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Abstract
The paper presents a bio-inspired robotics model for spatial cognition derived from neurophysiological and experimental
studies in rats. The model integrates Hippocampus place cells providing long-term spatial localization with Enthorinal
Cortex grid cells providing short-term spatial localization in the form of “neural odometry”. Head direction cells provide for
orientation in the rat brain. The spatial cognition model is evaluated in simulation and experimentation showing a reduced
number of localization errors during robot navigation when contrasted to previous versions of our model.
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1 Introduction

Spatial cognition relates to cognitive processes in the brain
required to support spatial localization and navigation in
animals and humans. It is believed that the brain builds an
internal cognitive map made up primarily of place, grid and
head direction cells, as shown in Fig. 1. Historically, Tolman
[66] proposed the idea of rats having an internal cognitive
map. These studies were followed by O’Keefe [49–52] who
identified place cells in the Hippocampus as the location
of such a cognitive map. Later studies proposed the notion
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that the cognitive map integrated external information from
the environment and internal information to the rat as part
of a path integration system [19, 21, 33, 40, 44, 54].
More recently, Moser and Moser [22, 29, 47] identified the
existence of grid cells located in the Entorhinal Cortex (EC)
as part of a “neural odometry” system for rat navigation.
Ranck [56] discovered the existence of head direction cells
in the brain. Together, place, grid and head direction cells
are believed to provide for the underlying neural mechanisms
required by the brain to build the cognitive map.

While we have a more extensive understanding of the
cognitive map functionality in the mammalian brain and its
role in spatial navigation there are still many open questions.
For example, it is not clearly understood how: (a) grid cells
integrate with place cells, and (b) how this integration may
provide for more stable long–term localization. The models
developed by our group, and others, are intended to address
these two issues, among others. While the original model
developed by Barrera and Weitzenfeld [5–7] explored the
integration of place cell with a path integration module to
reproduce goal-oriented learning tasks in rats, this model
generated many localization errors during long-term robot
navigation. The model developed by Tejera et al. [64, 65]
proposed replacing the path integration module found in
the Barrera and Weitzenfeld model with a grid cell module
that also included head direction cells module as part of the
cognitive map. To address the high number of localization
during robot navigation, Tejera et al. introduced the concept
of a “reset” mechanism to stabilize grid cell firing affecting
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Fig. 1 Hippocampus (HC), Entorhinal Cortices (LEA – Lateral
Entorhinal Area, and MEA – Medial Entorhinal Area), Perirhinal
Cortex (PER), and Postrhinal Cortex (POR) [1]. (Reproduced with
permission from [1])

place cell firing in order to reduce the number of localization
errors. The model described in the current paper describes
both the proposed integration of grid cells and place cells
as part of a cognitive map architecture for robot navigation
while contrasting the number of localization errors between
the different models by Barrera and Weitzenfeld, and Tejera
et al. In particular, the current paper extends upon the results
described in [65].

The paper is organized as follows: Section 2 summarizes
the main neural components involved in spatial cognition in
rats as basis for our model; Section 3 describes our spatial
cognition modeling; Section 4 describes spatial localization
based on the model; Section 5 describes robot navigation
based on the spatial cognition model; Section 6 describes
experiments and results; and Section 7 provides conclusions
and discussion.

2 Spatial Cognition in Rats

Spatial cognitions neurophysiological studies in rats have
shown to integrate place, grid and head direction cells.
These studies were made in conjunction with experimental
tasks involving classic environment configurations, such as
the “T-maze” and “8-arm radial maze” used by O’Keefe
[50–52], and the “open maze” used by Morris [45, 46].
In Fig. 2 a sample rat trajectory is shown (top row)
based on recordings from Hafting et al. [29] on an open
maze environment. Figure 2 shows the corresponding
place cell firing at a unique location (mid row), and
corresponding grid cell firing at multiple locations resulting
in an hexagonal configuration (bottom row). These cells are
further discussed in the following sections.

2.1 Place Cells

Place cells are pyramidal neurons in the hippocampus that
fire at a specific location in space. O’Keefe [51] discovered
place cells from individual recordings of pyramidal cells
found in hippocampal substructures CA1 and CA3. These

neurons were called place cells because of the high
correlation between their firing and the rat location in the
environment, thus suggesting their role as a neural substrate
for internal spatial representations in the brain. Place cell
activity appeared to be dependent on the location of external
landmarks or visual cues in the environment [39, 48]. It
has been shown that place cells maintain their fields even
in the dark [33], and even when some of the visual cues
are removed from the environment [55]. Furthermore, it is
believed that the response of place cells is derived from
combining kinesthetic and visual cues information [28].
Existing studies show that CA3 is able to execute non-
linear transformations of sensory input patterns, while CA1
represents input changes in a linear fashion [36], suggesting
that representations in CA1 and CA3 emerge independently
[37].

2.2 Grid Cells

Grids cells are neurons that fire at multiple locations
tessellating an entire surface with a periodic triangular
pattern, each described by a number of parameters: spacing,
orientation, and phase. Moser and Moser [28, 29] identified
grid cells from recordings in the entorhinal cortex. Grid
cells appear to be part of a universal spatial metric
system, i.e., a “neural odometry” for rat navigation. Further
studies showed that in a sufficiently large experimental
environment, many entorhinal cortex cells exhibit a grid-
like structure firing at regular intervals over the entire
environment that is not seen anywhere in the hippocampus
[38]. This grid has a hexagonal shape with internal 60◦ and
120◦ angles. The spatial coordinate system defined by the
grid cell network appears to become anchored to specific
landmarks of an individual environment. Additionally, grids
assume similar phases and orientations with respect to
external landmarks on repeated exposures to the same
environment, irrespective of where the animal starts its
navigation [29, 41, 48]. The geometrical structure and
spacing of grid fields seems independent of the size and
shape of the environment. Additionally, grid spacing and
grid orientation of neighboring grid cells is almost identical
but their grids are offset relative to each other with all grid
offsets (phases) equally represented within a small region
of the entorhinal cortex. Grid cells fire in response to a
particular location, direction and speed. The same group of
grid cells responds when the rat is oriented towards different
directions remaining in the same physical location [47].

2.3 Head Direction Cells

Head direction cells are found in many cortical regions
including the entorhinal cortex [56, 62, 63]. These cells
encode the rat’s allocentric heading in the azimuthal plane.
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Fig. 2 (Top row) Rat trajectory recorded by Hafting et al. [29]. (Mid row) Single place cell recorded in a unique field location. (Bottom row)
Firing of a single MEC grid cell at multiple locations

A head direction cell fires maximally only when the rat’s
head is oriented towards a specific direction with respect to
the environment, regardless of the head orientation relative
to the body, the rat’s location, or its ongoing behavior. In this
way, head direction cells can be seen as an internal compass.
Just like place cells and grid cells, the activity of head
direction cells is driven both by visual cues and egocentric
motion signals, enabling the rat to maintain and update the
activity in its head direction cells even when moving around
in darkness [16, 58].

3 Spatial CognitionModeling

Various spatial cognition models have been developed in the
past. Most of these models are based exclusively on place
cells models, while some provide some level of integration
with grid cells and head direction cells. These models are
further discussed in [6, 7] corresponding to [2–7, 10, 12, 15,
18, 20, 23, 27, 42, 43, 57, 59, 64, 65]. These models evaluate
different aspects of spatial cognition including in some
cases using both simulation and robotics experimentation.
The rest of this section describes our group’s spatial cognition
model, which is summarized in Fig. 3.

An important aspect of our group’s spatial cognition
model is that it relates spatial cognition processes including
learning and memory by (i) interaction of different brain

structures to demonstrate skills associated with global
and local localization in space, (ii) path integration, (iii)
use of kinesthetic and visual cues during orientation, (iv)
generation of topological-metric spatial representation, (iv)
adaptation using Hebbian learning [31], (v) representation
of internal motivational states based on hunger and
thirst drives, and (vi) management of rewards by use of
reinforcement learning using an Actor-Critic architecture
[4, 8, 32]. The learning architecture is complemented
by applying backward reinforcement to successful routes
followed by the rat during training thus enabling learning
of explored routes. After exploration, the model exploits
maximum reward expectations to guide the rat towards the
goal from any given departure location. Additionally, the
model implements an on-line learning process to adapt the
cognitive map to changes in the physical configuration of
the environment.

The different components of the model, shown in Fig. 3,
include:

• Motivation module, related to the rat’s lateral hypotha-
lamus [34]. It computes the immediate reward the rat
gets by the presence of goals (r).

• Kinesthetic module, involving the participation of
the posterior parietal cortex (PPC) [53] and the
retrosplenial cortex (RC) [17]. It represents the updated
egocentric position of the rat’s point of departure by
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Fig. 3 The diagram describes an
extension to the original Barrera
and Weitzenfeld [7] spatial
cognition model

activating groups of neurons that respond to specific
kinesthetic information patterns.

• Landmarks module, encoding global spatial positioning.
• Affordances module, mapped to PPC [39]. It generates

the affordances perceptual schema (AP) encoding
possible turns the rat can perform at any given time
being at a specific location and orientation [24, 25].

• Grid Cells module, corresponding to the rat’s entorhinal
cortex. It receives kinesthetic information in the form
of rat speed (s) and orientation (�). Additionally, a
reset mechanism provides recalibration feedback from
the World Graph to the Grid Cells module to prevent
grid cell activity from drifting over time.

• Place Cells module, corresponding to the rat’s hip-
pocampus; it receives input from grid cells. Connec-
tions between different place cell layers are strength-
ened by Hebbian learning [31].

• World Graph module, receiving input from Place
Cells and Landmarks modules in order to produce
topological patterns representing unique locations in the
environment. This module associates place fields with
a physical location in the environment that is identified
by an activity pattern (PC) and whose extension is
determined by affordances (AP) sensed by the rat
during exploration. The world graph layer integrates
kinesthetic and landmark information [33] mapped to
the prelimbic cortex [26]. It stores those associations in
a spatial representation and performs place recognition.
The Actor units store the activation patterns PC asso-
ciated with the landmark processing patterns LP, one
for each direction, and every connection is associated
with a weight, representing the expectation of getting

the biggest reward (EX) when orienting in a particular
direction (DX) towards the goal.

• Learning module, corresponding to dopaminergic neu-
rons in the ventral tegmental area and to ventral striatum
processing reward information based on a Actor-Critic
reinforcement learning architecture [8, 60].

• Action Selection module, computing the motor out-
puts of the model: direction (DIR), rotation (ROT) and
displacement (DIS). Motion is determined by consider-
ing the current AP, the selection of a random rotation
between possible affordances, the curiosity to execute
rotations not yet explored, and the expectations of
maximum reward (EX, DX).

Figure 4 provides the physical setup for running
experiments using a Khepera robot as it navigates a “dry”
circular arena of the open water maze by Morris [45,
46]. The figure shows a “Global Image” illustrating output
taken from a “Panoramic Image” obtained from local robot
cameras that provide multiple “Local Views” showing
a number of fixed color visual cues perceived by the
“Landmarks” module. The orientation and distance to the
different visual cues are used to build the topological map
shown in the “World Graph” layer and used by the “Action
Selection” module to produce robot motion actions.

4 Spatial Localization

Spatial localization in our model integrates short term localiza-
tion produced by grid cells with long term localization
produced by place cells, as shown in Fig. 5. The figure
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Fig. 4 The “Global Image” in the top left corner shows a robot navigat-
ing a “dry” Morris open water maze. The “Local View” in the top mid-
dle image shows the view from the robot local camera. The “Panoramic
Image” in the top right side is a composition of multiple robot local
camera views. The bottom left “World Graph Layer” node diagram
in green represents the topological map of locations previously vis-
ited by the robot, with current position in magenta and previous one in
yellow. The “Landmark Perceptual Schema (LPS)” in the bottom mid-
dle figure shows a number of landmarks in different colors where left
Gaussians represent orientations as shown in the “Panoramic Image”,

while the right Gaussians represent distances from the robot for each
colored landmark (magenta, cyan, yellow and green). The “Action
Selection” diagram in the bottom right represents the three possible
motion outputs each having 3 possible activities obtained from the
“Expectation of Maximum Reward” (EMR), “Expectation Perceptual
Schema” (EPS), “Curiosity Perceptual Schema” (CPS), “Random Per-
ceptual Schema” (RPS), or “Affordance Perceptual Schema” (APS).
The highest value of the 3 sum values correspond to moving left, right,
or forwards, in a winner-take-all fashion

Fig. 5 The illustration shows the proposed grid cell to place cell
interconnectivity [29, 61]

illustrates grid cell patterns with increased spaces between
firing along the z-axis in MEC [29, 61]. The grid cells com-
bine to generate unique place cell firing locations in the
hippocampus.

4.1 Short-Term Localization

We use a linear interference oscillator to generate grid
cells firing patterns [30]. The numerical values for z were
obtained heuristically according to Table 1, where T(z) is
the oscillation period, f(z) corresponds to the oscillation
frequency (inverse of T(z)), and G(z) represents the grid cell
spacing function [13].

Equations 1, 2 and 3 describe the different oscillatory
values based on the distance z from the postrhinal border
[30].

T (z) = 0.094z + 0.13 (1)

f (z) = 1/T (z) (2)

f (z) = 1/(0.094z + 0.13) (3)
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Table 1 Grid Cell Firing Spacing

z(mm) Grid cell firing

T(z) (sec) f(z) (Hz) G(z ) (cm)

0.00 0.1300 7.6923 39.00

0.25 0.1535 6.5147 46.05

0.50 0.1770 5.6497 53.10

0.75 0.2005 4.9875 60.15

1.00 0.2240 4.4643 67.20

1.25 0.2475 4.0404 74.25

1.50 0.2710 3.6900 81.30

Equation 4 describes the grid cell field spacing G(z)

(cm) depending on the dorsal–ventral position z (mm). The
grid cell spacing function G(z) and the oscillation period
function T (z) = 1/f (z) can be scaled to each other by
a constant H =300 defined to estimate the spacing G(z)

given an oscillation frequency f of approximately 300 Hz
per cm.

G(z) = H/f (z) (4)

The linear oscillatory interference model [30] is summa-
rized in the following equations where the membrane volt-
age oscillation V (t) is given by (5) by applying a cosine
function “cos” to the soma and dendritic oscillations at
frequencies fs and fd , respectively.

V (t) = cos(fs2πt) + cos(fd2πt) (5)

As described in Eq. 6, fb (the “beat” frequency) is
obtained from the difference of fs and fd , i.e. fb = fd–fs ,
or fd = fs + fb, as illustrated in Fig. 6.

fd = fs + fb (6)

As described in Eq. 7, the rat velocity v is determined
from its speed s and the difference between head direction
φ and the preferred head direction φHD.

v = scos(φ − φHD) (7)

As described in Eq. 8, the distance between two firing
locations can be determined from spatial wavelength λb, by
multiplying velocity v with the beat period Tb.

λb = vTb = v/fb = scos(φ − φHD)/fb (8)

As described in Eq. 9, λbcan remain constant by defining
a beat frequency fb,

fb = Bscos(φ − φHD) (9)

where the threshold activation constant B = 1/λb corres-
ponds to the inverse of the spatial wavelength λb. The
dendrite oscillation frequency fd can then be redefined as in
Eq. 10,

fd = fs + Bscos(φ − φHD) (10)

where B = 0.00385, that can be redefined in terms of BH

and f (z), as shown in Eq. 11.

B = BHf (z) (11)

The dendrite frequency fd can be rewritten as described
in Eq. 12.

fd = fs + fsBHscos(φ − φHD) (12)

As described in Eq. 13, grid cell firing gc(t) can be obtained
by combining three band cells, each corresponding to V (t).
The linear oscillatory interference model implemented in
our spatial cognition model combines band cells varying in

Fig. 6 Example of two
oscillations at very close
frequencies, fd and fs , added
together to generate the “beat”
oscillation fb at a lower
frequency. (Reproduced with
permission from [65])
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Fig. 7 Generation of a single Grid Cell (right) firing obtained from three Band Cells varying in 120◦ [12, 29]. The band cells (leftmost three) fire
in fixed bands of the environment (red). The grid cell (rightmost) fires in the intersection of the three band cells [65]. (Reproduced with permission
from [65])

120◦ to produce individual grid cell as shown in Fig. 7 [30,
35, 40].

gc(t) = �

[∏
HD

(cos (fs2πt) + cos ((fs + fsBH scos (φ

− φHD)) 2πt) + ϕ

]
(13)

4.2 Long-Term Localization

Each place cell activation pc is generated by applying a step
function � to the sum of N grid cells gc with similar initial
phase as given by Eq. 14.

pc(t) = �

(∑Ngc

i=1
gci(t)

)
(14)

In Eq. 14, Ngc represents the number of grid cells and gci(t)

corresponds to the function defined in Eq. 13. This equation

Fig. 8 Each of the four grid cells graphs shows activation fields with
spatial orientations φHD varying depending on the initial ϕ spatial
phase incrementing by 15◦ from φHD = −30◦ (yellow) to 15◦ (purple).
Each of the four peak grid cell activation fields (at each corner in each
of the four graphs) generate the individual place cells firing as shown
in the center of the image

proposes a weighted sum of grid cell firing to generate place
cell firing based on work by Solstad et al. [61]. The values
are selected considering their ventro-dorsal position at the
time the grid cells and place cells are created, and stay fixed
during the experiment. Solstad et al. [61] summed the output
of 10 grid cells with different spacing and same phases and
orientations after applying a global inhibition during the
formation of a unique place cell in the environment. The
output of the Place Cell (PC) module consists of all place
cells from Eq. 14.

Figure 8 illustrates place cell activation (in the center
plot) by combining multiple grid cells with the same spatial
phase ϕ and different spatial orientation φHD. Each of these
plots shows activation fields of five different grid cells with
spatial orientations φHD varying by increments of 15◦ from
φHD = −30◦ (yellow) to 15◦ (purple).

5 Robot Navigation

A basic challenge in robotics navigation is for robots to have
a good spatial localization in a given environment. Robot
navigation in our model is based on the spatial cognition
map using a World Graph topology generated from Place
Cell activation integrated with the neural odometry from
Grid Cells. The following sections describe the world graph
and cell firing recalibration intended to reduce localization
errors.

5.1World Graph

The World Graph (WG) generates a topological map of the
environment, as shown in Fig. 9 (shown also in Fig. 4). Each
node j in WGj receives input from the Place Cells (PC)
and Landmarks (LP) modules multiplied by corresponding
weights wij ,as described in Eq. 15).

WGj =
∑

i
PCiw

pc
ij +

∑
i
LP iw

lp
ij (15)

Each World Graph node WGj in the topological map
compares a new pattern pat ∈ PAT to all stored WGi using
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Fig. 9 WG mapping a circular
arena: a no localization errors, b
5 localization errors, c 40
localization errors, and d 100
localization errors. (Reproduced
with permission from [65])

(a) no localization errors  (b) 5 localization errors  (c) 40 localization errors (d) 100 localization errors

a similarity function (SD) function based on their Euclidean
distance, as described in Eq. 16.

SD(pat, WGj ) =
√∑NPC

i=1
(pati − WGij )

2 (16)

If the new pattern pat has a low similarity degree (SD)
when compared to the existing stored patterns WGi , then
the robot is presumed to be located at an existing WGj node
to update its global localization as described in Eq. 17.

pat = arg minpat∈PATSD(pat,WGj ) (17)

If no minimum acceptable distance is found between pat
and WGj , then a new node is created in WG (see [6]
for more details). If too many new nodes are created after
the robot has navigated the same environment this would
lead to navigation errors where the robot is not recognizing
locations where it has already been. Figure 9 illustrates
this problem by showing sample WG maps obtained with
different number of localization errors after the robot has
navigated a circular arena multiple times.

5.2 Cell Firing Recalibration

To overcome localization errors in WG, every time a valid
pat = WGj is found; a recalibration reset signal is applied
to the corresponding grid cell. Figure 10 shows the reset
signal sent from the World Graph back to the Band Cells that
connects to the Grid Cells. Additional parameters shown in
the figure include linear velocity s, angular velocity ω, and
head direction information φ.

If we look back at Eq. 5, shown again here in Eq. 18,
we can apply the reset signal to the dendritic phase of V (t)

corresponding to gc(t), as described by Eq. 18.

V (t) = cos(fs2πt) + cos(fd2πt) (18)

The soma components from Eq. 18 can be redefined as xs(t)

and xd(t), respectively as shown in Eqs. 19 and 20.

xs(t) = fs2πt (19)

xd(t) = fd2πt (20)

In Eq. 21, the new dendritic component x′
d(t) enables xd(t)

to get closer to xs(t).

x′
d(t) = xd(t) + γ (xs(t) − xd(t)) (21)

If γ is set to 0, then no reset update is made to x′
d(t), while

setting γ to 1 would make x′
d(t) equal to xs(t). Equation 22)

summarizes the reset mechanism.

x′
d(t) =

{
xd(t) + y(xs(t) − xd(t)) if SD(winner, WG) < SDmerge

xd (t) otherwise

(22)

Figure 11 illustrates recalibration using the reset mecha-
nism, as follows:

• The first row shows a simple square motion by the rat
ending after 4 steps starting from its original location.

Fig. 10 The diagram describes the components involved in the
interference oscillatory model including the reset mechanisms from
the World Graph back to the Grid Cells via de Band Cells
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Fig. 11 Illustratation of grid cell recalibration using the reset mech-
anism. The first row shows a simple square motion by the rat. The
second row shows the corresponding WG node localization of the rat
matching the square motion. The third row shows two sets of grid cell

firing, a dark one corresponding to an ideal noiseless firing and a red
one where error is accumulated due to intrinsic or extrinsic noise in the
dendritic linear oscillator. The fourth row contrasts the noiseless and
noisy grid cell dendritic linear oscillators

• The second row shows the corresponding WG node
localization of the rat matching the square motion steps
until a new purple node is created at t4. Considering
the closeness of the new purple node to the first node
generated at t0 by the World Graph; a reset signal is
generated recalibrating node 5 to match node 1. Note
that initially a new node is created or a previous one
matched depending on the threshold value for SD.

• The third row shows two sets of grid cell firing, a dark
one corresponding to an ideal noiseless firing and a
red one where error is accumulated due to intrinsic or
extrinsic noise in the dendritic linear oscillator. Note that
once WG sends the reset signal, this will cause a grid
cell reset signal where the accumulated grid cell activa-
tion will modify its phase according to Eq. 22 in trying
to get closer to the noiseless dendritic linear oscillator.

• The fourth row contrasts the noiseless and noisy grid
cell dendritic linear oscillators. Note that this procedure
is performed every time a WG node is compared to
existing ones in trying to perform recalibration affecting
all grid cells active at the particular location where the
WG fires.

6 Experiments and Results

In this section we present experiments and results from
grid cell recalibration using the reset mechanism while
contrasting the localization errors between our original

RatNav1 model, the new RatNav2 model without reset, and
the new RatNav2 model with reset. Borenstein and Feng [9]
proposed a method for measuring odometry errors in mobile
robots by having the robot repeat some motions, while a
human operator measured the localization errors between
the expected position and actual robot position. This
procedure was applied to our experiments to characterize
the error and find the μerr num and σ 2

err num constants.
Figure 12 shows the incorporation of noise to robot speed.

To analyze the localization errors, we have added noise to
speed s resulting in a noisy speed s′, as described by Eq. 23.

s′ = s(1 + N (μerr num,σ 2
err num) ∗ f actor) (23)

Fig. 12 Incorporation of a noisy speed s′
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Table 2 Parameters and corresponding values used during evaluation
of the model

Parameter Description Value

αhebb Learning rate applied to different
layers in the model

0.001

αreset Learning rate applied to the
dendritic phase in the grid
cells when doing reset

0.05

β Learning rate applied to adapt
estimated Q values in the learning
module

0.1

γ Discount factor used by the rein-
forcement learning module

0.7

θg Grid cell activation threshold 1.8

θsd WG similarity threshold for loop
closure

110

μerr num Mean normal distribution charac-
terizing the robot forward motion
error

1.14 mm

σ 2
errnum Normal distribution standard

deviation characterizing the robot
forward motion error

0.18 mm

BH Constant for the grid cell thresh-
old activation

0.00385 s/cm

H Scale constant for the grid cell
threshold activation

300 Hz-cm

NFDL Number of neurons in the pattern
detection layers

400 (20x20)

Ngc Number of grid cells 880

Ngo Number of orientations generated
by each vertex

10

Nland Number of landmarks 4

nPS Number of neurons in any linear
perceptual schema

80

mm fwd move Millimeters sent to the robot for
each forward advance motion

150 mm

Fig. 13 Localization errors for a simulated robot when running the
RatNav1 [6]: red – without noise, green – with noise level factor = 1

Fig. 14 Localization errors for the RatNav2 model without the reset
mechanism

In Eq. 23, N (μerr num,σ 2
err num) represents a random

function with normal distribution, and parameters μerr num

and σ 2
err num. The factor parameter is set between 0 and 5.

Table 2 summarizes the parameters used during evaluation.

6.1 Localization errors for the RatNav1model

Figure 13 shows the number of localization errors for a
simulated robot when running the original RatNav1 [6]
without noise (red) and with noise level factor = 1 (green).
The results show very limited tolerance to noise, where for
noise level = 1, over 500 accumulated localization errors
were obtained for about 1,200 motion steps or 20 navigation
sessions in the circular open maze.

Fig. 15 Localization errors for the RatNav2 model with the reset
mechanism
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Table 3 Error Comparison
during loop closure Model RN1/DRL1 RN2/G1 RN2/G4 RN2/G5 RN2/GR4 RN2/GR5

Min 503 0 24 57 0 30

Max 621 4 187 373 51 105

Mean 570 0.57 123 174 23 75

Variance 26 1.33 33 66 15 21

6.2 Localization Errors for the RatNav2model
without Reset

Figure 14 presents the localization errors for our RatNav2
model without the reset mechanism. The results show a
better tolerance to noise than the original RatNav1 model.
As opposed to the original RatNav1 model, there are
very few localization errors when the noise factor = 1
corresponding to the red line over the x-axis. As noise
increases errors also increase but without reaching the level
found in the RatNav1 model. A total of 30 sessions were
performed each resulting in 1,500 motor actions according
to Eq. 23.

6.3 Localization Errors for the RatNav2model
with Reset

Figure 15 shows the localization errors for the RatNav2
model with the reset mechanism. The reset mechanism
greatly diminishes the number of localization errors. Note
that there are no errors for noise factors less than 4.

6.4 Localization Error Contrast between RatNav1
and RatNav2models

Table 3 provides a comparison of loop closure errors in WG
between RatNav1 (RN1/DRLN) and RatNav2 (RN2/GN &

Fig. 16 Localization error comparison based on data from Table 3
[64]. (Reproduced with permission from [65])

RN2/GRN) models for different noise factors N = 1 to 5.
GN corresponds to the grid cell model without reset, while
GRN corresponds to the grid cell model with reset.

Figure 16 presents error values in relation to motion
actions based on Table 3. RatNav1/DRL1 had the
highest number of errors, while the RatNav2/GN and
RatNav2/GRN models (with N varying from 1 to 5) with
and without the reset mechanism, respectively, generated
the lowest number of errors.

6.5 Multi-Scale Spacing Localization Errors
in the RatNav2Model without and with Reset

The previous results use the minimum observed spacing
in MEC grid cells. In this section we present results
for different spacing factors z while keeping the rest of
the parameters fixed. Different spacing is grouped in the
ventral-dorsal axis of MEC in 6 to 10 groups with spacing
incrementing geometrically according to (8):

Gf (f actorspc) = G(0)pf actorspc−1 (24)

Towse et al. [67] analyzed the effect of various spacing
values for each grouping in relation to localization with best
results obtained with a geometric increase in spacing for
p =1.4. Table 4 shows spacing values for the first 3 groups.

Figure 17 (left) presents the number of localization errors
for a fixed spacing factor of 1 with noise factor of 2 (noise
factor of 0 and 1 showed no errors, while noise factor of
1 showed errors only without the reset mechanism). The
results show the increasing number of localization errors
without the reset mechanism. Figures 17 (right) shows
results for spacing factor of 2 for a noise factor of 2.

Figure 18 (left) shows results for spacing factor of 3 for
a noise factor of 2. Figure 18 (right) contrasts localization
errors for spacing factors 1, 2 and 3, for a noise factor of 3
without the reset mechanism.

Table 4 Spacing Factor

f actorspc Spacing (G − cm)

1 39

2 49

3 69
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Fig. 17 (Left) Localization errors with spacing factor of 1 and noise factor of 2, reset versus no reset mechanism. (Right) Localization errors with
spacing factor of 2 and noise factor of 2, showing reset versus no reset mechanism

Figure 19 contrasts localization errors for spacing factors
1, 2 and 3, for a noise factor of 3 with reset.

7 Conclusions and Discussion

The paper presented a biologically inspired robotics model
for spatial cognition that integrates place cells in the
Hippocampus, grid cells in the Entorhinal Cortex (EC), and
head direction cell, based on work by Tejera et al. [64, 65].
The current paper extends the results from our previous
work by contrasting various versions of the model in
relation to their stability during long-term robot navigation.
When compared to the original RatNav1 model by Barrera
and Weitzenfeld [5–7], the RatNav2 model by Tejera et al.
[64, 65], reduces the number of localization errors by the
introduction of a “reset” mechanism to stabilize both grid
cell and place cell firing. The effect of the reset mechanism
was analyzed by comparing the effect of different noise
factors during simulated robot navigation to mimic different

levels of noise found in physical robots. A particular
difference between the two different versions of our model
has been the use of a grid cell module replacing the original
path integration module. This new grid cell module is based
on a linear interference oscillator model [13, 30]. Another
alternative for modeling grid cells that has been explored
in the past by other groups has been the use of attractors
[11, 14]. An aspect that has facilitated the development of
the different versions of our spatial cognition models, and
their comparison, is the fact that they were both developed
using the Neural Simulation Language [68], supporting also
model simulation and physical robot experimentation.

In addition to providing further understanding of the
structure and functionality of the brain, a major goal of
our models is to inspire new algorithms for robotics. In
relation to spatial cognition, our goal is intended to support
longer-term robot navigation. As part of this effort we
plan to further reduce the number of localization errors by
exploring multi-scale organization of grid cells and place
cells, suggesting that the brain cognitive map may involve

Fig. 18 (Left) Localization errors with spacing factor of 3 and noise factor of 2, reset versus no reset mechanism. (Right) Localization errors for
spacing factors 1, 2 and 3 and noise factor of 3 without the reset mechanism
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Fig. 19 Localization errors with spacing factor 1, 2 and 3, and noise
factor of 3, with the reset mechanism

different field sizes of grid and place cells depending on
the complexity of the environment. This would not only
reduce the number of grid and place cells involved in
an environment but would also provide for remapping or
reuse of these cells in multiple environments, an aspect
that also relates to limitation in memory and processing
in both biological and robotic systems. Finally, as part
of future work and as new studies and data are made
available by neuroscientists, we expect to extend our
spatial cognition models and corresponding experiments
with robotic systems.
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