information in a complete path planning strategy to
guarantee the fulfillment of the mission and the UAV integrity.

Different solutions have been presented to overcome
the problems associated with the path planning based on
energy supplied. Such solutions have focused into gen-
erate strategies to optimize the energy consumption, and
improve the efficiency of the flight performance considering

two approaches: mechanics and analytics. The mechan-
ics approaches are associated to geometric characteristics
of the UAV, e.g in [16] an experimental platform based
on quadrotor was designed to maximize the thrust using
an aero-elastic blade design was presented. In [17], the
authors introduce a four-rotor configuration that merges the
simplicity of a quadrotor with the energy efficiency of a
helicopter, while improving maneuvering rotor bandwidth.
The authors in [18] conceived a compound multirotor con-
figuration specifically for flight through narrow corridors,
and the design combines the contradictory requirements
of limited width, high agility and long endurance while
carrying a significant payload. On the other hand, the ana-
lytics approaches are dedicated to generate optimal path
planning or flight profiles, e.g. in [19], a path planning
method based on two optimal control with respect to the
angular accelerations of the motor for a quadrotor is pre-
sented, and the solution was yielded in to find minimum
energy and fixed-energy paths. In [20] was presented the
results of an analysis of the energy consumption in vari-
ous discrete movement states of a multirotor. A systematic
relationship between the system and movement parameters
and the energy consumption was established, and finally a
generic energy consumption profile model was generated
and validated. The authors in [21] investigated three promi-
nent types of smooth trajectories (minimum acceleration,
minimum jerk and minimum snap), and evaluate their ener-
getic efficiency through the total energy consumption. The
energy consumed by each trajectory type was determined
via aerodynamics-based expressions for power consump-
tion of rotorcraft. In [22], a flatness-based flight trajectory
planning/re-planing strategy considering the occurrence of
faults in actuators is presented, and the trajectory planning/
re-planning problem is formulated as a constrained opti-
mization problem. As it can be seen, different analytically
solutions have been proposed to address the path planning
problem along the energy consumption. However, these
works do not take into account the influence of the bat-
tery performance and the variations of SoH in the path
planning problem. In that sense, our work introduces a
path planning algorithm that takes into account the degra-
dation of the battery performance by evaluating the bat-
tery SoH considering degradation models related to battery
parameters. The degradation models are obtained through
experimental data from a degraded battery cell. Then, the
path planning problem is defined within the framework
of optimal control as a minimization problem of the con-
sumed energy during the flight as well as the final time.
The minimization of the energy and the final time con-
sidering the battery performance makes it is possible to
extend the flight endurance and to guaranty the fulfillment
of the mission. On the other hand, the quantification of the
battery health and the use of this information in the path
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planning algorithm, helps to determine the appropriate bat-
tery replacement time. Taking into account the aforemen-
tioned elements, main contributions of this study are the
following:

1. The analysis of the main aging modes in Lithium Polymer
batteries and computation of State of Health by degrada-
tion models,

2. The development of a complete path planning algorithm
based on the dependency of the battery performance,

3. The minimization of the energy consumption and
the mission final time tf considering the constraints
associated with the UAV dynamics and the variations of
the battery State of Health by considering a constrained
optimization problem,

4. The maximization of the flight endurance by generating
minimum - energy paths.

The proposed algorithm is compared with a classical

path planning method based on polynomial functions
considering an UAV hexacopter. The simulation results
demonstrate that the proposed path planning algorithm is
able to generate trajectories despite the variations in the
battery SoH and that the energy consumed is minimized.

1.2 Outline

This paper is organized as follows: The dynamics of the
hexacopter and the propulsion system (Li-Po battery and
BrushLess DC Motors) are introduced in Section 2. The
considerations about the battery SoH and the computation
of the degradation models are explained in Section 3. The
path planning generations algorithm is defined in Section 4.
In Section 5 the simulation results are presented. Finally the
conclusions and future works are described in Section 6.

2Mathematical Model of UAV Hexacopter

In this Section the dynamics of the hexacopter and the elements
that compose the propulsion system (lithium battery and
motors) are described.

2.1 Hexacopter Dynamics

The considered hexacopter is composed by six BrushLess
DC Motors (BLDCMs) attached to a rigid and symmetri-
cal six-arm frame as it can be seen in Fig. 1. In turn, each
BLDCM has a rigid propeller connected to its rotor and
generates a positive thrust fi and torques τi , i = 1, · · · , 6,
proportionally to the square angular speed of the propeller.
The sum of the individuals forces produces the total thrust
Tthr to lift, and the difference generates the torques acting
on the hexacopter. Moreover, the BLDCMs 1, 3, and 5 rotate

in clockwise whiles BLDCMs 2, 4, and 6 rotate in coun-
terclockwise given the so-called “X” configuration. Such
configuration allows to cancel gyroscopic effects and aero-
dynamic torques. The movement of the hexacopter is per-
formed around two reference frames: the fixed inertial
frame, denoted by Ee (hexacopter position), and the non-
inertial frame or rigid body frame, denoted by Eb (hexa-
copter orientation), and assuming that the non-inertial frame
coincides with the center of gravity of the hexacopter. By
adopting the Euler angles parametrization the orientation of
the hexacopter in the space is given by the rotation from Eb

to Ee by the rotation matrix R(φ, θ, ψ) ∈ S0(3) defined
as:

R =
⎡
⎣

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψcφ
−sθ cθcφ cθcφ

⎤
⎦ , (1)

where c and s are the trigonometric functions cos and sin
respectively. By considering the Newton-Euler formalism,
the dynamic of the hexacopter considered as a rigid body
under external forces applied to the center of mass expressed
on the non-inertial frame is expressed as [23, 24]:

ξ̇ = v

mv̇ = f

Ṙ = R ˆ̄ω
I ˆ̄ω = −ω̄ × I ω̄ + τ,

(2)

where ξ = [x y z]T ∈ R
3 is the position of the hexacopter

with respect to the inertial frame Ee relative to a fixed
origin, v ∈ Ee is the linear velocity expressed in the inertial
frame, ω̄ ∈ Eb is the angular velocity of the hexacopter
expressed in the body frame Eb, m is the total mass, I ∈
R

3×3 denotes the constant inertia matrix around the center
of mass, ˆ̄ω is the skew-symmetric matrix of the vector ω̄.
f ∈ Ee is the vector of the principal non-conservative forces
and includes the thrust Tthr and drag terms associated with
the BLDCMs. τ ∈ Eb is derived from differential thrust
associated with pairs of BLDCMs along with aerodynamics
effects and gyroscopic effects.

Translational and Gravitational Forces The forces acting on
the hexacopter are given by the translational force Tthr and
the gravitational force g. The translational force is defined
as:

Tthr =
6∑

i=1

fi, (3)

where the thrust fi produced by the ith-BLDCM in free air
is modeled as fi = bω2

i in the z-direction, where b > 0
is a constant associated to propeller geometry and ωi is the
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Fig. 1 Reference frames of the UAV hexacopter

angular speed of the ith-BLDCM. In that sense, Eq. 3 is
rewritten as:

Tthr = b

(
6∑

i=1

ω2
i

)
, (4)

and the gravitational force applied to the hexacopter is:

fg = −mgE(3), (5)

where E(3) = [0 0 1]T is an unitary vector in Ee. Finally,
the force applied to hexacopter is defined as:

F = RE(3)Tthr + fg, (6)

where RE(3) = RE(3), with R as the rotation matrix (1).

Torques The torque generated by each BLDCM is denoted
by τBLDCMi , moreover the torque of the BLDCM is
opposed by an aerodynamic drag τd = dω2

i , where b > 0
is a constant associated for the quasi-stationary maneuvers
(near hover) in free flight. In a steady stable condition,
i.e. ω̇i = 0 it it is assumed that τBLDCMi = τd and the
generalized torques considering the hexacopter geometry
are defined as:

τ (Eb) =
⎡
⎢⎣

bl
2

(−ω2
1 − 2ω2

2 − ω2
3 + ω2

4 + 2ω2
5 + ω2

6

)
bl

√
3

2

(−ω2
1 + ω2

3 + ω2
4 − ω2

6

)
d

(−ω2
1 + ω2

2 − ω2
3 + ω2

4 − ω2
5 + ω2

6

)

⎤
⎥⎦ ,

(7)

where τ (Eb) = [
τφ τθ τψ

]T are the generalized torques
around roll, pitch and yaw movements, l is the distance from
each BLDCM to the center of mass of the hexacopter, and
c = √

3 is a constant associated with hexacopter geometry.
It is also assumed that each rotor can be considered as a
rigid disc rotating around the z-axis in the body frame with
angular speed ωi , and furthermore the rotary shaft of the
rotor is considered itself moving with the angular speed of

the frame, which leads to gyroscopic torques applied to the
hexacopter:

τGb
= − (ω̄ × E(3))

n∑
i=1

Jmωi, (8)

where Jm is the inertial of the rotor. Finally the differential
thrust associated with the torques is expressed as:

τ = τ (Eb) + τGb
. (9)

By considering the Eqs. 6 and 9, the system (2) is
rewriting as

ξ̇ = v

mv̇ = RE(3)Tthr − mgE(3)

Ṙ = R ˆ̄ω
I ˆ̄ω = −ω̄ × I ω̄ + τ (Eb) + τGb

.

(10)

In order to express the final representation of the model
describing the dynamics of hexacopter movement in the
inertial and rigid body reference frames, the system (2)
is separated into position dynamics (denoted as ξ ) and
dynamics orientation (denoted as η). In that sense, the
system (2) with respect to ξ is defined as

ξ̈ = 1

m
(RE(3)Tthr − mgE(3)) (11)

where

RE(3) =
⎡
⎣

sφsψ+cφcψsθ
cφsψsθ − cψsφ

cθcφ

⎤
⎦ (12)

and defining U1 = Tthr the following equation system
describing the hexacopter position around x − y − z axis is
obtained:

ẍ = (cφsθcψ + sφsψ)
U1
m

ÿ = (cφsθsψ − sφcψ)
U1
m

z̈ = −g + (cφcθ)
U1
m

.
(13)

Likewise, the equation system describing the hexacopter
orientation around Euler angles is obtained by considering
that ω̄ ≈ η̇, τφ = U2, τθ = U3, and τψ = U4 as follows

φ̈ = Iy−Iz

Ix
θ̇ ψ̇ + Jm

Ix
ωGθ̇ + U2

Ix

θ̈ = Iz−Ix

Iy
φ̇ψ̇ − Jm

Iy
ωGφ̇ + U3

Iy

ψ̈ = Ix−Iy

Iz
θ̇ φ̇ + U4

Iz
,

(14)

where Ix , Iy and Iz are the inertial moments around the
x − y − z axis, respectively. ωG is the gyroscopic effect
(8). According to Eqs. 6 and 9, the inputs of the system are
defined as:

U1 = b
(
ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6

)
U2 = bl

2

(−ω2
1 − 2ω2

2 − ω2
3 + ω2

4 + 2ω2
5 + ω2

6

)

U3 = bl
√

3
2

(−ω2
1 + ω2

3 + ω2
4 − ω2

6

)
U4 = d

(−ω2
1 + ω2

2 − ω2
3 + ω2

4 − ω2
5 + ω2

6

)
ωG = −ω1 + ω2 − ω3 + ω4 − ω5 + ω2

6

(15)
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Finally, the systems (13) and (14) can be written in a state
space form Ẋ = f (X,U) as

Ẋ = f (X, U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

(cx7sx9cx11 + sx7sx11)
U1
m

x4

(cx7sx9sx11 − sx7cx11)
U1
m

x6

−g + (cx7cx9)
U1
m

x8
Iy−Iz

Ix
ẋ10ẋ12 + Jm

Ix
ωGẋ10 + U2

Ix

x10
Iz−Ix

Iy
ẋ8ẋ12 − Jm

Iy
ωGẋ8 + U3

Iy

x12
Ix−Iy

Iz
ẋ8ẋ10 + U4

Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(16)

where X = [
x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇

]T = [x1 x2 x3 x4 x5

x6 x7 x8 x9 x10 x11 x12]T is the state vector, and U =
[U1 U2 U3 U4]T is the input vector. Taking into account
the system (16) with the inputs (15), and considering
the yaw angle as ψ ≈ 0 (assuming hover conditions)
[25], neglecting the drag coefficients at low speeds, and
decoupling the x −y axes from z by supposing that U1 ≈ g,
the following simplified linear model is obtained [22]:

˙̄X = AX̄ + BU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

gx9

x4

gx7

x6

−g + U1
m

x8
U2
Ix

x10
U3
Iy

x12
U4
Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where the A and B are compatible matrices. The simplified
model (17) will be used in the Section 4.3 to develop the
path tracking controller.

2.2 Propulsion System

The propulsion system of a UAV multirotor is composed by
a set of BrushLess DC Motors (BLDCM) with a propeller
attached to its rotor-shaft. The BLDCMs are powered by
a Lithium Polymer battery through an Electronic Speed
Control (ESC). In Fig. 2 the connection Li-Po battery - ESC
- BLDCM is detailed for one motor. The ESC adjusts the
angular speed of the BLDCM through a PWM signal. In
this study the dynamic around the ESC is neglected and it
is assumed that the voltage supply by the battery and the
generated current by the motors are averaged with respect
to the duty cycle value produced by the control signal.

2.2.1 Lithium Polymer battery dynamics

Lithium Polymer (Li-Po) batteries are devices converting
the energy released by spontaneous chemical reaction to
electricity work. Due to their rechargeable capability they
belong to the Secondary Lithium batteries family and
possess properties such as high discharge rate (C-rate), high
energy and power densities. The Lithium Polymer (Li-Po)
battery is made of several individual cells connected to each
other in series (to have a high voltage value) or parallel (to
have a high capacity in Ah) [26].

Electrical Submodel The battery model describes the
mathematical relationship and evolution of voltage and
State of Charge (SoC), which is the proportion of the
charge available at a given time compared to the total
charge available when the battery is fully charged. The
range of the SoC is SoC ∈ [

0 1
]
, where 1 corresponds to

100% of the charge, i.e the battery is fully charged, and 0

Fig. 2 Connexion of Li-Po
battery - ESC - BLDCM
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indicates that the battery is fully discharge, i.e. the End of
Discharge (EoD) or cut-off voltage value has been reached.
The mathematical model of the Li-Po battery is based on an
Equivalent Circuit Representation (ECR) according to Fig. 3
[27]. In Fig. 3, (on the left-side of the circuit), the voltage
VSoC(t) models the state of charge SoC(t) of the battery
from the capacity CT . The voltage VOCV (VSoC) is the Open
Circuit Voltage (OCV), i.e. it is the effective voltage in the
battery terminals, and it is modeled as a function of the state
of charge of the battery. The voltage VRint

(t) characterizes
the ohmic over-potential due to the internal resistance of
the battery Rint . Vd(t) represents the transitory response
of the voltage when a current is demanding to the battery.
It is characterized by a first order response and its time
constant depends on the value of parameters Rd and Cd . The
mathematical model of the battery is given by:

V̇SoC = − Ibatt

3600·CT

V̇d = − Vd

Rd ·Cd
+ Ibatt

Cd

VBatt = VOCV (VSoC) − Vd − Rint Ibatt ,

(18)

where, the VOCV (VSoC) is experimentally defined as:

VOCV (VSoC) =
n∑

i=0

λiV
i
SoC + ln(VSoC)VSoC . (19)

n determines the order of the polynomial, and λi are the
polynomial coefficients. It can be noted that the nonlinear
function (19) is not unique and its formulation is obtained
through experimental tests.

Thermal submodel. The temperature of the battery is
modeled by the Newton’s law of cooling [28], and it is
assumed that the heat is generated and distributed uniformly
in the battery:

Qb = Rint · I 2
batt ,

Ṫbatt = hA
c

(Tair − Tbatt ) + Qb

c
,

(20)

where Tbatt is the battery temperature, h is the heat transfer
coefficient, A is the surface area of the battery, c is the heat
capacity of the battery, Tair is the temperature of the cooling
air, and Qbatt is the heat generated in the battery.

Fig. 3 Electrical equivalent circuit of Li-Po battery

2.2.2 BrushLess DCMotor Dynamics

The BrushLess DC motor is a type of permanent magnet
synchronous motor. It is drive by a DC voltage source and a
current commutation achieved by solid-state switches. The
main advantages that render this type of motor suitable for
aerial robotic applications are a long operating life, high
dynamic response, better speed and torque characteristics
and higher torque-weight ratio [29]. The mathematical
model that describes the dynamics of the angular speed is
divided into the electrical and the mechanical sub-models
described by the following equations [30]:

v̄batt i = Rībatt i + KEωi,

ω̇i = 1
Jm

(KEībatt i − dω2 − Df ωi − Tf ric),
(21)

where R = 2
3 (

∑3
j=1 Rj ) is the equivalent electric resistance

of each coil, KE is the back electromotive force, ωi is the
angular velocity of the ith BLDCM, Tf ric is the friction
torque, Df is the viscous damping coefficient, d is the drag
constant, associated to the geometry of the propeller, and Jm

is the inertia of the BLDCM. The average voltage v̄batt i and
current ībatt i (t) are the voltage and current generated by the
ESC and they are computed as follows:

v̄batt i = Vbatti · Dci

IBLDCMi
= ībatt i · Dci,

(22)

where Vbatt is the battery voltage, IBLDCMi
is the current

generated by the ith BLDCM and Ibatt = ∑6
i=1 IBLDCMi

.
Dci is the duty cycle of Pulse-Width Modulation (PWM)
signal, which corresponds to control signal of the BLDCM
speed. Dci ∈ [0 1] is defined as function of the reference
angular speed of the ith-BLDCM and it is determined
through experimental correlations, such as:

Dci = f (ω2
ref i

). (23)

where ω2
ref i

is the reference angular speed of the ith
BLDCM.

3 Lithium Polymer Battery Health

In this Section, the principles of battery State of Health
and the main mechanisms of aging are introduced.
Subsequently, the degradation models are defined in
Section 3.2.

3.1 State of Health

The battery State of Health describes the actual physical
condition of the battery in comparison with its nominal
condition [31], and it is established in a range between
0 and 1 SoH ∈ [0 1], i.e. if SoH = 1 the battery is
considered as new and 0 ≤ SoH ≤ 1 the battery exhibits
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an aging behavior. The decrease of the battery SoH is
mainly due to two aging mechanics: 1) the use associated to
cyclic charge/discharge, and 2) the damage is due to deep
discharges (under EoD limit). These two aging mechanics
lead to an energy loss, which is directly reflected in the
battery voltage, as it can be observed in Fig. 4a. As it can be
seen in Fig. 4a the EoD was established in 3.2 V (red line)
and the battery was subjected to deep discharges until reach
2.5 V. In addition, event thought the battery SoH decreases
proportionally to the number of charges/discharges, the
initial SoC does not present changes due to memory effect
which causes the battery to store only the charge associated
with the actual capacity CT value. Additionally, the memory
effect inhibits the visualization of the energy loss provoked
by the aging [32]. On the other hand, the energy loss is the
result of active materials transformation in inactive phases
and leading to a reduction of battery capacity (capacity
loss) at any discharge rate, and the increase of the battery
impedance (power fade). Both capacity loss and power fade
are related to the internal parameters of the battery. The
capacity loss is evidenced by the reduction of the capacity
CT , and the power fade by the increase of the internal
resistance Rint [33], and both phenomenas are proportional
to the number of battery charge/discharge (Ncycle), as it can
be seen in Fig. 4b-c. Furthermore, the variation of capacity
and internal resistance make possible to quantify the aging
level and consequently the battery End-of-Life (EoL).

Remark 1 The EoL determines when the battery has
reached its useful life, and it could be associated to a
specific SoH value, e.g in [34] it is reported that the life
of a battery cell is ended when the maximum power of
the cell decreases to 60% compared to its initial maximum

power at the same operational conditions. In that sense, it
can be assumed that a decrease of total capacity CT and an
increase of the internal resistance Rint of 0.6 (interpreted as
60%) determines the EoL of a cell. This EoL definition is
established for a single battery cell, however it is possible
to extend it for a battery made of several individual cells
by assuming that the operational conditions and the aging
behavior caused by the use are similar for all cells.

3.2 Modeling of Battery Degradation

In this work, the energy loss is modeled by considering the
capacity loss and the power fade using experimental data.
Both phenomena are related to number of charge/discharge
cycles and modify the battery parameters in the system (18).

3.2.1 Capacity Loss Model

The Capacity loss model denoted as Closs is defined
by considering that the battery capacity (CT ) varies
inversely proportionally according with the number of
charges/discharges (Ncycle), and it is expressed as:

Closs(Ncycle) = 1 − C0−CT (Ncycle)

C0
, (24)

where C0 is the initial capacity when the battery is new,
CT (Ncycle) is the capacity after each discharge cycle,
Closs(Ncycle) ∈ [

Closs(EoL) 1
]
, i.e. when Closs = 1 the

battery is new and when Closs(EoL) ≤ Closs ≤ 1 the
battery is in a degraded state. The result of Eq. 24 applied to
experimental data presented in [35] is shown in Fig. 5a. As it
can be noted, the capacity loss has a decrease of 0.4 (which
can be also interpreted as a decrease of 40%) after 160
charge/discharge cycles, and it is occurs before it reaches

Fig. 4 a Voltage variation of a
cell subjected to discharge
cycles. b Evolution of capacity
CT and c Internal resistance
Rint [35]
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Fig. 5 a Evolution of Capacity
loss CT . b Identification of
Capacity loss model

the EoL, i.e a SoH of 0.6 (60%) according to Remark 1.
Then, using experimental data of capacity loss, a model
is identified using a polynomial fourth-order equation and
Prediction Bounds (PB) of 90% as:

IMCloss
(Ncycle) =

4∑
i=0

αi · Ni
cycle (25)

where α denote the polynomial coefficients. The compari-
son between the identified model (25) and the experimental
data are shown in Fig. 5b.

3.2.2 Power Fade Model

The power fade model is denoted as Rinc. If it is considered
that the battery internal resistance Rint varies proportionally
to the number of charges/discharges (Ncycle) is expressed
as:

Rinc(Ncycle) = 1 − Rf − Rint (Ncycle)

Rf − R0
, (26)

where R0 is the initial internal resistance when the battery
is new, Rint (Ncycle) is the internal resistance after each
discharge cycle, Rf is the value of the internal resistance
when the battery has reached its End of Life (EoL).
Rinc(Ncycle) ∈ [

0 Rinc(EoL)
]
. In Fig. 6a the increase

of the internal resistance computed by Eq. 26 is shown.
As it can be noted the internal resistance has an increase
of 0.4 (interpreted as a increase of 40%) after 160
charge/discharge cycles, and it is occurs before it reaches the
EoL. Furthermore, Rf is established at 0.6 (60%) according
to Remark 1.

For the degraded behavior computed by Eq. 26, a model
is identified using a polynomial second-order equation:

IMRinc
(Ncycle) =

2∑
i=0

βi · Ni
cycle (27)

where βi denote the polynomial coefficients. The compari-
son between the identified model (27) and the experimental
data are shown in Fig. 6b. Finally, the total capacity CT

and the internal resistance Rint in system (17) are rewritten
as:

CT = CT (Ncycle) · IMCloss
(Ncycle)

Rint = Rint (Ncycle) · IMRinc
(Ncycle).

(28)

Remark 2 Models (25) and (27) are computed considering
only the degraded behavior of a single battery cell, and both
models are dependent on the number of charges/discharges
cycles Ncycle. In that sense, for other batteries with different
capacity CT and internal resistance Rint values, it is possible

Fig. 6 a Evolution of increase
of internal resistance Rint . b
Identification of power fade
model
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to obtain similar degraded models, and the order of the
polynomials was determined to best fit the experimental
data (Table 1).

4 Path Planning Generation Algorithm

The path planning algorithm is defined considering two
important aspects: (i) to guarantee the generation of smooth
paths, i.e the position and orientation vary smoothly with
the time avoiding aggressive maneuvers [36], and (ii) the
maximization of flight endurance, i.e. the increase of the
final flight time tf . A smooth path could be associated to the
system control inputs e.g a smooth evolution of the angular
motor speed, and on the other hand, the maximization of
flight endurance can be achieved by minimize the energy
consumption during the flight. In order to make the link
between a smooth path and a long flight endurance the path
planning is introduced as a minimization of the total energy
consumption and the final time.

4.1 Path Planning Based on Energy Consumption
of an UAV Hexacopter

The energy provided by the battery is consumed entirely by
the brushless DC motor and ESC. In that sense, the total
energy consumption from initial time t0 to final time tf is
computed as: [19, 36]:

Ec =
∫ tf

t0

[Vbatt · Ibatt ]dt =
∫ tf

t0

Nm∑
m=1

[Vm · Im]dt, (29)

where Vbatt and Ibatt are the battery voltage and the total
current demanded by the BLDCMs. Vm and Im are the
voltage and current of each the BLDCM where m ∈
[1, · · · , Nm]. Nm is the number of mth BLDCM in the
hexacopter. By substituting Eqs. 21 and 22 in Eq. 29, the
relationship between the energy consumption and angular
speed of the BLDCMs is computed as:

Ec =
∫ tf

t0

Nm∑
m=1

[κ1+κ2ωm+κ3ω
2
m+κ4ω

3
m+κ5ω

4
m+κ6ω̇m

+κ7ω̇
2
m + κ8ωmω̇m + κ9ω

2
mω̇m]dt,

(30)

where the constants κ1, · · · , κ8 are combinations of the
BLDCMs parameters, and ωm and ω̇m are the speed and
angular acceleration of the mth BLDCM. By considering
that the initial and final speed are equals i.e ω0 = ωf (30),
can be simplified as:

Ec =
∫ tf

t0

Nm∑
m=1

[κ1 + κ2ωm + κ3ω
2
m + κ4ω

3
m+

κ5ω
4
m + κ6ω̇

2
m]dt,

(31)

The minimization of the energy consumption (31) and
the mission final time tf is realized by defining a
multi-objective constrained minimization problem taking
into account the hexacopter dynamics and the constraints
associated with the battery performance. In order to explain
how is defined the minimization problem, let us consider
Fig. 7, where the interaction of the different elements that
integrate the dynamics of the hexacopter is shown. As it
can be seen, the general inputs are the angular acceleration
of the BLDCMs, considering the approach proposed by
[19], and the output is the position and orientation of
the hexacopter. Finally, the multi-objective constrained
minimization problem is defined as follows:

min
ω̄ri

Ec(tf )&(tf − t0)

such that Hexacopter dynamics (16)-(15),

BLDCM dynamics (20)-(21)-(22),

Battery dynamics (17)-(18)-(19),

Xa(t0) = Xat0
, Xa(tf ) = Xatf

,

0 ≤ ωi ≤ ωmax,

Vbatt (EoD) ≤ Vbatt (t) ≤ Vbatt (t0),

0 ≤ SoH ≤ 1,

(32)

where Xa = [
x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇ ω1 ω2 ω3 ω4 ω5 ω6

VSoH Vd Tbatt

]T
is the state vector with the dynamics of all

the elements that integrate the hexacopter, ωi is the speed of
ith BLDCM, and Vbatt (EoD) is the battery voltage at End-
of-Discharge value. In addition, the constraints associated
with the BLDCMs speed and the battery voltage enable
to set realistic operational limits. Moreover, the limit of

Table 1 Coefficients of identified models

Capacity loss model Closs

α0 α1 α2 α3 α4 R2

0.988 −1.406 × 10−3 −6.713 × 10−5 7.651 × 10−7 −2.435 × 10−9 0.98

Power loss model Rinc

β0 β1 β2 − − R2

2.9 × 10−2 4.027 × 10−3 −2.604 × 10−6 0.95
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Fig. 7 Connection of UAV
subsystems

minimal battery voltage, i.e. the End of Discharge, avoids to
generate overdischarges.

4.2 Path Planning Based on Polynomial Functions

Polynomial functions are suitable for generating paths
due to their properties such as smoothness and boundary
conditions [35]. A polynomial function of n order is defined
as:

p =
n∑

i=0

γit
i

= γ0 + γ1t + · · · + γ2n−1t
2n−1,

(33)

where γi are the coefficients of polynomial and t is the time.
The order determines the number of derivatives that must
be resolved, i.e for n = 3 leads to minimum position and
velocity path, and for n = 5 leads to smoother and minimum
energy paths [21].

4.3 Orientation and Position Control Loops

A cascade control loop is considered in order to control
and stabilize the position and orientation of the hexacopter.
As it can be seen in Fig. 8, the control loop associated
with the translational dynamics (external control loop or

position controller) computes the reference thrust, denoted
as Ū1 and Euler angles roll-θr and pith-θr . The reference
of yaw-ψr is generated externally depending to path
characteristics. The control loop associated to rotational
dynamics (internal control loop or orientation controller)
computes the reference torques, denoted as Ū2, Ū3,
Ū4. Considering the system (23), a typical Proportional-
Derivative (PD) controller is be defined for the hexacopter
orientation as:

Ū2 = (φr − φ)Kpφ − φ̇Kdφ,

Ū3 = (θr − θ) Kpθ − θ̇Kdθ ,

Ū4 = (ψr − ψ) Kpψ − ψ̇Kdψ

(34)

where Kpi and Kdi corresponds to Proportional and
Derivative gains and i = φ, θ, ψ . In the same way, the
position controller is deduced as:

φr = (yr(t) − y)Kpy − ẏKdy,

θr = (xr(t) − x)Kpx − ẋKdx,

Ū1 = σ((zr − z)Kpz − żKdz) + g,

(35)

where σ = m
cos φ cos θ

, Kpj and Kdj corresponds to
Proportional and Derivative gains and j = x, y, z.
Moreover, [φr, θr ] ∈ [−π

2 , π
2

]
and −π ≤ ψr ≤ π . The

position reference [xr yr zr ]T is computed using (33) for

Fig. 8 Cascade control scheme
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each axis. The reference speeds of the BLDCMs denoted as
ωir are deduced from Eq. 15 as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1r

ω2
2r

ω2
3r

ω2
4r

ω2
5r

ω2
6r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6b

0 − 1
3bl

1
6d

1
6b

√
3

4bl
− 1

6bl
− 1

6d
1

6b

√
3

4bl
1

6bl
1

6d
1

6b
0 1

3bl
− 1

6d
1

6b
−

√
3

4bl
1

6bl
1

6d
1

6b
−

√
3

4bl
− 1

6bl
− 1

6d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Ū1

Ū2

Ū3

Ū4

⎤
⎥⎥⎦ . (36)

Finally, the duty cycle Dci for the ith-BLDCM is
compute by considering the Eq. 22.

5 Simulation Results

The multi-objective constrained minimization problem (32)
was solved using an optimal control software called GPOPS
II which is a general-control software implemented in
MATLAB®. It is dedicated to solve nonlinear optimal control
problems using variable-order adaptive orthogonal collocation
methods together with sparse nonlinear programming [37].

In order to test the capability of the path planning
algorithm presented in Section 4.2 to minimize the energy
consumption Ec and the final time tf , two cases with the
following boundary conditions were considered:

Xa(t0) = [
01×12, 454.71×6, 1, 0, 25

]
,

Xa(tf ) = [
xf , 0, yf , 0, zf , 01×5, ψf , 0, 454.71×6,

f ree, f ree, f ree
]

. (37)

In addition, the BLDCM speed was established as ωi(t0) =
ωr(tf ) = 454.7 rad/s taking into account the energy
consumption criteria (31). Moreover, that initial speed
makes it possible to generate the thrust force to take-off and
remain lifted up during the flight.

5.1 Case 1

In the first case, the multi-objective constrained minimiza-
tion problem (32) was solved considering a new (SoH = 1)
and fully charged (SoC = 1) battery, EoD = 12.8 V. The
minimal final time tf was 7.0147 s. This final time was used
in the polynomial approach to generate the path using the
cascade control loop introduced in Section 4.3. In Figs. 9
and 10 the comparison between the minimum energy path
generated by solving the minimization problem and the path
generated by the polynomial approach is shown. As it can
be seen, both methods generate similar smooth paths with-
out aggressive maneuvers. However the difference between
both methods can be observed in Fig. 11, where the mini-
mization problem generate a very smooth transition between
the initial and final orientation.

The battery response is shown in Figs. 12 and 13, as it
can bee seen the demanded current for the minimization
problem has an increase due to take off in comparison
with the polynomial approach. This increase generates a
considerable drop in battery voltage during takeoff (Fig. 12-
b). The total consumed energy for the minimization problem
and polynomial approach was 1.8657 kJ and 1.8772 kJ
respectively. This result lets us to conclude that the
minimization problem is capable of generating minimum
energy paths, while at the same time minimizing the final
time.

5.2 Case 2

To evaluate the minimization problem (32) in the present
of a degraded battery, two changes in the battery SoH
were considered at the beginning of the flight taking into
account the boundary conditions (37): SoH = 0.8077, i.e
a degradation of ≈ 20% at Ncycle = 60, and SoH =
0.5946, i.e. a degradation of ≈ 40% at Ncycle = 160.

Fig. 9 Case 1: 3D Position
around x − y − z axis
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Fig. 10 Case 1: Position and
linear speed around x − y − z

axis

As it can be seen in Figs. 14 and 15, the variation of
the SoH battery modifies the final time value associated
with the hexacopter mission (to see Table 2). That means,
the consideration of battery health in the minimization
problem not only enables to manage the issues associated
with battery performance, it also defines the limits of flight
endurance in order to determine if the available energy is
sufficient to continue developing the mission. It can also
be noted that the SoH variations also affects the discharge
dynamics. As it can be seen in Fig. 16, to satisfy the
requirement of minimum energy consumption and final
time considering the performance index defined in Eq. 32,

the discharge rate increase. On the other hand, it can be
also notice that the initial SoC indicates that the battery
is always fully charged at the beginning of the flight, but
due to capacity loss and the final SoC tends to be rapidly
decreasing.

Finally, the result of the minimization problem with SoH
variation at 40% is compared with the response obtained by
the polynomial approach in order to validate the result. As it
is illustrated in Fig. 17, the minimization problem is able to
compensate for the effects generated by the variation in the
battery SoH generating an energy consumption of 2.4035 kJ
and 2.5341 kJ for the polynomial approach.

Fig. 11 Case 1: Orientation and
angular speed around Euler
angles [φ θ ψ]
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Fig. 12 Case 1: Battery response

Fig. 13 Case 1: Battery
temperature

Fig. 14 Case 2: Position and linear speed around x − y − z axis
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Fig. 15 Case 2: Hexacopter position and linear speed around x − y − z axis

Table 2 Results of
multi-objective minimization
problem with SoH variations

tf (s) SoH (%) Ncycle Ec(tf ) (kJ)

7.0147 100 0 1.8857

7.7908 80 60 2.0922

8.9575 60 160 2.4035

Fig. 16 Case 2: Battery response
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Fig. 17 Comparison of battery response between minimization problem and polynomial approach

6 Conclusions and FutureWorks

In this paper a path planning generation algorithm for
a class of UAV multirotors was introduced as a multi-
objective minimization problem associated to both energy
consumption and final time by taking into account
the battery performances. The battery performance was
characterized by the State of Health, which was computed
by introducing two degradation models associated with
the number of charge/discharge cycles. On the other
hand, a path generation approach based on polynomial
functions was presented to validate the results obtained by
the multi-objective minimization problem. The simulation
results showed that it is possible to obtain a smooth
and minimal energy path in the present of a degraded
battery while minimizing the final time. In addition, the
main challenge that the minimization problem has to
overcome is the increases of the discharge rate due to
energy loss. Considering the increase of the discharge rate,
it is necessary to evaluate during the flight the energy
available to determine if it is possible to continue and
fulfill the mission avoiding overdischarges in the battery.
Finally, as future works a more extensive study will be
carried out to determinate the degradation models based on
battery temperature. Furthermore, different flight sceneries
taking into account the disturbance caused by the wind
will be included in the minimization problem for paths
characterized by several way-points.
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degree of Master of Science in Electronic Engineering at the National
Center for Research and Technological Development (CENIDET),
Cuernavaca, Morelos, Mexico, in 1993, and the degree of Doctor of
Process Engineering at the University of Lyon 1 in France October
2001. In 2009, held a postdoc in Automatic Control at the University
of Nancy 1 in France.

D. Theilliol received the Ph.D. degree in Control Engineering from
UNIVERSITY OF LORRAINE (France) in 1993. Since September
2004, he is a full Professor in Research Centre for Automatic Control
of Nancy (CRAN) at University of Lorraine where he co-ordinates
and leads national, European and International R&D projects in steel
industries, wastewater treatment plant and aerospace domains. His
current research interests include sensor and actuator model based
fault diagnosis (FDI)method synthesis and active fault tolerant control
(FTC) system design for LTI, LPV, Multilinear systems and also
reliability analysis of components. Prof. Theilliol published over
200 journal/conference papers and is a co-author of a book entitled
’Fault-tolerant Control Systems: Design and Practical Applications
(2009). He was during two years Visiting Professorship for Senior
International Scientists for Chinese Academy of Sciences.He is one
of European Advanced Control and Diagnosis (EACD) steering
committee members and is also a member of IFAC Technical
Committee 6.2.Mining, Mineral and Metal Processing.

Y. Zhang (M’99–SM’07) received the B.S., M.S., and Ph.D. degrees
in automatic controls from the Northwestern Polytechnical University,
Xi’ an, China, in 1983, 1986, and 1995, respectively. He is currently a
Professor at the Department of Mechanical, Industrial and Aerospace
Engineering, Concordia University, Montreal, QC, Canada. He has
authored four books, more than 460 journal and conference papers,
and book chapters. His current research interests include fault
diagnosis and fault-tolerant (flight) control systems, cooperative GNC
of unmanned aerial/space/ground/surface vehicles. Dr. Zhang is a
Fellow of CSME, a Senior Member of AIAA, the Vice- President of
International Society of Intelligent Unmanned Systems, and a member
of the Technical Committee for several scientific societies. He is an
Editorial Board Member, Editor-in-Chief, Editor-at-Large, and Editor
or Associate Editor of several international journals. He has served
as the General Chair, the Program Chair, and IPC Member of several
international conferences.

Affiliations

R. Schacht-Rodrı́guez1,2 · J.-C. Ponsart2 · C.-D. Garcı́a-Beltrán1 · C.-M. Astorga-Zaragoza1 · D. Theilliol2 · Y. Zhang3

R. Schacht-Rodrı́guez
rschacht@cenidet.edu.mx;
ricardo.schacht-rodriguez@univ-lorraine.fr

C.-D. Garcı́a-Beltrán
cgarcia@cenidet.edu.mx

C.-M. Astorga-Zaragoza
astorga@cenidet.edu.mx

D. Theilliol
didier.theilliol@univ-lorraine.fr

Y. Zhang
youmin.zhang@concordia.ca

1 Tecnológico Nacional de México, Centro Nacional
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