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Abstract
The multiagent pursuit-evasion problems have been widely investigated in related areas. Previous studies usually assumed
that the pursuers move at certain speeds. However, in many circumstances the above assumption does not match the
peculiarities of real pursuit-evasion cases in which the pursuers’ speeds may be uncertain. Therefore, this paper investigates
the multiagent pursuit-evasion problem under the situation in which the pursuers move at uncertain speeds. The new
problems of multiagent pursuit-evasion caused by the uncertainty of the pursuers’ speeds include: 1) many previous strategies
plan pursuers’ paths based on their speeds, but the uncertainty of speeds will make the pursuers move to worthless target
points; 2) previous strategies usually let each pursuer move to a scheduled location, but the uncertainty of speeds may
make some pursuers fail to reach the scheduled locations punctually. Aiming at addressing these problems, we present
the strategy which lets each pursuer flexibly help the slow neighboring pursuer. As the pursuers’ speeds are uncertain, the
optimal decision of pursuers cannot be calculated directly. Thus, we analyze the alternative decision space of pursuers, which
contains the decisions that may be optimal and does not contain the obviously bad decisions (such as moving away from
the evader). Then, we compare the decisions in the alternative decision space based on simulated annealing resulting that
the optimal decision may be selected after repeatedly comparing different decisions. The experimental results show that our
strategy can generally outperform previous strategies when the pursuers’ speeds are uncertain.

Keywords Multiagent pursuit-evasion problem · Uncertain speeds · Pursuing strategy

1 Introduction

The multiagent pursuit-evasion problems have been widely
investigated in related areas [1, 4, 7, 11, 12, 19, 21, 22].
The studies of multiagent pursuit-evasion are involved with
many real-world applications, such as missile guidance and
defense [21, 22], robots confrontation [7], and unmanned
aerial vehicles (UAVs) control [1, 26]. Especially, capturing
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a faster evader based on the cooperation of multiple slower
pursuers is quite important [9, 20, 25]. For instance, the
terrorists may use the drones to launch strikes; thus, Tokyo
police try to use drones with nets to catch other drones
[26]. In this case, always assuming that police drones
are faster than the suspected drones is infeasible. Instead,
assuming that the pursuers are slower and designing suitable
cooperation method for the pursuers is able to contend
against different enemy evader. Previous studies usually
focus on the cooperation among the pursuers moving at
certain speeds [1–4, 6, 7, 9, 11, 12, 15, 16, 19–22, 25, 28].
In detail, the pursuers have the same fixed speeds [3, 11, 12,
19, 20], or the speeds of different pursuers are different, but
the speed of each pursuer is fixed [25]. However, in some
real cases, an agent cannot always move at a certain speed,
and the actual speed may fluctuate uncontrollably when this
agent moves [18]. For instance, a quadruped robot’s speed
is influenced by touchdown angle so that the speed may
fluctuate because of the undulations of the ground [14, 18].

Therefore, this paper explores the multiagent pursuit-
evasion problem in which the pursuers cannot move at
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certain speeds. In our study, the evader’s speed is constant
and higher than the pursuers’ maximum speed; the pursuers’
actual speeds will fluctuate between the maximum speed
and a lower bound. Because the pursuers are slower than
the evader, the evader may be captured only if multiple
pursuers cooperate effectively. However, the uncertainty of
the pursuers’ speeds makes against the team collaboration.
In detail, 1) the uncertainty of speeds will mislead the
pursuers which plan their paths based on their speeds; 2)
because of the uncertainty of the speeds, some pursuers
may fail to punctually reach the locations where they
plan to reach. Therefore, the capture success ratios based
on previous certain-speed pursuers-oriented strategies will
decrease because of the uncertainty of the pursuers’ speeds.

In order to increase the capture success ratios when the
pursuers’ speeds are unstable, we present the strategy that can
address the problems caused by the uncertainty of the pur-
suers’ speeds. As mentioned above, uncertain speeds may
mislead the strategies resulting that planning path for the
pursuers based on their current speeds is infeasible. Besides,
some pursuers may fail to reach the scheduled locations
punctually. Hence, we present a rule that lets each pur-
suer flexibly help the slow neighboring pursuer control the
encircled formation consisting of pursuers. However, as the
pursuers’ speeds are uncertain, it is hard to directly obtain
the moving direction that is the most helpful in controlling
the encircled formation consisting of pursuers. In this case,
we first analyze the alternative decision space of pursuers.
This decision space should contain the moving directions
that may be the optimal decision and does not contain the
obviously bad moving direction. For instance, moving away
from the evader is a bad choice and not helpful in decreasing
the gaps among pursuers. Then, we combine the rule men-
tioned above with simulated annealing to compare the mov-
ing directions in the alternative decision space. Therefore,
the optimal decision may be selected after repeatedly com-
paring different decisions based on simulated annealing.

Extensive experiments are presented to show the
performance of our strategies in various cases. The
experimental results show that, our strategy based on
simulated annealing is better than previous strategies
when the pursuers’ speeds are uncertain and similar to
previous classical strategies when the speeds are certain.
In addition, based on the experimental data, we verify
the analyses on the problems caused by the uncertainty
of the pursuers’ speeds and deeply discuss the advantages
and disadvantages of different pursuing strategies. The
main conclusions in experiments include: 1) when other
parameters are fixed, the variety of the pursuers’ maximum
speed and the variety of the number of the pursuers
will not influence the relative merits of different pursuing
strategies; 2) the time interval between the fluctuations of
the pursuers’ speeds can influence the relative merits of

different pursuing strategies; and 3) when the pursuers’
speeds are uncertain, the heterogeneity of the pursuers’
maximum speed and minimum speed will not obviously
influence the performance of the pursuing strategies.

The rest of this paper is organized as follows. In Section 2,
we introduce related works. Section 3 shows problem
formulation. Then, we present the analyses and pursuing
strategy in Section 4. The experiments are provided in
Section 5. Finally, we conclude this paper in Section 6.

2 RelatedWorks

Pursuit-evasion problem has been widely discussed in
previous studies [1–4, 6, 7, 9, 11, 12, 15, 16, 19–22, 25, 28].
These studies of pursuit-evasion problem can be divided
into: 1) pursuit-evasion in discrete world [3, 11, 12, 16] or 2)
pursuit-evasion in continuous world [1, 2, 4, 6, 9, 19–22, 25,
28]. However, to the best of our knowledge, previous studies
have not considered the case that the pursuers’ speeds are
uncertain, no matter in discrete world or continuous world.

The studies of pursuit-evasion in discrete world usually
assume that the world consists of grids [3, 11, 12, 16]. The
agent in the grid world can just move between grids, and
the direction of agent is limited. These studies [3, 11, 12]
usually do not care the influence of the pursuers’ speeds.
In discrete world, the evader and the pursuers can move
to near grid every one time step. Therefore, there is no
uncertainty of the pursuers’ speeds in discrete world. For
instance, Huang et al. [11] study pursuit-evasion games
which are discrete games, and the players are able to move
to an adjacent node in each step. In [12], the players
are also able to move to an adjacent node in each step.
Besides, Barrett et al. [3] adopt the problem formulation
that the world is a toroidal grid. They use a single prey
and four predators, with only left, right, up, down, and no-
op movements. Agents start in random positions and select
their actions simultaneously at each time step [3]. As these
studies assume the pursuers move from one grid to adjacent
grid without the uncertainty of speeds, the strategies in these
studies cannot solve the problem presented in this paper.

On the other hand, in continuous world, agents can move
in any directions, and the influence of their speeds is usually
discussed [1, 2, 4, 6, 9, 13, 19–22, 25, 28]. However, these
studies always assume that pursuers’ speeds are certain. For
instance, Raboin et al. [19] assume that each agent is a
holonomic point robot with a fixed maximum velocity. In
[4], the values of the pursuers’ speeds are known accurately.
There is no uncertainty of the pursuers’ speeds [4]. Besides,
Ramana and Kothari [20] study the pursuit-evasion game,
where all pursuers have equal fixed speed, and the evader’s
speed is higher. As these studies are based on the pursuers
moving at certain speeds, the strategies in these studies may
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lead to low capture success ratios when pursuers’ speeds are
uncertain. In detail,

– Many previous pursuing strategies [9, 13, 20] let the
pursuers plan their paths based on their speeds. If the
pursuers’ speeds are unstable, their paths depending on
their speeds may consist of some worthless target points.

– Previous strategies [9, 13, 20] for stable-speed pursuers
usually let each pursuer complete its own sub-task
independently from others, such as moving to a
scheduled location to adjust the encircled formation
consisting of pursuers without caring whether others
can reach the scheduled locations punctually. The
instability of pursuers’ speeds may make some pursuers
fail to reach the scheduled locations punctually, thereby
a big gap may be generated among the pursuers,
through which the evader can pass.

Thus, designing a feasible pursuing strategy aiming at
addressing the problems caused by the uncertainty of the
pursuers’ speeds is necessary.

What is more, Alexopoulos et al. [1] have discussed the
case that the pursuers do not move at fixed speeds. They
study the problem of pursuit-evasion games between two
pursuing and one evading unmanned aerial vehicle (UAV)
in a 3-D environment which is unbounded and without
obstacles. However, all UAVs have implemented a velocity
controller and can control their velocities. Therefore, in
[1], the UAVs’ velocities are certain because the UAVs can
control their velocities and know the accurate values of
their velocities in next time step. Moreover, the evader is
assumed 20% slower than the pursuers in [1], while we
discuss the cooperation among the pursuers that are slower
than the evader. The strategy in [1] also cannot deal with
the multiagent pursuit-evasion problem where the pursuers’
speeds are uncertain and smaller than the evader’s speed.

In addition, we have briefly discussed the uncertainty of
the pursuers’ speeds in [27] which is an extended abstract
presented in AAMAS 2017. In [27], we have presented
a pursuing strategy based on reinforcement learning. The
analyses of decision space which supports the reinforcement
learning algorithm are similar to that in this paper. However,
because of the space limitation of extended abstract, these
detailed analyses have not been shown in [27]. Besides, the
results of [27] shown that the pursuing strategy based on
reinforcement learning is worse than traditional classical
strategies when the pursuers’ speeds are the same constant.
The reason is that when the speeds are constant, there is no
uncertainty so that learning process becomes insignificant.
Besides, the random decision in learning process decreases
the performance. Although reinforcement learning may
finally converge to the optimal solution, the limitation of
the rate of convergence make the reinforcement learning

algorithm [27] fail to perfectly solve the pursuit-evasion
problem with the pursuers moving at uncertain speeds.
Therefore, in this paper, we analyze this problem more
deeply and present another algorithm based on simulated
annealing, which is better than previous strategies when
the pursuers’ speeds are uncertain and is not worse than
previous strategies when the pursuers’ speeds are certain.

Chung et al. [7] present a survey of search and pursuit-
evasion in mobile robotics. Chung et al. point out that the
previous studies of pursuit-evasion games usually assume
that the pursuers move at the same constant speed, and these
studies focus on the other factors (such as sensing factor)
in pursuit-evasion game. Chung et al. [7] also do not show
that previous studies have discussed the uncertainty of the
pursuers’ speeds.

Overall, previous studies [1–4, 6, 7, 9, 11, 12, 15, 16,
19–22, 25, 28] usually assume that pursuers can move at
certain speeds. Therefore, the strategies in these studies
cannot solve the problems caused by the uncertainty of the
pursuers’ speeds:

3 Problem Formulation

3.1 Multiagent Pursuit-Evasion Problem Based
on the Pursuers Moving at Uncertain Speeds

In this paper, we study the pursuit-evasion problem in a
continuous open world without frontier [6, 20]. Let there be
n pursuers and one single evader. The evader and pursuers
are set as circles, and the diameters of them are all set as one
unit distance. It is assumed that both the evader and pursuers
have enough visual ranges. In other words, the environment
is assumed full observable. In this paper, as we focus on the
uncertainty of the pursuers’ speeds, the setting of sensing
range is simplified. Some previous studies have discussed
the influence of sensing limitation [5, 7]. If our technology
needs to be used in the cases that the pursuers have limited
sensing range, our technology can be combined with the
results of these previous studies [5, 7].

The evader’s speed is higher than the pursuers’ maximum
speed. Let ve denote the evader’s speed. Besides, let vp

denote the pursuers’ maximum speed. We have ve > vp. It
is worth noting that the pursuers cannot always move at the
maximum speed vp. The pursuers’ actual speeds are initially
vp but may fluctuate between the maximum speed vp and
a lower bound vp

′. Let vpi
(t) denote the actual speed of

pursuer Pi at time t . vpi
(0) = vp, and vpi

(t) ∈ [vp
′, vp]. In

real world, vp is determined by the property of the pursuers,
and vp

′ may be determined by the environment (such as
the undulations of the ground). The time interval between
the fluctuations of vpi

is assumed as fi . Let fi = 1 +
ui where ui obeys poisson distribution (p(ui = k) =
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Fig. 1 The initial locations of the evader and pursuers

λk

k! e
−λ). Moreover, u0, u1...un are independent identically

distributed. Poisson distribution is usually used in previous
studies to model the random phenomenon in real world [10,
17]. Therefore, this distribution is also selected in this paper.
In addition, fi is a variable and reset when vpi

changes. If
λ = 0, let fi ≡ 1, which represents the minimum time
interval.

At the beginning of the pursuit-evasion game, the
pursuers are randomly located within the vicinity of the
evader. Because of the randomization, the pursuers may
initially form an incompact encircled formation. Then, the
pursuers need to shrink the encircled formation. Conversely,
if the pursuers do not form an encircled formation at the
beginning of the pursuit-evasion game, the capture can be
considered failing initially [6, 20]. As shown in Fig. 1, the
pursuers are located randomly in an annulus (the red circle
represents the evader while the green circles represent the
pursuers). The distance between the evader and each pursuer
is randomly set in [d1, d2].

Then, we present some important definitions:

Definition 1 Capture condition If the distance between
the evader and a pursuer is small enough, the evader is
captured [6, 20]. In this paper, the pursuers must touch the
evader to capture it.

Definition 2 Failure condition As the pursuit-evasion
game is in an open world without frontier, if the evader is out
of the encircled formation consisting of pursuers, it can be
considered escaping successfully [6, 20]. The condition of a
failing capture is that all the pursuers are on the same side
of the evader, such as shown in Fig. 2. Because vp < ve, the
pursuers will never capture the evader in Fig. 2.

Fig. 2 A case of failing capture

Definition 3 Capture success ratio As the pursuers are
randomly located, the pursuers may capture the evader in
some cases but fail in other cases. Capture success ratio is
the ratio of successful capture in repeated games with vari-
ous initial states [9]. Let R denote the capture success ratio.

Finally, we can define the problem in this paper as the
following.

Multiagent Pursuit-Evasion Problem Given n pursuers
which initially surround an evader. The evader’s speed is
known as ve. The pursuers’ speeds randomly fluctuate in
[vp

′, vp]. The problem is to find a suitable strategy for the
pursuers to maximize the capture success ratio, i.e.,

Maximize R

Subject to:

vpi∈[1,n](t) ∈ [vp
′, vp]; (1)

vp < ve; (2)

vpi∈[1,n](t ∈ [0, fi)) = vp; (3)

vpi∈[1,n](t) �= vpi∈[1,n](t + fi); (4)

fi = 1 + ui; (5)

p(ui = k) = λk

k! e
−λ. (6)

3.2 The Evader’s Escape Strategy

The pursuit-evasion game is an adversarial game. The
strategy of the evader will influence the result of pursuit-
evasion game. In order to effectively test the performance
of the pursuing strategy, we need to select a suitable escape
strategy.
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Fig. 3 A case of escape strategy

In previous studies [9, 20, 23, 28], two escape strategies
were usually selected: 1) the evader moves away from the
closest pursuer; 2) the evader selects the largest gap among
the pursuers to pass through. As mentioned in Section 3.1,
the pursuers are initially located surrounding the evader. In
this case, the first escape strategy is helpful in increasing the
capture time instead of decreasing the capture success ratio.
Therefore, the first strategy is infeasible in this problem.
Considering the problem statements in Section 3.1, the
second escape strategy is a feasible strategy.

Then, the details of the escape strategy which is used in
this paper are shown as following:

1. As shown in Fig. 3, the evader will initially compare the
angles θ1, θ2...θn and select the maximum one among
these angles. Then, the evader moves along the angular
bisector of the maximum angle.

2. If the evader ensures that it can escape successfully
without changing its moving direction, it will keep the
current moving direction. In detail, if the angle towards
which the evader moves is larger than 2arcsin

vp

ve
, the

evader will keep the current moving direction.
3. If the condition in step 2 is not satisfied and another

angle becomes the largest, the evader will change its
moving direction and select the new largest angle.

4 Analyses and Strategy Design

In this section, we first discuss the problems caused by
the uncertainty of the pursuers’ speeds and then design the
pursuing strategy that can address these problems.

4.1 The Problems Caused by the Uncertainty
of the Pursuers’ Speeds

Previous strategies are usually based on Apollonius Circle
[9, 13, 20], such as shown in Fig. 4. In Fig. 4, |P1A|

vp1
=

Fig. 4 Apollonius circle

|EA|
ve

. In other words, Apollonius Circle consists of the
points at which pursuer P1 may meet the evader. Therefore,
Apollonius Circle depends on the speeds and the current
locations of pursuer P1 and the evader. In detail, let
(xe, ye) denote the coordinate of the evader and (xp1 , yp1)

denote the coordinate of pursuer P1. It can be known
based on previous studies that, the center of the Apollonius

Circle is (
xp1−(

vp1
ve

)2xe

1−(
vp1
ve

)2
,

yp1−(
vp1
ve

)2ye

1−(
vp1
ve

)2
), and the radius of the

Apollonius Circle is
vp1
ve

√
(xe−xp1 )2+(ye−yp1 )2

1−(
vp1
ve

)2
[9, 13, 20]. It

means that vp1 can significantly influence the Apollonius
Circle. Therefore, when vp1 is uncertain, the Apollonius
Circle cannot be calculated accurately. As mentioned in
Section 3.1, vp

′ may be determined by the environment. It
means that vp

′ is not necessarily known. If vp
′ is known, the

Apollonius Circle can be calculated based on vp+vp
′

2 so that
the fluctuation of vpi

may not lead to obviously bad result.
However, if vp

′ is unknown, the pursuers planning path
based on Apollonius Circle may move to worthless target
locations when their speeds fluctuate. Then, the capture
success ratios will decrease.

Lemma 1 The pursuers’ speeds are assumed uncertain. If
the evader does not change its initial moving direction and
the pursuers plan their paths based on Apollonius Circle,

calculating Apollonius Circle based on
vp+vp

′
2 will lead to

higher capture success ratio than that based on vp or vpi
.

Proof The capture success ratio represents the average
performance of the pursuing strategies. Therefore, it needs

to be proved that vp+vp
′

2 is averagely better than vp or vpi
.

Even if calculating Apollonius Circle based on vp+vp
′

2 may
be worse than that based on vp or vpi

in some particular
cases, the proof is not influenced.

As the pursuers’ speeds fluctuate in [vp
′, vp], a pursuer

moves averagely �t(vp+vp
′)

2 unit distance in �t unit time.
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Fig. 5 The strategy based on
apollonius circle

As shown in Fig. 5 (1), it is assumed that the Apollonius
Circles of pursuer P1 and pursuer P2 are calculated based

on vp+vp
′

2 , and there is only one intersection point of the
two Apollonius Circles. In this case, P1A is perpendicular
to P1E, and 2|P1A|

vp+vp
′ = |EA|

ve
[20]. Therefore, pursuer P1 and

pursuer P2 can capture the evader only if they let φ = π
2 .

If the pursuers calculate Apollonius Circles based on vp,
the radius of Apollonius Circles will be larger than that

based on vp+vp
′

2 . Then, pursuer P1 and pursuer P2 will not
select φ = π

2 if the Apollonius Circles are based on vp,
resulting that they cannot capture the evader.

Moreover, if pursuer P1 calculates Apollonius Circles
based on vp1 , the fluctuation of vp1 will make the
Apollonius Circle changes repeatedly. Then, the Apollonius
Circles influence the moving direction of pursuer P1

resulting that P1 will move to some worthless locations. As

shown in Fig. 5 (2), if vp1 >
vp+vp

′
2 at a time step, P1 will

move towards point A′. In Fig. 5 (2), point A corresponds
to that in Fig. 5 (1). On the average, P1 can just meet the
evader at point A, and it cannot meet the evader at point A′.
Even if vp1 changes to

vp+vp
′

2 in the subsequent time steps,
P1 has wasted some time resulting that P1 cannot intercept
the evader.

Overall, when the pursuers can averagely capture the
evader based on the Apollonius Circles depending on
vp+vp

′
2 , they cannot do based on the Apollonius Circles

depending on vp or vpi
. Therefore, calculating Apollonius

Circle based on vp+vp
′

2 will lead to higher capture success
ratio than that based on vp or vpi

.

In addition, even if vp
′ is known, there is another problem

caused by the uncertainty of the pursuers’ speeds. Previous
strategies usually let each pursuer complete its own sub-
task, such as reaching the scheduled location to control the
encircled formation consisting of pursuers [9, 13, 20]. The
uncertainty of pursuers will make some pursuers fail to
reach the scheduled locations punctually so that the evader
has more chances to escape. For instance, in Fig. 6, it is
assumed that ∠P1EP2 is the largest angle initially. The

evader will initially escape by moving along the angular
bisector of ∠P1EP2. In Fig. 6, the green hollow circles
represent the locations of pursuers at next moment. Based
on the Apollonius Circles, pursuer P1 and P2 move to point
A to intercept the evader. In this case,∠P1EP3 may increase
with the move of pursuer P1. If the pursuers move at certain
speeds, pursuer P3 can move to a scheduled location to
control the angle ∠P1EP3 so that ∠P1EP3 will not become
very large [9, 13, 20]. However, if the pursuers move at
uncertain speeds, pursuer P3 may move very slowly and fail
to reach the scheduled location punctually. Then, ∠P1EP3

will become large fast. If ∠P1EP3 becomes the largest, the
evader will change its direction and easily escape by moving
along the angular bisector of ∠P1EP3.

To sum up, two problems are caused by the uncertainty
of the pursuers’ speeds: 1) the uncertainty of speeds lead
to inaccurate Apollonius Circle (especially when vp

′ is
unknown) so that the pursuers adopting the strategies [9,
13, 20] based on Apollonius Circle often move to worthless

Fig. 6 A case of the problem caused by the uncertainty of the pursuers’
speeds
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target locations; 2) previous strategies [9, 13, 20] let
pursuers move to scheduled locations, but the uncertainty of
speeds will make some pursuers fail to reach the scheduled
locations punctually. Therefore, the capture success ratios
based on previous strategies will decrease because of the
uncertainty of the pursuers’ speeds.

4.2 The Idea of Our Pursuing Strategy

In order to increase the capture success ratios when pursuing
a faster evader based on the pursuers moving at uncertain
speeds, we present the strategy that is more feasible.
Besides, traditional classical pursuing strategies may be
optimal when the pursuers’ speeds are certain. Therefore,
in this paper, the goal is to present a pursuing strategy that
is better than previous strategies when the pursuers’ speeds
are uncertain and is not worse than previous strategies when
the pursuers’ speeds are certain. As analyzed in Section 4.1,
two problems should be considered when designing our
pursuing strategy. At first, our strategy does not depend
on the accurate values of the pursuers’ speeds. Secondly,
as some pursuers may fail to reach scheduled locations
punctually, our strategy let each pursuer flexibly select
direction to help the slower neighboring pursuers control the
encircled formation consisting of pursuers. However, as the
pursuers’ speeds are uncertain, it is hard to directly obtain
the moving direction that is the most helpful in achieving
our purpose. Therefore, we analyze the alternative decision
space of pursuers and compare the moving directions in this
decision space based on the change of state. Our strategy
can be summarized as following:

– At first, we analyze the alternative decision space of
the pursuers. The decision space of a pursuer can be
represented by the value range of φ (φ is shown in
Figs. 4 and 5). We exclude some values of φ which will

obviously lead to bad results and then obtain a suitable
value range of φ.

– Then, we discuss how to select the value of φ in the
suitable value range. We combine our analyses with
simulated annealing to compare the values of φ in the
value range.

4.3 The Suitable Value Range of φ

In this subsection, we investigate how to exclude some
directions which are obviously bad choices for the pursuers,
and finally obtain the suitable decision space which is
represented by the value range of φ.

When ϕ ≥ π
2 or ϕ < π

2 (ϕ is shown in Figs. 4 and 5), the
pursuers adopt different strategies. The reason is that, when
ϕ ≥ π

2 , the pursuer can never capture the faster evader if
the evader does not change its direction. Conversely, when
ϕ < π

2 , the pursuer may be able to intercept the evader.
We first analyze the suitable value range of φ if ϕ < π

2 .
In this problem, the evader and pursuers can move in a plane
with unlimited directions. It means φ ∈ [0, 2π ]. However,
φ ∈ [π, 2π ] are obviously bad choices when ϕ < π

2 . For
instance, although P1 in Fig. 6 needs to consider the change
of ∠P1EP3, its current goal is to decrease ∠P1EP2. If φ is
in [π, 2π ], ∠P1EP2 will increase fast so that the evader can
escape without changing its direction. Therefore, φ should
be selected in [0, π ].

Then, Fig. 7 shows the influence of φ ∈ [0, π ]. The
points in Fig. 7 (1), (2) and (3) correspond to that in each
other figures. In Fig. 7 (3), it is assumed that ∠A0P1E = π

2
and β1 = β2. When pursuer P1 tries to intercept the evader
that will not change the moving direction, moving towards
point A0 is better than any other points on the direction−−→
EE′. The reason is that |P1A0||A0E| = sinϕ

sin π
2

is smaller than
|P1Aj |
|Aj E| (Aj is any other point on the direction

−−→
EE′). In

Fig. 7 The influence of φ when
ϕ < π

2
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other words, φ = ∠A0P1E = π
2 is the most helpful in

decreasing∠P1EP2. However, as the evader may change its
direction, the suitable value of φ should also be helpful in
inhibiting the increase of ∠P1EP3. As shown in Fig. 7 (1)
and (2), the green hollow circles P ′

1 and P ′′
1 represent the

possible locations of pursuer P1 at next moment, and the red
hollow circle E′ means the possible location of the evader
at next moment. It can be observed in Fig. 7 (1) and (2) that
θ ′ < θ ′′. It means that φ = ∠A1P1E is more helpful in
inhibiting the increase of ∠P1EP3 than φ = ∠A2P1E. It is
worth noting that |∠A1P1E − π

2 | = |∠A2P1E − π
2 | > 0.

Therefore, compared with φ = ∠A0P1E = π
2 , letting

φ = ∠A1P1E or φ = ∠A2P1E both inhibit the increase of
∠P1EP3 by moderately ignoring the increase of ∠P1EP2.
As φ ∈ [0, π

2 ] and φ ∈ [π
2 , π ] lead to similar effects while

φ ∈ [0, π
2 ] is better, φ should be selected in [0, π

2 ].
In addition, φ should not be too small. At least, |P1A|

and |EA| in Fig. 4 should both increase or decrease along
with the change of φ. If |EA| decreases and |P1A| increases
along with the change of φ, the evader may escape easily. In
Fig. 4, based on the law of sines [8],

|P1A|
sinϕ

= |EA|
sinφ

= |P1E|
sin(π − ϕ − φ)

. (7)

Besides,

sin(π − ϕ − φ) = sin(ϕ + φ). (8)

Therefore,

|EA| = sinφ

sin(ϕ + φ)
|P1E| (9)

and

|P1A| = sinϕ

sin(ϕ + φ)
|P1E|. (10)

If |EA| and |P1A| are considered as the functions of φ, the
derivatives are

|EA|′ = cosφsin(ϕ + φ) − sinφcos(ϕ + φ)

sin2(ϕ + φ)
|P1E|

= sinϕcos2φ + sinϕsin2φ

sin2(ϕ + φ)
|P1E| ≥ 0 (11)

and

|P1A|′ = −sinϕcos(ϕ + φ)

sin2(ϕ + φ)
|P1E|. (12)

As φ ∈ [0, π
2 ], |P1A|′ ≥ 0 when φ ∈ [π

2 − ϕ, π
2 ],

and |P1A|′ ≤ 0 when φ ∈ [0, π
2 − ϕ]. It means that

|EA|′|P1A|′ ≥ 0 when φ ∈ [π
2 −ϕ, π

2 ]. Therefore, φ should
be in [π

2 − ϕ, π
2 ] if ϕ < π

2 .
Then, we discuss the suitable value range of φ if ϕ ≥ π

2 .
The strategy of the pursuers is less important when ϕ ≥ π

2
than that when ϕ < π

2 . The reason is as mentioned above,
when ϕ ≥ π

2 , the pursuers cannot intercept the evader and
just need to control the encircled formation. In previous
studies, the pursuers usually adopt two simple strategies,
moving towards the current location of the evader (φ = 0)
[6] or moving in the same direction with the evader (φ =
π − ϕ) [2].

As the evader will move, moving towards the current
location of the evader can be considered as moving towards
a point between two locations of the evader at two moments.
The points in Fig. 8 (1) and (2) correspond to that in each
other figure. The green hollow circles P ′

2 and P ′′
2 represent

the possible locations of pursuer P2 at next moment, and
the red hollow circle E′ means the possible location of
the evader at next moment. It can be observed in Fig. 8
(1) and (2) that θ ′

1 > θ ′′
1 and θ ′

2 < θ ′′
2 . It means that P2

moving towards the current location of the evader is more
helpful in decreasing∠P2EP3 while P2 moving in the same
direction with the evader is helpful in decreasing ∠P1EP2.
Therefore, the pursuers can select the suitable value of φ in
[0, π − ϕ] depending on circumstances in pursuit-evasion
process when ϕ ≥ π

2 . Then, P2 may flexibly help P1 or P3

depending on their actual speeds.
Overall, φ should be selected in [π

2 −ϕ, π
2 ] if ϕ < π

2 and
be selected in [0, π − ϕ] if ϕ ≥ π

2 .

4.4 Selecting the Value of φ in Suitable Value Range

After excluding the obviously bad directions, we discuss
how to select the value of φ in the suitable value range.
When making a decision, each pursuer should consider both
two angles which are between it and its two neighboring
pursuers. In detail, let θ1 = ∠P1EP2 and θ2 = ∠P1EP3 in

Fig. 8 The influence of φ when
ϕ ≥ π

2
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Fig. 6. If θ1 and θ2 are considered as the function of φ, θ1′(φ)

and θ2
′(φ) are the derivatives. Then, P1 needs to decrease

both θ1
′(φ) and θ2

′(φ). Besides, as θ1 > θ2 at this moment,
decreasing θ1

′(φ) is more important than decreasing θ2
′(φ).

Therefore, in Fig. 6, pursuer P1 needs to minimize

θ ′(φ) = w1θ1
′(φ) + w2θ2

′(φ). (13)

Here, w1 and w2 are the weight parameters. w1 and w2

should be determined based on the relative size of θ1 and
θ2. Therefore, let w1 = θ1

θ1+θ2
and w2 = θ2

θ1+θ2
so that larger

angle will become more important. It is worth noting that, as
the pursuers’ speeds are uncertain, θ1′(φ) and θ2

′(φ) are also
uncertain and can hardly be estimated accurately. Therefore,
it is hard for pursuers to make decisions based on Eq. 13.
In this case, we can refer to simulated annealing to compare
the discrete values of φ and then select the optimal decision.
Simulated annealing is a classical metaheuristic and may
lead to optimal decision in this problem [24].

Based on the analyses in Section 4.3, the value of φ has
been limited in [π

2 − ϕ, π
2 ] if ϕ < π

2 or in [0, π − ϕ] if
ϕ ≥ π

2 . Then, we discretize the range so that the values
of φ can be compared in simulated annealing algorithm
based on evaluation function. If ϕ < π

2 , φ = π
2 − ϕ + aϕ

k
,

(a = 0, ..., k). Correspondingly, if ϕ ≥ π
2 , φ = a(π−ϕ)

k
,

(a = 0, ..., k). Moreover, the evaluation function can be
based on the Eq. 13. It is assumed that θ1(t) and θ2(t) are
the two angles between a pursuer and its two neighboring
pursuers at time t . Then, let at denote the action selected by
the pursuer at time t . Therefore,

C(at ) = w1[θ1(t) − θ1(t + �t)] + w2[θ2(t) − θ2(t + �t)].
(14)

Here, �t represents the minimum interval between the time
points at which the agents make decisions, and w1 =

θ1(t)
θ1(t)+θ2(t)

, w2 = θ2(t)
θ1(t)+θ2(t)

. The pursuers initially select the
upper bound of the range of φ and compare a with a − 1
or a + 1. Overall, the pursuing strategy based on simulated
annealing is shown as Algorithm 1. There is no centralized
control in Algorithm 1. The time complexity of Algorithm
1 is O(1).

In Algorithm 1, T is a parameter which belongs to
simulated annealing algorithm [24]. If T → 0, simulated
annealing algorithm will become greedy algorithm. As
greedy algorithm may lead to local optimal results,
parameter T is used to add a chance for the algorithm
to converge to the global optimal solution. In this paper,
parameter T can be set referring to previous studies which
discussed simulated annealing algorithm [24]. Besides, lines
14 and 16 are the key steps in the algorithm. Therefore, we
present an instance to explain lines 14 and 16:

Algorithm 1 The pursuing strategy based on simulated
annealing

1: Input the angle ϕ, time t , speed vp and ve.
2: if t = 0 then
3: Initialize T

4: at ← k

5: else
6: if t = 2�t then
7: T ← |C(a�t ) − C(a0)|
8: if at−�t = k then
9: at ← k − 1
10: else if at−�t = 0 then
11: at ← 1
12: else
13: if C(at−�t) ≥ C(at−2�t) or with probability

e
[C(at−�t )−C(at−2�t )]

T then
14: at ← 2at−�t − at−2�t

15: else
16: at ← 2at−2�t − at−�t

17: T ← βT

18: if ϕ ≥ π
2 then

19: φ ← at (π−ϕ)
k

20: else
21: φ ← π

2 − ϕ + atϕ
k

– It is assumed that a ∈ {0, 1, ...10}, at−2�t = 5 and
at−�t = 6. In this case, 2at−�t − at−2�t = 7 and
2at−2�t − at−�t = 4. Then, if C(at−�t) ≥ C(at−2�t),
C(6) is better than C(5). Therefore, a = 6 is accepted,
and a = 7 will be tested. Besides, a worse action
may also be accepted with a probability resulting that
a = 7 may also be tested at time step t even if
C(at−�t) < C(at−2�t). It means line 14 will be
performed. Conversely, if a = 6 is not accepted, the
action which is close to a = 5 but is not a = 6 will be
tested at time step t . Then, line 16 will be performed.

After Algorithm 1 is presented, we can show the analyses
of Algorithm 1.

Lemma 2 If the evader will not change its initial moving
direction, Algorithm 1 will lead to the same capture success
ratio with the pursuing strategy which calculates Apollonius

Circle based on
vp+vp

′
2 .

Proof In Fig. 9, if pursuer P1 and pursuer P2 which
plan their paths based on Apollonius Circle (depending on
vp+vp

′
2 ) are able to capture the evader, a condition should

be satisfied: there is at least one intersection point of the
Apollonius Circles of pursuer P1 and pursuer P2.
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Fig. 9 The selection of moving direction

If there is only one intersection point of the Apollonius
Circles of pursuer P1 and pursuer P2, let A denote this point
(such as in Fig. 5). In this case, P1A is perpendicular to

P1E [20]. Besides, let vp = vp+vp
′

2 so that |P1A|
vp

= |EA|
ve

.
After �t unit time, the evader moves ve�t unit distance.
Then, |EA|−ve�t

ve
= |EA|

ve
− �t = |P1A|

vp
− �t = |P1A|−�tvp

vp
.

This case is as shown in Fig. 9. In Fig. 9, the red hollow
circle denotes the location of the evader after �t unit time.
The green imaginary line denotes the possible location of
pursuer P1 after �t unit time. It can be known that φ = π

2
is the most helpful in decreasing ∠P1EP2. As ∠P1EP2 is
the largest gap among pursuers, decreasing ∠P1EP2 is the
most important. Therefore, Algorithm 1 will let φ = π

2
so that Algorithm 1 will lead to the same result with the
pursuing strategy which calculates Apollonius Circle based

on vp+vp
′

2 .
If there is two intersection points of the Apollonius

Circles of pursuer P1 and pursuer P2,∠P1EP2 will increase
when pursuer P1 does not select φ = π

2 . There will be only
one intersection point of the Apollonius Circles of pursuer
P1 and pursuer P2 after some time. Then, the conclusion is
consistent with above analyses.

If there is no intersection point of the Apollonius Circles
of pursuer P1 and pursuer P2, neither Algorithm 1 nor the
pursuing strategy based on Apollonius Circle can lead to a
successful capture.

Overall, if the evader will not change its initial moving
direction, Algorithm 1 will lead to the same capture success
ratio with the pursuing strategy which calculates Apollonius

Circle based on vp+vp
′

2 .

Then, based on Lemma 1 and Lemma 2, Theorem 1 is
presented.

Theorem 1 The performance of Algorithm 1 will not be
worse than that of the pursuing strategy which just depends
on Apollonius Circle.

Proof When the pursuers’ speeds are unstable, pursuer Pi

can calculate Apollonius Circle based on vp,
vp+vp

′
2 or

vpi
. Lemma 1 shows that, if the evader will not change its

moving direction, calculating Apollonius Circle based on
vp+vp

′
2 will lead to higher capture success ratio than that

based on vp or vpi
. Then, Lemma 2 shows that, if the evader

will not change its initial moving direction, Algorithm 1
will lead to the same result with the pursuing strategy which

calculates Apollonius Circle based on vp+vp
′

2 . Therefore,
if the evader will not change its initial moving direction,
Algorithm 1 will not be worse than the pursuing strategy
which just depends on Apollonius Circle. It means that
the two pursuers which generate the largest gap among the
pursuers can select the optimal actions when performing
Algorithm 1.

If the evader changes its moving direction, the change
of the gaps except the largest gap will also influence the
results. Because of the uncertainty of the pursuers’ speeds,
the gaps change differently in repeated games. Accordingly,
Algorithm 1 will let the pursuers help the neighboring
pursuers flexibly. In other words, Algorithm 1 seeks the
balance among the gaps, such as shown in Fig. 10 (the
green hollow circles represent the possible locations of
pursuers at next moment, and the red hollow circle means
the possible location of the evader at next moment.). Even
if some pursuers move slowly, the neighboring pursuers can

Fig. 10 The performance of
Algorithm 1 when the evader
changes its moving direction
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help them seeks the balance among the gaps. Therefore,
when the evader changes its moving direction, it needs to
pass through a gap which is close to the average size of
the gaps. On the other hand, the pursuing strategies which
just depend on Apollonius Circle cannot balance the gaps
because these strategies do not consider the uncertainty of
the pursuers’ speeds. For instance, if pursuer P5 does not
consider the change of ∠P4EP5 and P4’s speed is smaller
than its expected speed, ∠P4EP5 will increase fast. In
this case, when the evader changes its moving direction, it
just needs to pass through a gap which is obviously larger
than other gaps. Therefore, Algorithm 1 is more helpful in
preventing the escape of the evader.

Overall, the performance of Algorithm 1 will not be
worse than that of the pursuing strategy which just depends
on Apollonius Circle.

5 Simulation Results

In this section, we test our strategy based on various
simulation experiments. Simulating continuous time, the
evader and the pursuers can make decisions and change
their directions per 0.1 unit time. In other words, �t = 0.1
in Algorithm 1. Each experiment is performed with 5000
replications, and the ratio of the replications in which the
pursuers capture the evader successfully is shown as capture
success ratio. In each replication, the locations of pursuers
are reset randomly.

We select the contrast strategies in the studies which
adopted the similar assumptions with this paper, i.e.,
the game is in an open world and the evader escapes
successfully when it is out of the encircled formation
consisting of pursuers. In detail, the strategies in [6, 13, 27]
are compared with our strategy:

– Strategy 1: The pursuers adopt the strategy that is shown
in Algorithm 1 with β = 0.9 and k = 10. The parameter
setting is inspired by [24].

– Strategy 2: The pursuers adopt the strategy that is pre-
sented in [27]. This strategy is based on reinforcement
learning.

– Strategy 3: The pursuers adopt the strategy presented
in [13]. This strategy is based on the Apollonius
Circle. Apollonius Circle in Strategy 3 depends on the
pursuer’s current speed vpi

.
– Strategy 4: The pursuers also adopt the strategy

presented in [13]. Apollonius Circle in Strategy 4

depends on the average speed vp+vp
′

2 .
– Strategy 5: The pursuers adopt the strategy presented in

[6]. This strategy is not based on the Apollonius Circle
but also depends on the pursuers’ speeds. Besides, this

strategy depends on the assumption that the pursuers
have the same speed. Therefore, Strategy 5 is based on
vp+vp

′
2 instead of vpi

.

Strategy 3 and Strategy 4 are the same strategy presented
in [13] and calculate Apollonius Circles based on different
speeds. This strategy let pursuers predict the intersection
point of the Apollonius Circles of pursuers.

Strategy 5 consists of three processes: besiege, shrink
and capture [6]. The pursuers maintain and adjust the
encirclement in the first process. When some conditions are
satisfied, the pursuers shrink the encirclement and finally
capture the evader. Each process is based on the accurate
values of the pursuers’ speeds.

5.1 The Influence of the Pursuers’ Maximum Speed
andMinimum Speed

The uncertainty of the pursuers’ speeds is the main
issue in this paper, and the uncertainty is influenced by
the parameters vp, vp

′ and the parameter λ in poisson
distribution. Therefore, in this subsection, we present
extensive experimental data to discuss the influence of the
parameters vp, vp

′ and λ. Four cases are discussed:

1. vp changes while other parameters are fixed;
2. vp

′ changes while other parameters are fixed;
3. λ changes while other parameters are fixed;
4. it is assumed that the pursuers have heterogeneous vp

and vp
′.

In addition, the increase of ve is similar to the decrease of
vp and vp

′. Therefore, we do not extra test these strategies
with different values of ve.

5.1.1 The Capture Success Ratios with Different vp

In Fig. 11, d1 = 20, d2 = 40, n = 20, ve = 2, λ = 0
and vp

′ = 0. This figure shows the performance of five
strategies when vp changes from 1 to 2. As shown in Fig. 11,
Strategy 1 is always the best. Strategy 2 is the second best
strategy. The advantage of our strategies is quite obvious. It
means when other parameters are fixed, the variety of the
pursuers’ maximum speed will not influence the advantage
of our strategies.

Strategy 3 and Strategy 4 are the same strategy that is based
on Apollonius Circle, and the Apollonius Circles in Strategy 3
and Strategy 4 depend on different values of the pursuers’
speeds. The performance of Strategy 3 is worse than Strategy
4. Strategy 5 is better than Strategy 3 but a little worse than
Strategy 4. Generally, the strategies which do not consider the
uncertainty of the pursuers’ speeds lead to similar results in this
paper and are worse than our algorithm.
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Fig. 11 The capture success ratios with different vp

5.1.2 The Capture Success Ratios with Different vp ′

The capture success ratios with different vp
′ is also shown.

In Fig. 12, d1 = 20, d2 = 40, n = 20, vp = 1.5, λ = 0
and ve = 2. As shown in Fig. 12, the capture success ratios
based on Strategy 1 is the highest when vp

′ ≤ 1.1. When
vp

′ ≥ 1.3, the capture success ratios based on Strategy 1
are very close to that based on Strategy 3 and 4. Generally,
Strategy 1 is the best strategy in Fig. 12. Besides, Strategy
2 is better than Strategy 3 and 4 when vp

′ ≤ 0.9. When vp
′

is large enough, Strategy 3 and 4 are better than Strategy
2. Strategy 5 is still better than Strategy 3 and worse than
Strategy 4.

5.1.3 The Capture Success Ratios with Different λ in Poisson
Distribution

In Fig. 13, d1 = 20, d2 = 40, n = 20, ve = 2, vp = 1.5 and
v′
p = 0. The parameter λ changes from 0 to 20. If λ is larger,
the pursuers’ speeds are more certain, and certain speeds

Fig. 12 The capture success ratios with different vp
′

Fig. 13 The capture success ratios with different λ

benefit the pursuers. Therefore, the capture success ratios
based on all strategies increase along with the increase of λ.
Besides, the most outstanding phenomenon in Fig. 13 is that
the capture success ratio based on Strategy 3 increases very
obviously. When the pursuers’ speeds fluctuate frequently,
Strategy 3 is worse than Strategy 4 and Strategy 5 because
vp+vp

′
2 is closer to the average speed. Conversely, when λ

becomes large, vpi
leads to more accurate Apollonius Circle

so that Strategy 3 becomes better than Strategy 4 and leads
to similar results with Strategy 2 which has considered the
uncertainty of the pursuers’ speeds. However, Strategy 3
is still worse than Strategy 1. The reason is that the time
interval of the fluctuation of the pursuers’ speeds is random
variable (obeys poisson distribution). Although λ is large,
the time interval may also be a small value because of the
randomness. In this case, Strategy 1 which can effectively
address the problems caused by the uncertainty of the
pursuers’ speeds still leads to higher capture success ratio.

5.1.4 The Capture Success Ratios with heterogeneous v′
p

and vp

In the other figures, we assume that each pursuer has the
same v′

p and vp. In Fig. 14, we also show the cases that the
pursuers have heterogeneous v′

p and vp.
In Fig. 14 (1), it is assumed that the maximum speed of

each pursuer obeys uniform distribution in [1.5 − v′, 1.5 +
v′]. Certainly, the maximum speed of each pursuer does not
change in the pursuit-evasion process. The other parameters
are fixed: d1 = 20, d2 = 40, n = 20, ve = 2, λ = 0
and v′

p = 0. In Fig. 14 (2), it is assumed that the minimum
speed of each pursuer obeys uniform distribution in [0.5 −
v′, 0.5 + v′]. The minimum speed of each pursuer also
does not change in the pursuit-evasion process. The other
parameters are fixed: d1 = 20, d2 = 40, n = 20, ve = 2,
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Fig. 14 The capture success ratios with heterogeneous v′
p and vp

λ = 0 and vp = 1.5. Besides, vp and v′
p which are used in

the pursuing strategies are replaced by the average values.
Based on Fig. 14, it is known that the heterogeneity of v′

p

and vp will not obviously influence the performance of the
pursuing strategies. The reason is that the pursuers’ actual
speeds are uncertain so that vpi

itself is heterogeneous
even if v′

p and vp are homogeneous. Therefore, when
the pursuers’ speeds are uncertain, there is not any
outstanding difference between the cases where v′

p and vp

are homogeneous or heterogeneous.

5.1.5 Brief Summary

Based on Figs. 11, 12, 13 and 14, we have discussed the
influence of the uncertainty of the pursuers’ speeds. The five
strategies have been tested in different cases.

Overall, our pursuing strategy based on simulated
annealing is always the best strategy. If other parameters
are fixed, the variety of the pursuers’ maximum speed will
not influence the relative merits of the strategies. Besides,
when the pursuers’ speeds fluctuate frequently, calculating

Fig. 15 The capture success ratios with different n

Apollonius Circle based on the pursuers’ average speed
is better than the pursuers’ actual speeds. However, when
the pursuers’ speeds fluctuate not frequently, calculating
Apollonius Circle based on the pursuers’ actual speeds
is better. In addition, the heterogeneity of the pursuers’
maximum speed and minimum speed will not obviously
influence the performance of the pursuing strategies.

5.2 The Influence of the Number and the Initial
Locations of Pursuers

Then, we discuss the influence of the number and the initial
locations of pursuers. The parameters n, d1 and d2 do not
directly influence the uncertainty of the pursuers’ speeds.
However, when the pursuers move at uncertain speeds, the
influence of these parameters may be different from that
in previous studies. Therefore, we also show the capture
success ratios with different n, d1 and d2.

5.2.1 The Capture Success Ratios with Different n

In Fig. 15, we test the five strategies with different number
of pursuers. The other parameters are fixed. In detail, d1 =
20, d2 = 40, vp = 1.5, ve = 2, λ = 0 and vp

′ = 0.
As shown in Fig. 15, the capture success ratios increase

along with the increase of n no matter which strategy is
adopted by pursuers. Strategy 1 always leads to higher
capture success ratio than other strategies. Strategy 2 is
always the second best. The advantage of our strategy is
quite obvious no matter how much n is. It means when other
parameters are fixed, the variety of the number of pursuers
will not influence the advantage of our strategy.

Strategy 4 is also better than Strategy 5 while Strategy 5
is better than Strategy 3. It means the variety of n does not
influence the disadvantage of calculating Apollonius Circles
based on corresponding pursuers’ current speeds. To sum
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Fig. 16 The capture success ratios with different d2+d1
2

up, there is not any surprising phenomenon in Fig. 15. The
increase of n will lead to higher capture success ratios but
does not influence the relative merits of different pursuing
strategies.

5.2.2 The Capture Success Ratios with Different d1 and d2

Then, we discuss the influence of d1 and d2. In Fig. 16,
n = 20, d2 = d1 + 20, vp = 1.5, ve = 2, λ = 0 and
vp

′ = 0. In other words, the mathematical variance of the
initial distance between each pursuer and the evader is fixed.
When d1 and d2 are larger, the pursuers will be located
farther from the evader. Then, the capture success ratios will
also become lower. Certainly, Strategy 1 is always the best
even if d1 and d2 are quite large.

In Fig. 17, n = 20, vp = 1.5, ve = 2, λ = 0 and vp
′ = 0.

d2+d1
2 is always 30. Let d ′ = d2 − d1. The phenomena

in Fig. 17 are quite interesting. The capture success ratios
based on the five strategies all decrease at first and then
increase with the increase of d ′. When d ′ is small, the initial
distances among pursuers and the evader are similar. In this
case, the pursuers can coordinate with each other efficiently.
For instance, the Apollonius Circle of one pursuer is more
likely to intersect with the Apollonius Circle of another
pursuer. When d ′ increases, the distances among pursuers
may increase so that the evader has more chances to escape.
On the other hand, d ′ = 60 and d2+d1

2 = 30 means d1 = 0.
The initial distance between a pursuer and the evader may be
very small. Then, the evader is more likely to be captured by
the pursuers which are initially very close to it. Therefore,
the capture success ratios increase when d1 approaches zero.

5.2.3 Brief Summary

Based on Figs. 15, 16 and 17, we have discussed the
influence of the number and the initial locations of

Fig. 17 The capture success ratios with different d2 − d1

pursuers. Overall, Strategy 1 is still the best strategy in
the three figures. There is not any surprising experimental
phenomenon when the number of pursuers changes. The
increase of the number of pursuers will lead to higher
capture success ratios but does not influence the relative
merits of different pursuing strategies.

It is worth noting that, when the initial locations of
the pursuers change, there is an interesting experimental
phenomenon. When average distance between each pursuer
and the evader is fixed, the capture success ratios based
on the five strategies all decrease at first and then increase
with the increase of the mathematical variance of the initial
distance between each pursuer and the evader.

5.3 Verifying the Analyses Presented in Section 4

In order to understand the disadvantages of previous
pursuing strategies that are based on Apollonius Circle more
deeply, we verify the analyses presented in section 4.1 based
on the experimental data in Fig. 18. In Sections 5.1 and
5.2, we have discussed the influence of various parameters
on the pursuit-evasion game and show that our strategy
based on simulated annealing is better than other pursuing
strategies in different cases. However, the experimental
data in Sections 5.1 and 5.2 are not enough helpful
in deeply understanding the disadvantages of previous
pursuing strategies. In this subsection, we assume that the
evader will not change the moving direction in pursuit-
evasion process. In other words, only the first step of the
escape strategy presented in section 3.2 is adopted. Then,
Fig. 18 (1) shows the capture success ratios with d1 = 20,
d2 = 40, n = 20, vp = 1.5, λ = 0 and ve = 2. In Fig. 18
(2), d1 = 20, d2 = 40, n = 20, vp = 1.5, v′

p = 0 and
ve = 2.

Compared with Fig. 12, the capture success ratios in
Fig. 18 (1) are all higher. It means that the evader keeping
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Fig. 18 The capture success ratios when the evader does not change
its initial moving direction

the initial moving direction is good for the pursuers.
Besides, as shown in Fig. 18 (1), the capture success ratios
based on Strategy 1 are always very close to that based on
Strategy 4. This phenomenon accords with Lemma 2. In
Fig. 12, the capture success ratios based on Strategy 4 are
obviously lower.

Based on the analyses presented in section 4.1, it has been
known that:

– The uncertainty of speeds lead to inaccurate Apollonius
Circle (especially when v′

p is unknown) so that the
pursuers adopting the strategies [9, 13, 20] based
on Apollonius Circle often move to worthless target
locations;

– Previous strategies [9, 13, 20] let pursuers move to
scheduled locations, but the uncertainty of speeds will
make some pursuers fail to reach the scheduled loca-
tions punctually. The evader can escape successfully
by changing moving direction and finding the pursuers
which fail to reach the scheduled locations punctually.

It means that Strategy 4 is mainly influenced by the
second problem caused by the uncertainty of the pursuers’
speeds. In Fig. 18 (1), the second problem does not exist.
Therefore, Strategy 4 can lead to similar capture success
ratios with Strategy 1. In addition, although the second
problem does not exist in Fig. 18 (1), the capture success
ratios based on Strategy 3 are also lower than that based
on Strategy 1 and 4. The reason is that Strategy 3 is
influenced by both the first and second problems caused
by the uncertainty of the pursuers’ speeds. The pursuers
adopting Strategy 3 will usually move towards worthless
target points.

Figure 18 (2) can be compared with Fig. 13. In Fig. 13,
Strategy 3 becomes better than Strategy 4 and Strategy
5 when λ is large. However, in Fig. 18 (2), Strategy 4
and Strategy 5 lead to similar results with Strategy 1 and
Strategy 2. Strategy 3 becomes the worst in Fig. 18 (2). The
reason is just as shown in Lemma 1. If the evader does not
change its moving direction, Strategy 4 is averagely better
than Strategy 3 whatever λ is.

Overall, the analyses in section 4.1 can be verified based
on the experimental data in Figs. 12, 13 and 18.

6 Conclusions

In this paper, we have studied the multiagent pursuit-
evasion problem in the situation in which the pursuers
move at uncertain speeds. The pursuers’ maximum speed
is a known constant. However, the pursuers cannot always
move at the maximum speed, and their actual speeds
fluctuate between the maximum speed and a lower bound.
The evader’s speed is a known constant and larger than
the pursuers’ maximum speed. Previous studies usually
assumed that the pursuers can move at certain speeds;
thus, the capture success ratios based on previous pursuing
strategies decrease when the pursuers move at uncertain
speeds. In order to increase the capture success ratio,
we presented the feasible pursuing strategy considering
the problems caused by the uncertainty of the pursuers’
speeds. We excluded some bad moving directions to reduce
the decision space of pursuer. Then, each pursuer selects
moving direction based on the rule that controls the gaps
between it and its neighboring pursuers, and the rule is
combined with simulated annealing. Therefore, the faster
pursuer can help the slower neighboring pursuer to inhibit
the expansion of the gap between them.

Extensive experiments have been presented to show
the performance of our strategies in various cases. The
experimental data shown that our strategies can lead to
higher capture success ratios than previous strategies in
the situations where the pursuers’ speeds are uncertain.
When the pursuers’ speeds are certain, our strategy based on
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simulated annealing leads to similar capture success ratios
with previous strategies. When other parameters are fixed,
the variety of the pursuers’ maximum speed and the variety
of the number of the pursuers will not influence the relative
merits of different pursuing strategies. Besides, the time
interval between the fluctuations of the pursuers’ speeds can
influence the relative merits of different pursuing strategies.
When the pursuers’ speeds are uncertain, the heterogeneity
of the pursuers’ maximum speed and minimum speed will
not obviously influence the performance of the pursuing
strategies.
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