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Abstract
Large-scale infrastructures are prone to simultaneous faults when struck by a natural or man-made event. The current
operating procedure followed by many utilities needs improvement, both in terms of monitoring performance and time to
repair. Motivated by the recent technological progress on small Unmanned Aerial Systems (sUAS), we propose a practical
framework to integrate the monitoring capabilities of sUAS into standard utility repair operations. A key aspect of our
framework is the use of monitoring locations for sUAS-based inspection of failures within a certain spatial zone (called a
localization set). This set is defined based on the alerts from fixed sensors or customer calls. The positioning of monitoring
locations is subject to several factors such as sUAS platform, network topology, and airspace restrictions. We formulate the
problem of minimizing the maximum time to respond to all failures by routing repair vehicles to various localization sets and
exploring these sets using sUAS. The formulation admits a natural decomposition into two sub-problems: the sUAS Network
Exploration Problem (SNEP); and the Repair Vehicle Routing Problem (RVRP). Standard solvers can be used to solve the
RVRP in a scalable manner; however, solving the SNEP for each localization set can be computationally challenging. To
address this limitation, we propose a set cover based heuristic to approximately solve the SNEP. We implement the overall
framework on a benchmark network.
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1 Introduction

1.1 Motivation

Monitoring and inspection systems for large-scale infras-
tructures such as water, natural gas, oil, and electric net-
works typically rely on pre-installed (fixed) sensors to
obtain failure alerts. Timely response to these alerts is crit-
ical for minimizing the impact of disruptions, which can
otherwise lead to significant economic losses and even loss
of life. For example, in the US pipeline industry alone, there
were 323 fatalities and 1,337 injuries reported in the last
20 years with an estimated total cost of over $7 billion in
damages [28]. Natural gas infrastructures are prone to ser-
vice disruptions due to leaks and pipeline failures (bursts);
these events can be respectively detected by customer call

(2019) 93:385–413

/ Published online: 26 April 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0838-0&domain=pdf
http://orcid.org/0000-0003-3375-5955
mailto: aclee@mit.edu
mailto: mdahan@mit.edu
mailto: andrew.weinert@ll.mit.edu
mailto: amins@mit.edu


reports and pressure sensors. In some cases, flow sensors
and acoustic sensors are also utilized. However, the techno-
logical limitations of fixed sensors and budget constraints
often limit the distribution utility’s ability to monitor every
critical network component. Therefore, the utility’s situational
awareness from fixed sensor alerts cannot be narrowed
beyond a certain spatial zone which we call a localization
set. Consequently, additional manual inspections by survey
teams are conducted to isolate and repair the failure(s). The
goal of these survey teams is to isolate the leak by using
additional sensors or cues like the smell of gas, appearance
of exposed pipes, and slope failure. Once isolated, a repair
crew addresses the failure and restores the system [19].

Thus, one of the main tasks of the operator (i.e., the
utility’s command center) is to inspect the network and
localize the actual failure events (or the events of interest
that led to them) in a timely manner, based on the alert
and localization set information. There are two main inef-
ficiencies in the inspection processes that are currently
followed by the utilities: (i) significant time delays in
localizing the failures with loss of service due to delayed repair
operations; and (ii) high operational costs due to sub-optimal
allocation of inspection and repair crews [1]. Motivated by
these challenges, we focus on the problem of routing repair vehi-
cles from yards (i.e., staging locations) to the localization sets;
in addition, we integrate the inspection capabilities of small
Unmanned Aerial System (sUAS) for the identification of
failure events within the localization sets. Our assertion
is that sUAS-based inspection can contribute to reducing
both inefficiencies (i) and (ii) by reducing time to failure
isolation and improving repair operations.

In recent years, utilities have been employing manned aerial
systems such as helicopters to supplement manual surveys for
network inspection. While the cost of operating helicopters
is estimated to be anywhere from $1,000 to $2,000 per hour,
sUAS can provide comparable or improved services at $200
to $300 per hour while also reducing the safety risks to the
inspection team [24]. The total difference in person-hours
of labor between conventional and sUAS inspections can
also be significant [4, 10, 27]. Table 1 shows the comparison
of person-hours of labor mentioned in these studies. The
ongoing improvements in sensor technology and on-board
processing of data are likely to further improve the prospects
of using sUAS for infrastructure inspection over manual
surveys. For example, recent advances in gas detectors and
infrared (IR) sensors [30] can be potentially useful for
on-board detection of leak events.

To integrate the sUAS into the current monitoring and
inspection processes followed by utilities, we need to
address the following questions:

1) How to design an end-to-end operational framework
that accounts for the infrastructure inspection require-
ments and sUAS platform constraints?

2) How to formulate an sUAS-enabled failure localization
problem to isolate the failure(s) in a timely manner
given the operating environment and the sensing
requirements?

3) How should the operator route the repair vehicles to the
various localization sets considering the time required
for the sUAS to isolate the failure(s)?

This article contributes to the abovementioned questions
by building on the existing literature on Vehicle Routing
Problems (VRP) and by proposing new models of sUAS-
based inspection that can be readily integrated into VRP-
type formulations. The failure events considered in our
work are typical of emergency situations when the operator
is expected to respond to multiple failure alerts. The
localization sets determined from these failure alerts
typically span a few hundred meters in length, which is
consistent with the search zones of conventional ground
survey teams. We introduce the operational requirements
and specific features of the infrastructure network, fixed
sensors, repair vehicles, and sUAS platform in Section 2.
To model sUAS capabilities and constraints, we consider a
rotary-wing sUAS with a total flight time of less than an
hour, which is suitable for proximity and localized facility
inspection. Unlike fixed-wing sUAS that require continuous
forward flight, rotary-wing sUAS can provide a more stable
platform to enable extended observation of a particular area
from various angles. For rotary-wing sUAS, we also do not
need to consider minimum turning radii (i.e., the Dubins
curve) since a constant forward speed is not required. We
consider that the sUAS platform is small enough to fit in the
repair vehicle, because the current and projected limitations
on battery size and line-of-sight will likely require the sUAS
to be transported via repair vehicles to the localization sets.

In Section 3, we discuss the factors governing the
positioning and routing of sUAS for a given localization
set. We introduce the concept of a monitoring location,
from which the sUAS can observe some of the network
components. The spatial positioning of these monitoring
locations depends on various factors like the sUAS
operating range, airspace restrictions, infrastructure stand-
off distance, required image resolution for failure isolation,
and infrastructure network topology. Along with the
discussion in Section 2, these factors motivate key
assumptions in our sUAS-enabled infrastructure monitoring
framework.

In Section 4 we introduce Mixed Integer Programming
(MIP) optimization models for computing the (i) route
plan of repair vehicles (equipped with sUAS operators and
repair personnel) to localization sets, and (ii) the inspection
strategies of an sUAS fleet to isolate all of the failures within
each localization set. We refer to the problems addressing
(i) and (ii) as the Repair Vehicle Routing Problem (RVRP)
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Table 1 Comparison of
conventional and sUAS
person-hours of labor

Required Bridge Inspection [27] Census Survey Task [4] Powerline [10]

Manned A/C sUAS Ground Survey sUAS Manual sUAS

# Workers 7 3 12 2 4 6

Avg Hours 3.5 5.4 4 1.5 40 3

Person-Hrs 24.5 17.3 26 3 160 18

and the sUAS Network Exploration Problem (SNEP),
respectively.

The SNEP can be summarized as follows: Given a
localization set and a number of homogeneous sUAS,
determine the optimal route for each sUAS to monitor every
network component where the objective is to minimize the
maximum amount of time to explore the localization set.
Each sUAS starts and ends its route at a common base
within the localization set, either at the end of its mission,
or for battery swaps to continue further exploration.
Furthermore, each monitoring location is visited by only
one sUAS.

The RVRP considers the following problem: Given a set
of yards with a number of repair vehicles and activated
localization sets, determine the optimal route for each repair
vehicle where the objective is to minimize the maximum
amount of time elapsed from time of failure alert to the
time to repair, among all localization sets. Each repair
vehicle starts and ends its route at its respective yard
location, and each localization set is visited by only one
repair vehicle. Furthermore, in calculating the total time
elapsed, we include the optimal sUAS exploration time for
each localization set (obtained from the SNEP) and the
corresponding repair times (which are assumed to be fixed
and given). Both the SNEP and RVRP are constrained by
time and vehicle flow conservation constraints.

The overall approach (and our modeling focus) is
illustrated in Fig. 1.

1.2 RelatedWork

SNEP. The SNEP is at its core a routing problem, and
could be modeled after several classical problems found
in literature and their variants. The VRP seeks to find
the optimal set of routes for a fleet of vehicles to serve

a set of customers [9]. For our problem, the vehicles
(sUAS) would be serving the monitoring locations. One
variant of the VRP is the Vehicle Routing Problem with
Time Windows (VRPTW), where each customer can only
be visited within a specified time window. In our case,
this would be relevant only if we considered an upper
bound time to repair each localization set. If we considered
the criticality of each monitoring location and a limited
time budget, the SNEP could also be modeled after the
Team Orienteering Problem (TOP) [15], which seeks to
find the optimal set of routes for a fleet of vehicles to
maximize the total collected value obtained by visiting a
subset of customers within a given time. For example, the
TOP can model emergency response scenarios where the
goal is to identify as many survivors as possible. For our
application, the SNEP is better represented by the VRP
than the TOP for two reasons. First, all of the components
within the localization set must be monitored by the
sUAS since the number and location of failures are not
known. Second, although criticality could be an important
factor, we require that all of the failures are addressed.
Observing only a subset of the monitoring locations could
result in undetected failure events which could worsen over
time.

Of the many VRP variants, our SNEP formulation is
closely related to the Multi-Trip Vehicle Routing Problem
(MTVRP) [32]. Our formulation shares some features of the
Green Vehicle Routing Problem (G-VRP) posed by Erdogan
et al. [11]. The G-VRP seeks to minimize the total distance
traveled by a number of alternative fuel vehicles while
visiting a set of important locations that include fueling
stations when required. However, in the SNEP, we need to
account for sUAS platform and infrastructure monitoring
constraints, e.g., climb/descent rates, operating restrictions,
and required image resolution.

Sensor
Alerts

Localization
Sets

Routing of
sUAS-enabled

Patrols

Failure
Location
Isolation

Repair and
Restoration

Our Focus

(RVRP) (SNEP)

Fig. 1 Process Flow for sUAS-enabled infrastructure monitoring framework
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RVRP. The RVRP is closely related to the Multiple Depot
Vehicle Routing Problem (MDVRP) and more specifically,
the Multiple Depot Multiple Vehicle Routing Problem
(MDMVRP) [20]. Given a set of bases with a number of
vehicles, the MDMVRP’s objective is to minimize the total
travel cost so that each location is visited by a vehicle. Our
setting is somewhat different because we consider a min-
max objective function. Furthermore, the optimal value of
the SNEP enters into our RVRP formulation as an input
parameter, because the optimal sUAS exploration time for
each localization set impacts the longest time from failure
alert to repair that the RVRP seeks to minimize.

1.3 Contributions

While the existing literature has considered the planning of
flight operations for the use of sUAS in civilian applications,
limited emphasis has been placed on detailing how to
integrate sUAS into current inspection processes. In this
work we detail an operational framework which captures
the specific features of sUAS technology (operating
range, airspace restrictions, cruise speed) as well as
the constraints associated with infrastructure inspections
(stand-off distance, image resolution for failure isolation,
and network topology constraints). These features and
constraints can be included in the MIP formulations of the
SNEP and the RVRP, which are presented in Section 4.1

Unlike the RVRP which can be solved for realistic
problem sizes, solving the SNEP poses a challenge because
of the large number of monitoring locations to consider in
a typical localization set. Therefore, we develop a scalable
heuristic approach that exploits the covering properties
of monitoring locations; in particular, the number of
components that can be observed from each location. This
heuristic is based on the solution of a weighted minimum
set cover problem and is presented in Section 5.

In Section 6, we show that our heuristic can solve a 5
localization set scenario within an acceptable time frame
for real world implementation (4.15 seconds). Our heuristic
achieves an overall average optimality gap of 0.78% with
10 different localization sets of varying size. We also
demonstrate the interrelationship between the SNEP and the
RVRP and discuss the practical issues that can impact the
sUAS exploration time and repair vehicle travel times.

Finally, we evaluate the performance of our deterministic
SNEP in situations when sUAS cruise speeds are stochastic

1Admittedly, while we do not model the communication aspects of
sUAS operation, the framework can be potentially extended to include
them.

using Monte Carlo simulation. Indeed, the stochasticity of
cruise speed (and other factors such as airspace restrictions,
obstacles, and visibility) can significantly impact the times
to explore and inspect the localization sets. Following
the exploration plan suggested by our SNEP solution can
potentially lead to unobserved network components, which
can significantly increase the time to localize and respond
to failures. Thus, our static (and deterministic) formulation
can be viewed only as an initial step toward the research
on more general formulations that account for the stochastic
and dynamic nature of sUAS-based inspection processes. In
Section 7, we provide some comments in this regard and
conclude our paper.

2 Network, Repair Vehicles, and sUAS

In this section, we describe the key requirements and
constraints for sUAS-enabled inspection of infrastructure
component failures. We start with a description of how
the components that are likely to have experienced failure
events can be grouped into geographical regions based
on the fixed sensor alerts. We then describe the generic
requirements to route repair vehicles (carrying both sUAS
operators and repair personnel) to these regions. Finally, we
discuss sUAS characteristics to consider for the exploration
of localization sets.

2.1 Infrastructure Network with Fixed Sensors

Consider an infrastructure network with the set of compo-
nents denoted as E . The network components are prone to
failure events that can be random (e.g., pipe bursts), corre-
lated (e.g., earthquake induced failures), or adversarial in
nature (e.g., sabotage). The physical network can either be
above ground or underground; nonetheless, in many cases,
failure events are detectable from above ground [26]. For
example, hydrocarbon leaks in an underground gas network
can be detected above ground using gas detectors. Other
above ground activities that are often main causes of failures
include: the presence of unauthorized digging, excavation
by third parties, or soil erosion. We include such defini-
tive precursors of actual failures in our definition of failure
events.

The infrastructure network is monitored by an operator
(i.e., the utility’s command center) through a Supervisory
Control and Data Acquisition (SCADA) system, which
routinely collects data from remote fixed sensors that are
pre-installed at certain network locations. When a failure
event occurs, a sensor is capable of detecting the resulting
fluctuations in its measured state (e.g., local pressure
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or flow), provided that the event lies in its “detection
range”. The sensors are capable of sending alerts to
the SCADA system (either directly or using hop-to-hop
communication). For cases when the fluctuations are not
directly detectable by a fixed sensor, we consider that the
operator can be still alerted by some other means, e.g.,
customer calls or social media data. Thus, for our purpose,
any information that helps the operator to identify the area
in which one or more failure events are likely to have
occurred, counts as a sensor alert. Note that the number of
sensors is often limited, thus the sensor alerts cannot be
used to identify (i.e., perfectly isolate) the individual failures
in large-scale networks facing correlated failure events.
Furthermore, the sensors’ capability to detect fluctuations
is constrained by their detection range. Therefore, in most
failure situations, the operator can only map each failure
event to a certain spatial zone, which we call a localization
set [31]. Henceforth, we assume that the alerts from fixed
sensors correspond to a collection of activated localization
sets, where each set is comprised of network components
that are likely to have undergone (or are prone to) failure.
Isolating these failures requires additional inspection; our
focus is on sUAS-based inspection. In our framework, the
number and exact location of failures in each localization
set is unknown before the inspection. The size of a typical
localization set is of the order of a few hundreds of
meters, which is consistent with search zones of inspection
teams.

Motivated by practical considerations [19], we assume
that the operator collects the sensor alerts for a predeter-
mined time interval denoted [0, t0] and knows the local-
ization sets that are activated during [0, t0]. The operator
assigns the available repair vehicles to the group of local-
ization sets at time t0. This assumption is motivated by
the standard operating procedure that the operators follow
in assigning survey and repair teams based on the alerts
received from multiple areas during the first few hours
after a disaster strikes the region. For simplicity, we assume
that the interval [0, t0] also includes the lead time required
to prepare vehicles and repair teams. Based on the alerts
received during [0, t0], let L1, . . . ,LK ⊆ E denote the K

localization sets that need to be further inspected by sUAS.
The corresponding sUAS exploration plans are determined
by the SNEP. Therefore, at the start of the inspection pro-
cess, each localization set is assigned to a yard (i.e., facility
where the repair vehicles and crews are staged). This assign-
ment and corresponding routing plans are determined by the
RVRP; see Section 4. Let Y denote the set of yards. Due
to excessive setup costs, we will consider that yard sites are
immutable. Figure 2 illustrates a network with a set of 64
fixed sensors, 2 yards, and 5 localization sets.

2.2 Repair Vehicles

For every yard s ∈ Y , we denote ns the number of
repair vehicles that are available at yard s. For simplicity,
we assume that the repair vehicles at each yard site have
homogeneous capabilities, including speed, range, and crew
(repair personnel and sUAS operators). In addition, each
sUAS operator controls a single sUAS. We let u denote
the number of sUAS in each repair vehicle. Again, for
simplicity, we assume that all sUAS have identical sensing
capabilities and technical characteristics (i.e., cruise speed,
endurance, etc).

Each repair vehicle, starting from a yard, can visit one or
more localization sets prior to returning to the same yard.
To visit a localization set Lk, k ∈ �1, K�, a repair vehicle
needs to set up a temporary base, which we denote as bk .
In practice, bk can be chosen as the centroid of Lk . Let
B := {bk, k ∈ �1, K�} denote the set of all temporary
bases. Setting up a temporary base involves unpacking the
sUAS and performing pre-flight checks. We also assume
that the repair vehicle remains at its temporary base for
the duration of the sUAS flight over the localization set (to
inspect and isolate failures) as well as the time to repair
these failures. In particular, the repair process starts after
sUAS-based inspection is completed, and the repair vehicle
can move to another base or yard only after the repair at
the current localization set is completed. This assumption
is motivated by the fact that, in most practical situations,
the repair crews gather the information on the type and
location of failures prior to the start of the repair process,
since combining repair requirements in close proximity can
save costs and reduce the movement of their equipment
[19].

For the purpose of route planning, the pairwise time
to travel between yards and temporary bases can be
assembled into a travel time matrix which we denote �.
This consists of repair vehicle travel times between every
pair of locations (k, l) in the set Y ∪ B. We let γkl

denote the time needed by a repair vehicle to travel from
k to l. One can obtain γkl by determining the shortest
path between k and l in the transportation network and
dividing by the average vehicle speed. The temporary base
set up time can also be included in γkl . For convenience,
we assume that the time to refuel a repair vehicle is
negligible.

As mentioned above, once the sUAS complete the
inspection of Lk, k ∈ �1, K�, the repair process can
start. In some practical situations, the repair time can be
estimated beforehand; in our framework, we assume this
time can be upper bounded by the “worst-case” case repair
time, denoted τrepair,k . Historical data on individual repairs
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(a) Network with fixed sensors (circles) and 2
yards (triangles)

(b) 5 localization sets arising from fixed sensor
alerts

Fig. 2 Illustration of a sensor network and localization sets in an infrastructure network

can be utilized for estimating the expected and worst-case
number of failures within a typical localization set; this can
be used as a basis to compute τrepair,k . Additionally, data
on the average age of the infrastructure, material type, or
criticality of network components can be used to build a
statistical model to estimate τrepair,k [36].

We define a repair vehicle tour as a sequence of
visits to a subset of B, that starts and ends its tour
at the same yard s ∈ Y . Note that we do not
allow a repair vehicle to return to another yard due to
accountability and unbalanced workload issues that might
arise. Figure 3 illustrates 3 repair vehicle tours to 5 different
temporary bases corresponding to the localization sets from
Fig. 2b.

Next, we discuss the sUAS platform characteristics,
based on the standard technical specifications, battery
replacement, and communication requirements.

2.3 sUAS Characteristics

A variety of commercially available rotary-wing sUAS
platforms can be employed for infrastructure network
inspection; however, it would be impractical to individually
model each one of them. Using data from the Association
for Unmanned Vehicle Systems International (AUVSI) air
platform database, we define four representative classes of
sUAS based on their Maximum Gross Take-Off Weight
(MGTOW) similar to [35]. These representative sUAS
sufficiently represent Commercial Off-The-Shelf (COTS)
platforms ranging from the smaller rotary-wing DJI
Phantom, to the larger Aeryon Scout. The representative
sUAS classes are described in Table 2 using MGTOW
(kg), mean cruise airspeed (knots), max airspeed (knots),
descent and climb rates (meters per second), and endurance
(minutes). In our SNEP formulation, the mean cruise

Fig. 3 Illustration of repair
vehicle tours. Starting from a
yard, each repair vehicle visits
one or more temporary bases
(black dots) and returns to its
assigned yard (triangle)
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Table 2 Representative sUAS

Class ID 1 2 3 4

Notional MGTOW (kg) [0,2) [2,5) [5,9) [9,25]

Mean Cruise Airspeed (kn) 25 20 30 60

Max Airspeed (kn) 40 30 60 100

Descent Rate (m/s) −1.5 −2.5 −2.5 −5.0

Climb Rate (m/s) 2.5 3.5 3.5 5.0

Endurance (min) 30 45 45 60

airspeed, denoted V C , is assumed to be deterministic and
defined as the speed at which the sUAS should operate
to maintain optimum performance [35]. Max airspeed,
denoted Vmax is the maximum permitted speed. The descent
(resp., climb) rate is the vertical speed of the sUAS, or
the rate of negative (resp., positive) altitude change with
respect to time. The endurance, denoted as τmax , is defined
as the maximum length of time that an sUAS spends
in flight. For rotary-wing sUAS with MGTOW under 9
kgs, the advertised endurance values of different sUAS
models exhibit relatively less variability; see Fig. 4. The
endurance values shown in Table 2 are based on the average
advertised endurance rate for a given class. In practice,
the realized endurance depends on a variety of factors,
including payload (which is affected by sensor weight),
battery age, operating environment, etc. However, we ignore
these complications and assume a deterministic τmax .

When exploring a localization set, we allow the sUAS
to return to the temporary base to replace their batteries
before exploring other parts of the localization set. Each
sUAS requires a deterministic time to replace its battery;

we denote this as τbatt . This consists of the time required to
swap the battery since many sUAS enable hot-swapping of
batteries. All sUAS are fully charged for the initial dispatch,
and if a repair vehicle visits more than one localization set,
we can reasonably assume that sUAS receive fully charged
batteries while enroute to the other locations.

Finally, although communication is an important con-
sideration for safe navigation and connectivity of sUAS,
we do not explicitly consider the impacts of unreliable
or insecure communication links between the sUAS and
the operator. Commonly used communication links for
sUAS operations are: the uplink control, downlink teleme-
try, and downlink payload communications; these links
operate at frequencies dictated by the Federal Commu-
nications Commission (FCC). Loss of communication in
any of these three links can occur due to loss of line-of-
sight or interference from the environment or adversary.
Indeed, cyber-security risks have been recently identified
as an important barrier to employing sUAS for monitor-
ing strategic areas [18]. However, given that our focus
in this paper is on establishing a static framework for
joint routing of repair vehicles and sUAS-based inspec-
tion of physical infrastructures, we do not consider (low-
level) communication aspects that are inherently dynamic in
nature.

3 sUAS-based Inspection of Localization Sets

In this section we discuss the main factors governing the
positioning and routing of sUAS for the purpose of failure
isolation. Along with the discussion in Section 2, these

Fig. 4 The advertised MGTOW
and endurance for 404 rotary
wing sUAS platforms
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Fig. 5 Illustration of monitoring
locations for a localization set.
The available monitoring
slocations are shown in filled
and empty circles and the
infrastructure components
within the localization set are
highlighted with thick lines
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factors motivate the key assumptions in our sUAS-enabled
infrastructure monitoring framework.

Once a repair vehicle sets up a temporary base, up
to u sUAS are launched to explore the corresponding
localization set. In our framework, the sUAS complete
inspection of a localization set by visiting a number of
“vantage points” with a clear and unobstructed view to one
or more network components. The spatial positioning of
these vantage points should account for several factors:

(i) Operating Range
(ii) Airspace Restrictions

(iii) Infrastructure Stand-off Distance
(iv) Required Image Resolution for Failure Isolation
(v) Infrastructure Network Topology

Figure 5 illustrates the abovementioned factors influenc-
ing the spatial positioning of these vantage points, which
we henceforth refer to as monitoring locations. We first
briefly discuss each of the five factors and provide a formal
definition of monitoring locations thereafter.

(i) Operating Range. The maximum operating range is
the maximum distance from a temporary base that the
sUAS is capable of flying on a round trip mission. We

can estimate this operating range with V C ·τmax

2 , where
V C is the mean cruise speed and τmax is the endurance
of the sUAS. We also need to meet Visual Line-of-
Sight (VLOS) requirements, which is defined by the
FAA as keeping unaided visual contact with the sUAS

in order to “maintain safe operational control of the
aircraft, know its location, and be able to scan the
airspace in which it is operating to see and avoid other
air traffic or objects aloft or on the ground” [12].
The sUAS operating range is therefore expressed as

min(
V C ·τmax

2 , VLOS range). Unfortunately, to the best of
our knowledge, the current literature does not suggest a
common quantitative definition of the VLOS range. We
came across conservative VLOS ranges of 930 m [12] to
a maximum theoretical range of 1050 m [37]. In practice,
VLOS can vary significantly with local weather and
other environmental conditions. However, we argue that
for the purpose of infrastructure monitoring, the typical
size (maximum radius) of localization sets is smaller
than a conservative VLOS estimate. Thus, we assume
that the positioning of monitoring locations are not
constrained by the VLOS requirement. This assumption
makes even more sense given the ongoing discussion
about relaxing VLOS restrictions and allowing Beyond
VLOS (BVLOS) sUAS operations in urban areas to
support a range of applications, including infrastructure
monitoring [18].

(ii) Airspace Restrictions. All monitoring locations are
upper bounded at an altitude restriction, denoted ra ,
which is typically 122 m AGL (Above Ground Level) to
align with the current FAA Part 107 sUAS regulations
[13]. One may also need to consider restricted airspace,
which can either be temporary or permanent. Temporary
flight restrictions can be enforced due to hazardous
conditions (e.g., a wildfire) or routine events (e.g.,

J Intell Robot Syst (2019) 93:485–413392



stadium event). Examples of permanent flight restrictions
include airspace in close proximity to population centers,
military operation areas, or airports.

(iii) Infrastructure Stand-off Distance. Each monitoring
location must also comply with the minimum stand-off
distance, denoted rs , to the infrastructure network com-
ponents or other ground obstacles (e.g., power lines or
buildings). Since misjudgment of distance and speed is
a significant flight hazard, stand-off distance provides a
safe buffer zone during inspection. Given environmental
uncertainty, wind gusts, and sUAS platform instability,
we assume that the sUAS will operate outside a 30 m
stand-off distance. This can be viewed as a conservative
estimate based on current best practices as described in
[24]. Combining the restriction imposed by the stand-off
distance and altitude restriction, we maintain that any
feasible vertical distance between a monitoring location
and the infrastructure (at ground level), denoted R, is
constrained as:

rs ≤ R ≤ ra (1)

(iv) Required Image Resolution for Failure Isolation.
When camera sensors are used for the identification
of failures, the spatial positioning of monitoring loca-
tions also depends on the required image resolution.
Image stability of the video feed can be achieved by
utilizing appropriate hardware like a motorized gimbal
mount to compensate for turbulence. To get an idea
of the resolution, one can estimate the Ground Sam-
pling Distance (GSD), which is the distance between
two consecutive pixel centers measured on the ground
[23]. For example, a GSD of 10 cm can be interpreted
as one image pixel representing 10 cm on the ground.
Thus, a higher GSD corresponds to lower spatial reso-
lution. The GSD can be estimated using the following
equation:

GSD = xR

f cos α
, (2)

where x is the length of the sensor’s pixel size (mm), f

is the focal length of the camera’s lens (mm), R is the
vertical distance (m) between the camera (or monitoring
location) and the infrastructure at ground level, and α is
the look angle. Thus, all else equal, a higher altitude R

will correspond to a higher GSD value. A sensor’s ground
footprint is defined as the total projection of a sensor’s
pixels onto the ground; see Fig. 6 for an illustration of
the GSD and sensor ground footprint. It is important
to note that different failure types may require different
GSDs for identification. Based on Eq. 1 and the GSD
requirement, one can check if the on-board camera on the

x 

optics 
f 

R 

camera 

GSD 

Ground Footprint 

Fig. 6 Ground sampling distance and sensor ground footprint

sUAS is adequate for the inspection task.2 In the context
of gas pipelines, two types of failure events are of interest
based on the type of damage: structural damages and
full component disruptions. For structural damage (e.g.,
leaks), it is critical to achieve high resolution images
(i.e., smaller GSD) in order to identify small hairline
fractures (a few mm in length). To identify such failures,
the monitoring locations need to be positioned at lower
altitudes. This would also entail a higher number of
monitoring locations to fully explore the localization
set. On the other hand, for disruptions, such as pipeline
bursts, major gas leaks, or fire emergencies, a lower
resolution can meet the requirements for failure isolation.
In this case, sUAS can operate at higher altitudes (with
higher GSD), and consequently visit a smaller number of
monitoring locations.

(v) Infrastructure Network Topology. Finally, the number
of monitoring locations also depends on the network
topology within the localization set. For example, given
the same number of network components and ground
footprint size, a tree network topology would likely
require more monitoring locations to explore the entire

2As an example, for a Sony QX-10 camera with a 1/2.3 inch sensor (6.2
mm by 4.6 mm) that can take pictures of up to 4,896 by 3,672 pixels,
the size of each pixel would be 0.0012 mm by 0.0012 mm. With a focal
length of 25 mm, determining the altitude to fly the sUAS to resolve
a 0.5 cm feature on the ground would require a simple rearranging of
terms in Eq. 2 to solve for R. Assuming a nadir (overhead) aerial view
(α = 0), the sUAS would visit monitoring locations at a height of 100
m which also satisfies Eq. 1.
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Fig. 7 Possible monitoring
locations for 2 different network
topologies. For the tree topology
(left), 6 network components
(black line segments) would
require 6 monitoring locations
with associated ground
footprints (gray). For the grid
network (right), only 2
monitoring locations are needed
for the same number of network
components

(a) A network with a tree topology (b) A network with a grid topology

localization set in comparison to a grid topology; see
Fig. 7.

Considering factors (i)-(v), we are now in a position to
formally define monitoring locations and monitoring sets.
Each monitoring location provides a vantage point for the
sUAS to observe some of the network components while
considering the requirements for each of the five factors
discussed. For every localization set Lk , k ∈ �1, K�, we
let Vk denote the set of monitoring locations that the sUAS
can visit. Without loss of generality, we assume that the
temporary base is bk ∈ Vk in this set.

From each monitoring location i ∈ Vk , we define
a monitoring set, Ck

i ⊆ Lk , as the subset of network
components that an sUAS is capable of monitoring (and
isolating). Correspondingly, for every network component
e ∈ Lk , let Vk(e) denote the subset of monitoring locations
from where an sUAS can monitor e. We assume that Vk fully
“covers” Lk , i.e., all components in Lk can be monitored by
visiting a subset of Vk . Figure 8 illustrates how a monitoring
set is obtained from the sensor’s ground footprint.3 We
emphasize that our setup provides us with the flexibility
to consider different types of monitoring sets for each
monitoring location, depending on the five factors.

For each localization set Lk , an sUAS tour is then
defined as a sequence of visits to a subset of Vk that
starts and ends at the base bk . Upon returning to base, the

3To provide an example of a monitoring set, we turn to the ground
footprint from our above GSD calculation. The sensor ground footprint
in this case would be 24.48 m by 18.36 m, acquired by multiplying
the total sensor pixel size (4,896 by 3,672 pixels) by 0.5 cm. Recall
that 0.5 cm was the length of the feature to resolve. Therefore, from
a monitoring location i ∈ Vk at a height of 100 m, we can include
all network components within this ground footprint as part of the
monitoring set Ck

i , given that there are no obstacles.

sUAS will either replace its battery for additional tours,
or complete its mission. Analogous to the travel time
matrix for repair vehicles, we can define another travel time
matrix for each localization set Lk; the elements of this
matrix are the pairwise travel times between monitoring
locations within Vk . We denote this matrix as T k . Thus,
for every ordered pair of locations (i, j) ∈ V2

k , let τ k
ij

denote the sUAS travel time from i to j . One can obtain
τ k
ij by determining the shortest path distance from i to

j and dividing by the mean sUAS cruise speed, which
also incorporates the climb or descent rate. We do not
necessarily impose τ k

ij = τ k
ji . The observation time at each

monitoring location can also be incorporated into T k . We
consider that by visiting a subset of monitoring locations
Vk such that each network component is monitored at least
once, the sUAS will be capable of decisively isolating the

Monitoring Location 

Ground Footprint 

Fig. 8 The Monitoring Set corresponding to a particular monitoring
location is obtained from the sensor ground footprint, which in turn is
based on the GSD calculation
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(a) RVRP: Each repair vehicle can visit one or more
localization sets. Following repair, each repair vehicle 
returns to its assigned yard.

(b) SNEP: From the temporary base location, the
sUAS isolate the failure(s) by visition a subset of 
monitoring locations.

Fig. 9 Illustration of the RVRP and SNEP

failure(s) in the corresponding localization set. This can be
achieved if, for example, a trained observer is inspecting
the live video feed to provide near real time feedback.
Alternatively, state-of-the-art software can be employed to
provide rapid automated image processing (i.e., identify
failures from the live video feed) with high accuracy.
Computer-vision based methods to extract features from
images can achieve accuracy levels of 90-95% for certain
types of failures [25], and the expanding use of unmanned
systems in the future will only increase the amount of
training data required to increase accuracy. Any additional
image post-processing times can be incorporated in the
repair time. Before proceeding further, we summarize the
key assumptions that we introduced in Sections 2 and 3:

A1 Each failure alert obtained by the network operator
from fixed sensors can be mapped to a localization
set, which contains the set of network components
that need to be inspected in order to isolate failure
events. The number and location of failures in each
localization set is unknown.

A2 Based on fixed sensor alerts (and activated localization
sets) received in the time interval [0, t0], the operator
allocates and dispatches repair vehicles at time t0.

A3 The size of the localization sets for sUAS-based
inspection is no greater than the VLOS in radius.

A4 The sUAS can monitor all network components in the
localization set Lk by visiting a subset of monitoring
locations Vk .

A5 To fix the isolated failure(s) in a given localization
set, the worst-case repair time, τrepair,k for each
localization set Lk is known. The repair starts only

after the entire localization set has been inspected for
possible failures.

A6 All sUAS have identical sensing and technical capabil-
ities. Likewise, all repair vehicles have homogeneous
capabilities.

A7 The travel times for both the repair vehicles and sUAS
are assumed to be deterministic.

A8 The sUAS endurance time as well as the time to
replace the on-board battery are assumed to be
deterministic.

A9 The communication link between the sUAS and
operator is secure and reliable, and does not impose
any constraint on the route planning of repair vehicles
and sUAS.

4Modeling Approach and Formulation

In this section we present the overall infrastructure
monitoring framework and provide the MIP formulations
for both the SNEP and RVRP based on assumptions A1–A9.

4.1 Infrastructure Monitoring Framework

Given the localization sets that arise from failure alerts, our
focus is to study how joint optimization of sUAS inspection
plans and repair vehicle route plans can create efficiency
and timely detection. To do so, we propose an approach that
(i) solves the RVRP, which consists in optimally dispatching
repair vehicles to the localization sets to minimize the worst-
case time to inspect (and repair), and (ii) solves the SNEP
which optimally routes the sUAS to isolate failure locations
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within a given localization set. These two problems are
nested in that the optimal value of the SNEP is taken as an
input in solving the RVRP; see the illustration in Fig. 9.

Recall that we model our problems based on failures
that arrive during the time period [0, t0], i.e., the decision
for vehicle dispatches is made in a batch. The failure alert
data is processed and mission planning is completed in
preparation of repair vehicle dispatch from each yard at time
t0. For each localization set Lk , k ∈ �1, K�, we denote θk

the amount of time during which Lk was activated prior to
the dispatch of the repair vehicles. Note that within a given
localization set, there can be several alerts corresponding
to the failure of different components at different times.
However, we are only concerned with the largest such time,
i.e., ∀k ∈ �1, K�, θk is determined by the first alert that is
received in Lk . Note that high values of θk can occur when
the interval [0, t0] is large. This may happen in situations
when the repair vehicles are not readily available or when
repair crews are engaged in other jobs and are not positioned
at the yard [1]. The timeline of various phases of inspection
and repair operations is illustrated in Fig. 10. A repair
vehicle is dispatched from its yard s at time t0 and completes
the set up of a temporary sUAS base at location bk at time
t0 + γsk . The optimal sUAS exploration time for Lk is
denoted ξ∗

k . For this example, the total time elapsed from
failure alert to time of repair for Lk , denoted ttotal,k , is equal
to θk+γsk+ξ∗

k +τrepair,k . We can see how the optimal value
of the SNEP is embedded within the RVRP, which seeks to
minimize the maximum of ttotal,k over all K localization
sets.

4.2 sUAS Network Exploration Problem

Consider a localization set Lk that is activated during the
time interval [0, t0]. Recall that the exact number of failures,
and their exact locations in Lk are unknown. Thus, the

SNEP considers optimally dispatching sUAS to monitor and
isolate every network component in Lk . The u sUAS leave
the base bk , visit a subset of monitoring locations in Vk from
where they can monitor the network components, and return
to the base either to complete the mission, or to replace
their batteries for further exploration. The objective is to
minimize the time to explore Lk , which we formulate as
the maximum amount of time, among the u sUAS, to return
to the base for mission completion. We choose this min-
max objective function for two main reasons highlighed in
[1]. In that work, a min-max objective was widely accepted
by the key stakeholders of a natural gas utility over an
alternative objective of minimizing the overall cost, which
was primarily viewed as a symptom of the root problem.
Second, the min-max objective achieves a level of fairness,
which complies with union regulations for equal distribution
of labor.

For the sake of brevity in presenting our formulation of
the SNEP, we use the notation b to denote the base bk , τij

as the travel time τ k
ij , and ξ as the longest sUAS exploration

time ξk . For each pair of monitoring locations i �= j ∈ Vk

we define a binary variable xij equal to 1 if an sUAS
goes from i to j , and 0 otherwise. We also define two real
variables zij and tij . If zij is nonzero, then it represents the
cumulative travel time taken by the sUAS that visits node
j (coming from node i). Note that this quantity is reset
every time an sUAS replaces its battery. If tij is nonzero,
then it represents the time traveled so far by the sUAS that
is currently visiting node j (which comes from i). This
quantity is NOT reset when an sUAS replaces its battery. For
every pair of monitoring locations different from the base,
i �= j ∈ Vk\{b}, let x′

ij be another binary variable equal to
1 if an sUAS goes from i to j after replacing its battery at
b, and is equal to 0 otherwise. This is similar to the concept
of the replenishment arc as discussed by Boland et al. in [2].
Our SNEP can be formulated with constraints (3)–(15).

Fig. 10 Timeline from failure
alert to repair for the trivial case
of a single repair vehicle, single
localization set, and single sUAS

0

time before dispatch

Failure alert
in

t0
Repair
vehicle
dispatch

to
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base set

at
sUAS

launches

sUAS
returns
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minimize
x,x′,z,t,ξ

ξ

Subject to
∑

i∈Vk\{b}
xbi ≤ u (3)

∑

i∈Vk\{b,j}
(xij + x′

ij ) + xbj =
∑

i∈Vk\{b,j}
(xji + x′

ji) + xjb, ∀j ∈ Vk\{b} (4)

∑

i∈Vk\{b,j}
(xij + x′

ij ) + xbj ≤ 1, ∀j ∈ Vk\{b} (5)

∑

i∈Vk(e)

⎛

⎝
∑

j∈Vk\{b,i}
(xij + x′

ij ) + xib

⎞

⎠ ≥ 1, ∀e ∈ E\Ck
b (6)

zbj = τbj

⎛

⎝xbj +
∑

i∈Vk\{b,j}
x′
ij

⎞

⎠ , ∀j ∈ Vk\{b} (7)

0 ≤ zij ≤ τmaxxij , ∀(i, j) ∈ (Vk\{b})2 | i �= j (8)

0 ≤ zib ≤ τmax

⎛

⎝xib +
∑

j∈Vk\{b,i}
x′
ij

⎞

⎠ , ∀i ∈ Vk\{b} (9)

∑

j∈Vk\{i}
zij =

∑

j∈Vk\{i}
zji +

∑

j∈Vk\{i}
τij xij + τib

∑

j∈Vk\{b,i}
x′
ij , ∀i ∈ Vk\{b} (10)

tbj = τbj xbj , ∀j ∈ Vk\{b} (11)

0 ≤ tij ≤ ((|Vk| − 1)τmax + (|Vk| − 2)τbatt )(xij + x′
ij ), ∀(i, j) ∈ (Vk\{b})2 | i �= j (12)

0 ≤ tib ≤ ((|Vk| − 1)τmax + (|Vk| − 2)τbatt )xib, ∀i ∈ Vk\{b} (13)
∑

j∈Vk\{i}
tij =

∑

j∈Vk\{i}
tj i +

∑

j∈Vk\{i}
τij xij +

∑

j∈Vk\{b,i}
(τib + τbatt + τbj )x

′
ij , ∀i ∈ Vk\{b} (14)

ξ ≥ tib , ∀i ∈ Vk\{b} (15)

xij ∈ {0, 1}, ∀(i, j) ∈ V2
k | i �= j

x ′
ij ∈ {0, 1}, ∀(i, j) ∈ (Vk\{b})2 | i �= j

Constraint (3) ensures that no more than u sUAS are sent
for the exploration of the localization set. Constraint (4) is
the flow conservation constraint, taking replenishment arcs
into account. Constraint (5) ensures that each monitoring
location is visited at most once. Constraint (6) ensures
that each network component is monitored at least once.
Constraint (7) initializes and resets the time traveled by an
sUAS after replacing its battery. Constraint (8) enforces zij

to be 0 when there is no sUAS that goes from i to j and
between 0 and τmax otherwise. Constraint (9) enforces zib

to be 0 when there is no sUAS that goes from i to b or that
goes from i to any other node j after replacing its battery at
the base b. Constraint (10) updates the time traveled so far
by each sUAS since the last battery replacement. Constraint
(11) initializes the cumulative time traveled so far by the
sUAS. Constraints (12) and (13) make sure that tij = 0

when there is no sUAS that goes from i to j (whether
directly or by a replenishment arc). The right hand sides
of these constraints constitute a “Big-M”, which makes the
corresponding inequalities non-restricting when an sUAS
goes from i to j . We illustrate the Big-M upper bound for
constraint (13) in Appendix C. Constraint (14) updates the
time traveled so far by the sUAS and takes into account the
time to replace the batteries, if required. Since we want to
minimize the maximum travel time of the sUAS which is
given by min maxi∈Vk\{b} tib , we can reformulate it by using
the variable ξ , along with the constraint (15).

The SNEP solution provides optimal sUAS routes that
can be described as simple or multi-trip routes. Consider
a localization set Lk, k ∈ �1, K�. We let p represent
an sUAS simple route, defined as a sequence of n

monitoring locations (i1, i2, ..., in) where i1 = in = bk ,
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each monitoring location in p (not including the base)
is visited only once with no interim base visit, and the
feasibility requirement is met, i.e., the cumulative travel
time

∑n−1
m=1 τimim+1 does not exceed τmax . We define a multi-

trip route as a route that contains one or more interim base
visits (for replacing the battery), e.g., (bk, 1, 2, bk, 3, bk).

Our formulation differs from the G-VRP in several
ways. First, instead of multiple refueling stations available,
there is only one refuel location (temporary base) for each
localization set. Second, our formulation involves the notion
of a monitoring set. Therefore, unlike the traditional VRP
formulation, there is no need to visit every monitoring
location because of constraints (5) and (6). Third, instead of
using dummy vertices, we use the concept of replenishment
arcs which eliminates the need to set a condition on the
number of refueling visits. Finally, whereas the G-VRP aims
to minimize the total distance traveled by the vehicles, our
objective is to minimize the maximum time to observe all
network components.

4.3 Repair Vehicle Routing Problem

Given the set of yards Y and the set of temporary base
locations B, the RVRP seeks to find the optimal route for

each repair vehicle starting and ending at its corresponding
yard such that (i) each base corresponding to a localization
set is visited, and (ii) the maximum amount of time elapsed
from time of failure to time of repair among all localization
sets, is minimized. In calculating (ii) we include the optimal
sUAS exploration time, ξ∗

k , required for each localization
set Lk, k ∈ �1, K�.

For each yard s ∈ Y , and for every pair of locations
k �= l ∈ B ∪ {s}, we define a binary variable ys

kl which
is equal to 1 if a repair vehicle that originates from yard
s goes from location k to location l, and 0 otherwise.
There is no binary variable ys

kl where k or l is a yard
different from s; this ensures that a repair vehicle will
return to the yard it originated from. For every pair of
locations k �= l ∈ B ∪ Y | k /∈ Y or l /∈ Y , we
define a real variable wkl which represents the time at
which a repair vehicle arrives at location l (coming from
location k). Note that this quantity takes into account the
time to travel between yards and localization sets, the time
to explore the localization sets with the sUAS, and the
repair time. With a slight abuse of notation, for every
base bk ∈ B, we denote ξ∗

bk
:= ξ∗

k and θbk
:= θk .

A MIP formulation of the RVRP is given in constraints
(16)–(23).

minimize
tworst ,y,w

tworst

Subject to
∑

l∈B
ys
sl ≤ ns, ∀s ∈ Y (16)

∑

l∈B∪{s}\{k}
ys
kl =

∑

l∈B∪{s}\{k}
ys
lk, ∀(k, s) ∈ B × Y (17)

∑

s∈Y

∑

l∈B∪{s}\{k}
ys
lk = 1, ∀k ∈ B (18)

wsl = γsly
s
sl, ∀(l, s) ∈ B × Y (19)

0 ≤ wkl ≤ M
∑

s∈Y
ys
kl, ∀(k, l) ∈ B2 | k �= l (20)

0 ≤ wks ≤ Mys
ks, ∀(k, s) ∈ B × Y (21)

∑

l∈B∪Y\{k}
wkl =

∑

l∈B∪Y\{k}
wlk +

∑

l∈B\{k}
γkl

∑

s∈Y
ys
kl +

∑

s∈Y
γksy

s
ks + ξ∗

k + τrepair,k, ∀k ∈ B (22)

tworst ≥
∑

l∈B∪Y\{k}
wlk + ξ∗

k + τrepair,k + θk, ∀k ∈ B (23)

ys
kl ∈ {0, 1}, ∀s ∈ Y, ∀(k, l) ∈ (B ∪ {s})2 | k �= l

Constraints (16)–(18) define the classic network flow
constraints, while constraints (19)–(22) keep track of the
arrival times for each repair vehicle. Specifically, constraint
(16) ensures that no more than ns repair vehicles leave
yard s. Constraint (17) ensures that if a vehicle from yard s

enters a localization set, it also leaves. Constraint (18)
ensures that each localization set is visited by exactly one
vehicle. Constraint (19) initializes the time traveled by the
vehicle if it departs from yard s. Constraints (20)–(21) make
sure that the arrival time is 0 when no vehicle travels from
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one localization set to another localization set or yard. Otherwise,
we use a large constant, M , to ensure that there is no restriction
when a location is visited. Constraint (22) updates the arrival
time by taking into account the vehicle travel time, the
repair time, τrepair,k , as well as ξ∗

k . Finally, since we want
to minimize the maximum amount of time elapsed from
time of failure to time of repair among all localization sets,
we add the variable tworst , along with constraint (23).

4.4 Implementation on a Real Pipeline Network

We implement the SNEP and RVRP formulations on a case
study based on a Kentucky-based urban water network. We
assume that a set of fixed sensors are placed at some nodes
and monitor the edges in the pipeline network, which form
the set of vulnerable components E [17]. Assuming that a
failure in a network component can be detected by a sensor
if it is within a given distance [31], the Floyd Warshall
algorithm is applied in order to calculate the shortest
distance between each pair of nodes and deduce the set of
components monitored from each sensor location [14]. The
localization sets are then provided by partitioning the set
of components depending on the sensors’ outputs. For this
example, we considered the activation of five localization
sets with sizes ranging from 16 to 33 components. We label
these localization sets L1, . . . ,L5.

For each localization set Lk, k ∈ �1, 5�, we assume
that the sUAS monitoring locations, Vk , are positioned
directly above the nodes of the subnetwork induced by
Lk , i.e., the set of end nodes of the edges in Lk . We
consider the scenario where an sUAS, positioned directly
above a given monitoring location i ∈ Vk , can monitor the
adjacent edges of i (i.e., the adjacent pipelines). Without
loss of generality, we restrict the sUAS to travel only along
the edges of the given pipeline network and we assume
symmetry with respect to travel times τ k

ij . We place the
temporary base within each localization set by finding the
node that minimizes the total distance from that node to
all other nodes. As a conservative estimate, we assume
a maximum endurance, τmax , of 1 hour, and a battery
replacement time, τbatt of 5 minutes. By solving the SNEP
instances, we find that the optimal time required to monitor
and isolate all components for each localization set with 2
sUAS is ξ∗ = (0.88, 1.46, 0.86, 0.87, 0.63) (in hours). The
final routes for the 2 sUAS are shown in Table 3. Note that
the exploration of localization set L2 takes longer because
it requires a multi-trip route for each sUAS. Also note that
due to the min-max objective function of the SNEP, the final
solution can result in extraneous node visits for route(s) with
shorter duration. For example, for L2, the visit to node 9
for the second sUAS is one such case. Next, we consider
that two yards, s1 and s2, are located in the network with
yard s1 containing one repair vehicle and yard s2 containing

Table 3 SNEP solutions

Lk Nodes Edges ξ∗
k bk sUAS Routes

L1 31 33 0.88 4 (4, 18, 24, 1, 29, 13, 12, 11, 26, 5, 4),

(4, 3, 7, 6, 8, 9, 22, 19, 28, 4)

L2 16 20 1.46 16 (16, 10, 1, 16), (16, 5, 6, 16),

(16, 8, 9, 7, 4, 16), (16, 12, 15, 16)

L3 15 18 0.86 6 (6, 8, 3, 15, 14, 1, 6),

(6, 5, 10, 11, 6)

L4 18 17 0.87 8 (8, 10, 15, 12, 14, 8),

(8, 4, 1, 5, 6, 3, 8)

L5 16 16 0.63 11 (11, 16, 5, 4, 7, 10, 11),

(11, 8, 12, 14, 1, 11)

two. Each repair vehicle carries two sUAS. For simplicity,
we assume a repair time, τrepair,k , of 10 minutes for each
localization set. We derived the travel time between yards
and localization set bases bk by computing the Euclidean
distances between each pair of locations. We assume that
the maximum distance can be covered in 6 hours, and that
θ = (1, 1, 1, 1, 1) for simplicity (i.e., all failure alerts occur
one hour prior to t0).

Using the formulation for the RVRP, as described in
Section 4.3, we obtain the following optimal solution: The
single repair vehicle from yard s1 travels along the route
(s1, b4, s1), and the routes for the two repair vehicles from
yard s2 are (s2, b5, b1, s2) and (s2, b2, b3, s2). Figure 11
illustrates the optimal solution. The longest time elapsed
from time of failure to time of repair is 5.87 hours.

From this initial computational study, we can make the
following observations: First, we verified that the overall
solutions are sensitive to θ. In general, a localization set Lk

with a larger θk will be visited first. Second, we can check
that the RVRP solution is affected by the magnitude of the
sUAS optimal exploration times, ξ∗

k . For example, a repair
vehicle can take a longer route if sUAS exploration times
for the localization sets in that route are relatively small. We
realize that the computation time to solve the SNEP can be
large for practical instances. Unlike the RVRP which can
be solved efficiently given the low number of localization
sets, the SNEP poses a computational bottleneck because
of the large number of monitoring locations to consider for
a typical localization set. For example, one SNEP solution
for a localization set consisting of 33 edges, took almost 3
hours to solve to optimality. Utilities that require efficient
dispatch of resources in a timely manner cannot afford to
wait this long, and so we propose a heuristic approach that
can promptly reach optimal or near optimal solutions.4

4As of this writing, we are also exploring path based formulations
which can further reduce the computational times, especially if used in
combination with our heuristic approach.
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Fig. 11 Optimal RVRP solution
where all failures alerts occur
one hour prior to t0. The arrows
depict the routes for the repair
vehicles, which originate from
the two yards (triangles) and
visit the temporary bases within
each localization set

5 Heuristic Approach

In order to improve the scalability of the SNEP, we propose
a heuristic approach that takes advantage of the monitor-
ing set constraint (6). This heuristic can be described in five
main steps: Solving a weighted set cover problem, initial
route construction, improvement procedures, route combi-
nation, and relocation with base insertion. The improvement
procedures consist of the relocation, exchange, and 2-opt
procedures, which are three well known local search algo-
rithms to solve the Traveling Salesman Problem (TSP) and
other related VRPs [7]. Our primary contributions in devel-
oping this heuristic are the weighted set cover based initial
route construction, and the final route combination and
relocation with base insert steps as shown in Fig. 12.

5.1 Heuristic Steps

Step 1 Weighted Set Cover Recall that in each localization
set Lk, k ∈ �1, K�, the sUAS need to visit a
subset of monitoring locations in order to isolate every
network component in Lk . This implies that, although each
monitoring location does not need to be visited, the sUAS
need to visit a subset that forms a set cover. In our context,
a set cover is a set of monitoring locations S ⊆ Vk such
that each network component in Lk is isolated if each

monitoring location in S is visited by the sUAS. A minimum
set cover (MSC) is a set cover of minimum cardinality that
can observe every network component in the localization set
Lk . The MSC problem is known to be NP-hard but many
commercial solvers can solve this problem efficiently using
exact or approximation algorithms.

For the SNEP heuristic, we consider a weighted variant
of the MSC problem as discussed in [5] since distance from
the base must also be considered due to limited endurance.
For each monitoring location i ∈ Vk , we define xi to be
a binary variable equal to 1 if i is chosen as part of the
set cover and 0 otherwise. Furthermore, we consider the
shortest distance from the base to monitoring location i, or
τbk,i as the “weights” in the objective function. A set cover
S is a weighted MSC if it is an optimal solution of the
following problem:

minimize
∑

i∈Vk

τbk,ixi

subject to
∑

i∈Vk(e)

xi ≥ 1, ∀e ∈ E (24)

xi ∈ {0, 1}, ∀i ∈ Vk (25)

Constraint (24) ensures that for each network component,
at least one of the monitoring locations from Vk(e), is part
of the set cover. Note that because this is a minimization

Weighted
Set Cover

Initial
Route

Construction

Improvement
Procedures

1) Relocation
2) Exchange

3) 2-Opt

Route
Combination

Relocation
Base Insert

Fig. 12 Five steps used in the heuristic to solve the SNEP
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Fig. 13 Example network for justifying the use of weighted MSC in
the SNEP heuristic

problem and the weights are defined as distances from the
base, we can always consider the base to be part of the
set cover (since τbk,bk

= 0). For the remainder of this
section, we will refer to the monitoring locations simply
as nodes and bk as b. The intuition behind the use of the
weighted variant of the MSC as opposed to the unweighted
case can be explained using a “pathological” case shown in
Fig. 13, where three nodes are positioned at the specified
unit distances from a base. In general we would prefer to
visit a higher number of closer nodes as opposed to a few
nodes farther away. Recall that we consider the base as a
monitoring location and the edges in this graph represent
network components. If the sUAS can effectively isolate
adjacent components incident to the nodes, we can verify

that the unweighted MSC solution is {b, 3} but we would
prefer to use the weighted MSC solution {b, 1, 2} in order
to minimize the maximum travel time. If only one sUAS is
available, the unweighted MSC solution would equate to a
total distance of 20, i.e., to node 3 and back, whereas the
weighted MSC solution only requires a total travel distance
of 4, i.e., to nodes 1 (resp. 2) and back.

To show that the weighted MSC can lead to a feasible
SNEP solution, we highlight one example from Table 3.
Consider the multi-trip routes from the SNEP solution
for 2 sUAS exploring L2 from base node 16: sUAS 1
→ (16, 10, 1, 16), (16, 5, 6, 16), sUAS 2→ (16, 8, 9, 7,
4, 16), (16, 12, 15, 16). Each sUAS requires one interim
base visit. The nodes in bold make up the optimal weighted
MSC. Figure 14 shows the optimal weighted MSC along
with the topology of L2. We observe that the weighted
MSC will always provide a subset of nodes from which to
generate feasible routes for the SNEP. We use this insight to
construct the initial routes, as described next.

Step 2 Initial Route Construction
The initial route construction step takes an optimal set

cover S from the weighted MSC problem, the endurance
τmax , and the travel times τij between each pair of nodes
(i, j) ∈ V2

k as its input and provides an initial set of
simple routes as its output. To accomplish this, we apply
the well known Clarke & Wright Savings Algorithm. Two
versions of the savings algorithm exist; a sequential version,
where only one route is expanded at a time, and a parallel
version, where more than one route may be considered

Monitoring Locations 

Network 
Components 

(Edges) 
16 

5 

14 

6 

2 
10 

13 

1 

3 

9 

7 

8 

4 

12 

11 

15 

Fig. 14 Weighted Minimum Set Cover embedded within the SNEP Solution for localization set 2. The topology is shown on the left with weighted
MSC nodes in gray. The matrix on the right shows the associated monitoring sets with the weighted MSC nodes highlighted
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(a) Nodes visited one at a time (b) Nodes visited in succession

Fig. 15 Illustration of travel time savings

simultaneously [6]. We choose to construct the routes
in parallel since it generally provides better results as
described in [21]. For each pair of nodes (i, j) ∈ V2

k , let
Sij be defined as the time “savings” gained by visiting
nodes i and j in succession from the base node b and
back, i.e., (b, i, j, b) as opposed to one at a time, i.e.,
(b, i, b), (b, j, b). Using notation from Section 4, we let t ′jb

denote the total travel time for the route (b, i, j, b) and tjb

denote the total travel time for the route (b, i, b, j, b). Thus
the total savings is given by Sij = tjb − t ′jb . For example,
suppose that the two nodes i and j were originally visited
using two separate routes as seen in Fig. 15a. The total travel
time in this case is given by tjb = (τbi + τib + τbj + τjb).
Alternatively, if the two nodes are visited successively in
the same route as shown in Fig. 15b, the total travel time is
t ′jb = (τbi + τij + τjb). The total travel time savings is then
given by:

Sij = tjb − t ′jb = (τbi + τib + τbj + τjb)

−(τbi + τij + τjb) = τib + τbj − τij (26)

The intuition behind this savings approach is that pairs
of nodes with larger time savings should be prioritized
when constructing the initial routes. It is also important to
note that this approach works with asymmetric travel times
(τij �= τji) as discussed in [33]. In the asymmetric case,
the routes can be considered to be oriented and so we only
calculate the savings for Sij if i is the last node visited in
a route and j is the first of the other. Suppose we have two

oriented routes shown in Fig. 16a. Since i is the last node
visited in one route and j is the first node of the other,
Sij = τbj + τib − τij , which is the difference in the travel
times shown below Figs. 16a and b. Respectively, if k is the
last node visited in a route and l is the first of the other,
Skl = τkb + τbl − τkl , using the difference in travel times
below Fig. 16a and c. Since Skl provides the larger savings,
we only select this as a savings pair and do not consider Sij .

We calculate the savings Sij for every pair of nodes in
S\{b} and sort them in descending order of magnitude to
create a savings list. Starting from the highest savings pair
in the savings list, we construct one or more simple routes
based on the following cases for each pair (i, j) until the
savings list is exhausted [22]. For each case, we check for
feasibility, i.e., total travel time for each route is less than or
equal to τmax . We also keep inventory of the nodes that have
not been assigned to a route.

Case 1: If both nodes in the pair do not already belong to a
simple route, create a new simple route that consists
of the pair bookended by the base, i.e., (b, i, j, b),
given that the feasibility requirement is met.

Case 2: If exactly one of the two nodes in the pair (suppose i)
belongs to an existing simple route, then we insert
j in that same route only if i is an edge node and
the feasibility requirement is met. If i is preceded
by the base, then j is inserted before i, otherwise,
j is inserted after i. We follow this guideline in
order to preserve the integrity of savings pairs.

(a) (b) (c)

Fig. 16 Illustration of savings calculation for asymmetric travel times
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Case 3: If both i and j already belong to a simple route,
then we skip to the next pair in the savings list.

Once the savings list is exhausted, if there are any nodes
that were not included in a route, we create a new simple
route for each omitted node bookended by the base. The
initial route construction is completed once all of the nodes
in S are included within the set of simple routes. Let P
denote the set of simple routes resulting from this step. Note
that the Clarke & Wright Savings Algorithm does not allow
for the control of |P|. If |P| < u, we ensure that more
simple routes consisting of only two basenodes, i.e., (b, b)

are created until |P| = u. In the case of more than one
sUAS, this guarantees an available route to insert a node into
for the upcoming relocation procedure. Otherwise, we risk
inequity in sUAS workload.

Step 3 Improvement Procedures
The next three procedures attempt to improve P through

a sequence of moves, which we define as a modification
of nodes either within a route (intra-route) or between
routes (inter-route) to obtain a neighborhood solution out
of an existing one. We only consider feasible moves
based on τmax . We use the relocation, exchange, and
2-Opt procedures in this order based on computational
results on routing problems described in [29] as well as
our own computational tests on the 5 localization sets in
Table 3. After each of these procedures, we do not remove
any simple routes; even if a route is or becomes empty,
consisting of only two base nodes, (b, b), we carry them
over until Step 4, thus guaranteeing that |P| ≥ u.

1. Relocation. This inter-route procedure takes the initial
simple routes obtained from Step 2 as an input and for
all possible pairs of routes, completes the following two
stages:

(a) For each pair of simple routes, choose the route
with the maximum travel time as the “donor” route;
the max travel time is set as the incumbent best time
to improve upon.

(b) For each node in the donor route not including
b, remove and insert it into the other “recipient”
route in all of the possible positions between the
base nodes. For each move, compute the maximum
travel time between the two routes. Choose the
move that results in a smallest maximum travel
time compared to the incumbent best.

This procedure is shown in Fig. 17a and is similar
to the relocation procedure described in [33]. We
extend it to consider both τmax and the min-max
objective function of the SNEP. We apply the relocation
procedure first since it often produces the best results of
the three improvement procedures as discussed in [29].

2. Exchange. The exchange inter-route improvement
procedure as described in [33] considers every possible
pair of routes and attempts to exchange two nodes
between the two routes as shown in Fig. 17b. For each
pair of routes, we exchange all pairwise combinations
of nodes (not including the base). Like the relocation
procedure, we compute the maximum travel time
between the two routes after each move. We choose the
move that results in the smallest maximum travel time
compared to the incumbent best.

3. 2-Opt. As a final improvement procedure, we apply
the 2-Opt local search algorithm proposed by [7]
for the traveling salesman problem. This is an intra-
route improvement procedure that replaces two edges
with new ones so that a single route is maintained.
The example shown in Fig. 17c illustrates a valid 2-
opt move. The edges (i − 1, i) and (j, j + 1) are
replaced by edges (i − 1, j) and (i, j + 1), which then
reverses the direction of nodes between i and j [3]. We
systematically apply the 2-opt procedure on all pairwise
combinations of edges in each route. For each swap, we
accept the new route if it results in a shorter travel time.

Step 4 Route Combination
This step ensures that the number of final sUAS routes

created accounts for the number of sUAS available and
inserts an interim base visit if required. This problem is a
variant of the multi-processor scheduling or load balancing
problem [16]. In the multi-processor scheduling problem,
n jobs j1, j2, ..., jn are assigned to m machines, each job
ji has a non-negative processing time, and the goal is to
minimize the maximum load over all machines. In our
problem, the jobs are the set of simple routes that we obtain
after Step 3, each with varying durations less than τmax , and
the machines are the u homogeneous sUAS. There are two
additional considerations for our problem: first, if an sUAS
is assigned n simple routes, we incur additional time equal
to (n − 1)τbatt to account for the battery replacement times;
and second, we also need to consider merging two simple
routes into one simple route (with no interim base visit) if
the total travel time is within τmax .

If |P| > u, our greedy approach is to successively
combine the shortest two simple routes into a larger route
until |P| = u. Recall that we will not see a case where
|P| < u. We define an edge node as a node that is adjacent
to the base in a route. It follows that for a simple route
there are two edge nodes. If there is more than one simple
route created from the above steps, note that we will have
node-disjoint simple routes except with the terminal base
visits. We also define an edge node pair as a combination
of two edge nodes where each node in the pair belongs
to a different route. For example, given two simple routes
(bk, 1, 2, 3, bk) and (bk, 4, 5, 6, bk), the edge node pairs
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(a) Relocation (b) Exchange (c) 2-Opt

Fig. 17 Improvement Procedures. For each procedure, the top figure shows the route(s) prior to implementation and the bottom figure shows the
resulting route(s) [29]

would be (1, 4), (1, 6), (3, 4), and (3, 6). It follows that
given |P| routes, with 2|P| edge nodes, the number of edge
node pairs is given by:

(2|P|)!
2!(2|P| − 2)! − |P| (27)

We subtract |P| from the number of possible combina-
tions of edge nodes since we do not include edge node
pairs where both nodes belong in the same route. Using the
savings pairs from the initial route construction procedure,
we attempt to merge the two shortest simple routes (with
the lowest cumulative travel times) by the highest savings
edge node pair, reversing the order of one of the routes, if
necessary, to create a merged simple route. Note that this
approach can also work for the asymmetric travel time case
(τij �= τji) but we would need to account for the possibil-
ity of longer travel times from the reversal of routes. We
choose the merged route that results in the shortest cumula-
tive travel times and that is feasible. Otherwise, an interim
base visit is placed where we would have merged the two
simple routes, resulting in a multi-trip route.

Step 5 Relocation with Base Insert
This final improvement step executes another iteration

of the relocation procedure for all possible pairs of routes
(simple or multi-trip) but with the additional consideration
of a base insertion to accompany the inserted node. This
could be required in order to validate what could otherwise
be an infeasible route. We follow the same two stages from
the relocation procedure but with routes that can be either
simple or multi-trip. Suppose a node k is removed from
a donor route and inserted into a recipient route. If the
recipient route is a multi-trip route, we need to decompose
it into one or more simple routes in order to determine
feasibility. If we determine that a simple route is infeasible

due to the insertion of node i, we insert an additional interim
base visit according to a greedy approach. We represent
the simple route that received node k, as a sequence of
nodes (i1, . . . , in). We determine the cumulative travel
time to a given node iq and back to the base using the

equation τiq ,b+
∑q−1

m=1 τimim+1 , where q = 2, ..., n−1. If the
cumulative travel time exceeds τmax , an interim base visit
will be inserted before node iq . Indeed, this will result in
an increase in the cumulative travel time for the recipient
route (due to the additional travel time to and from the new
interim base and/or the τbatt ), but it can result in an overall
decrease in the maximum travel time over all routes.

By taking advantage of the special structure of the SNEP,
specifically, the monitoring set constraint (6), our heuristic
reduces the number of monitoring locations to consider
by solving the weighted set cover problem. We refine the
initial simple routes created using the Clarke & Wright
Savings Algorithm with additional improvement steps that
consider the min-max objective function of the SNEP and

Table 4 Savings List from the Clark and Wright parallel savings
algorithm

Pair Savings

(1,8) 0.61

(12,13) 0.55

(1,7) 0.40

(7,8) 0.40

(24,26) 0.35

(22,24) 0.33

(22,26) 0.32

(26,32) 0.31

(19,24) 0.29
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Fig. 18 Illustration of the Relocation with Base Insert Step. With this
pair of routes, the top route is the donor route with the larger cumu-
lative travel time (which includes an interim base visit). Node 30 is
selected to be moved from the donor route into the recipient route prior

to node 7. Since the recipient route’s total travel time was longer than
the sUAS endurance, a base visit is inserted according to a greedy
approach

ensures that the final simple or multi-trip routes account
for the number of available sUAS. To clarify the steps of
our heuristic, we show how it is applied for one example
localization set. We set τmax to 1 hour and u to 2 sUAS.

5.2 Example Problem

Step 1 Weighted Set Cover. In a localization set from
the same pipeline network which consists of 36 nodes
(monitoring locations) and 37 edges (components), an
optimal solution of the weighted set cover is S =
{1, 3, 5, 7, 8, 12, 13, 14, 18, 19, 20, 22, 24, 26, 30, 32},
of which 20 is the base node. This step immediately
reduces the overall problem size by limiting the number of
monitoring locations to consider from the original 36 to 16.

Step 2 Initial Route Construction. A portion of the ordered
savings list generated from the Clark & Wright Savings
heuristic for this localization set is shown in Table 4. For the
purpose of illustration, only the first 9 rows are shown. Each
row shows the time in hours that could be saved by visiting
the node pair in succession as opposed to one at a time.

The following setP of initial simple routes is created follow-
ing the three cases described earlier: (20, 7, 1, 8, 5, 3, 20),
(20, 14, 12, 13, 20), (20, 22, 24, 19, 18, 26, 30, 32, 20).
Each simple route meets feasibility requirements (the

duration of the routes are 0.84, 0.61, and 0.95 hours
respectively). Additionally, note that |P| > u.

Step 3 Improvement Procedures. All three improvement pro-
cedures provide incremental improvements to one or more sim-
ple routes. In the relocation procedure, node 19 is deleted from
the third simple route and inserted into the second.The maximum
travel time is reduced from the 0.95 hours associated with the
initial route pair (20, 14, 12, 13, 20), (20, 22, 24, 19, 18,

26, 30, 32, 20) to 0.91 hours associated with the new route pair
(20, 19, 14, 12, 13, 20), (20, 22, 24, 18, 26, 30, 32, 20).
The final routes after this procedure are: (20, 7, 1, 8, 5, 3, 20),
(20, 19, 14, 12, 13, 20), (20, 22, 24, 18, 26, 30, 32, 20).
In the exchange procedure, three exchanges take place
between the second and third simple routes. First, nodes
18 and 19 are exchanged, followed by 18 and 26,
and then 26 and 30. The final routes after this proce-
dure are: (20, 7, 1, 8, 5, 3, 20), (20, 30, 14, 12, 13, 20),
(20, 22, 24, 19, 18, 26, 32, 20). The duration of the routes
are now 0.84, 0.67, and 0.83 hours respectively.

In the 2-Opt procedure, one valid 2-Opt move for the
third simple route results in a reduction in travel time
from 0.83 to 0.67. The final routes after this proce-
dure are: (20, 7, 1, 8, 5, 3, 20), (20, 30, 14, 12, 13, 20), and
(20, 18, 19, 24, 22, 26, 32, 20). The duration of the routes
are now 0.84, 0.67, and 0.67 hours respectively.

Table 5 Comparison of SNEP
exact solutions with heuristic
solutions for 2 sUAS

Localization Set MIP Heuristic Optimality

Nodes Edges Obj Time (sec) Obj Time (sec) Gap

5 6 0.209 0.02 0.209 0.013 0%
11 10 0.413 0.41 0.413 0.042 0%
16 16 0.635 33 0.635 0.093 0%
18 17 0.869 10 0.869 1.115 0%
15 18 0.857 94 0.857 0.077 0%
16 20 1.464 7742 1.464 1.208 0%
17 22 0.745∗ 100000 0.745 0.157 0%∗
22 29 1.582∗ 100000 1.611 0.271 2%∗
31 33 0.882 10354 0.882 0.608 0%
36 37 1.291∗ 100000 1.369 0.715 6%∗

∗ Figures based on the best incumbent MIP objective value found in 100000 sec limit
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Table 6 Comparison of RVRP solutions

Time Since Alert Repair Vehicles Obj RVRP

θ Yard 1 Yard 2 tworst Solution

(1, 1, 1, 1, 1) 1 2 5.87 (s1, b4, s1),
(s2, b5, b1, s2),
(s2, b2, b3, s2)

(1, 1, 1, 1, 1) 2 2 5.05 (s1, b4, s1), (s1, b3, s1)

(s2, b5, s2),
(s2, b1, b2, s2)

(1, 1, 1, 1, 1) 2 1 7.40 (s1, b5, s1), (s1, b4, s1)

(s2, b1, b2, b3, s2)

(1, 5, 1, 1, 3) 1 2 7.52 (s1, b4, s1),
(s2, b5, b3, s2),
(s2, b2, b1, s2)

(1, 5, 1, 1, 3) 2 2 7.52 (s1, b4, s1), (s1, b3, s1)

(s2, b2, s2),
(s2, b1, b5, s2)

(1, 5, 1, 1, 3) 2 1 8.03 (s1, b5, s1), (s1, b4, s1)

(s2, b2, b1, b3, s2)

Step 4 Route Combination. This step entails trying to
combine the shorter duration routes (20, 30, 14, 12, 13, 20)

and (20, 18, 19, 24, 22, 26, 32, 20) with the edge node
pairs: (30, 18), (30, 32), (13, 18), or (13, 32). Out
of the 4 edge node pairs, (13, 18) offers the high-
est savings, so we attempt to create a new route
(20, 30, 14, 12, 13, 18, 19, 24, 22, 26, 32, 20). In this case,
this combined route exceeds τmax and therefore we end up
with a multi-trip route. The final routes after this proce-
dure are: sUAS 1 → (20, 7, 1, 8, 5, 3, 20), and sUAS 2
→ (20, 30, 14, 12, 13, 20), (20, 18, 19, 24, 22, 26, 32, 20).
The duration of the routes are now 0.84, 1.43 hours
respectively.

Step 5 Relocation with Base Insert. In Fig. 18, we show the
result of the last step in our heuristic. In this step, node 30
is relocated. A base visit is inserted due to infeasibility from
endurance limitations. While this results in an increase in
the cumulative travel time for the recipient route from 0.84
to 1.34, it results in an overall decrease in the maximum
travel time over all routes, from 1.43 to 1.37 hours. The final
routes are sUAS 1: (20, 30, 7, 1, 8, 20), (20, 5, 3, 20), sUAS
2: (20, 14, 12, 13, 20), (20, 18, 19, 24, 22, 26, 32, 20). This
completes the heuristic; the final maximum duration route
is 1.37 hours.

6 Computational Study

In this section, we first compare our heuristic solutions against
the exact solutions of the SNEP. Next, we solve the RVRP,
considering different assignments of repair vehicles to
yards, and different elapsed times from failure alert to repair
vehicle dispatch. Finally, we evaluate our solution for the
case when travel times are stochastic by employing Monte
Carlo simulation on representative network topologies.

6.1 SNEP Results

The MIP formulation for the SNEP described in Section 4 took
over 5 hours to achieve the exact solutions for the 5 localization
set scenario referred to in Table 3. Comparatively, our heuristic
was able to obtain the same optimal solutions in only 4.15
seconds. Thus, for this 5 localization set scenario, our
heuristic provided the optimal solution within an acceptable
time frame for real world implementation. Using the same
Kentucky based pipeline network, we altogether tested our
heuristic on 10 different localization sets consisting of up to

Fig. 19 Optimal RVRP solution
for the case where the failure
alert for localization set 2 (resp.
5) occurs 5 (resp. 3) hours prior
to repair vehicle dispatch
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37 edges (i.e., components). The largest of these represents
the biggest reasonable size that can be assigned to a repair
vehicle crew given the scale of the network. Computational
results show that high quality solutions can be obtained
using the SNEP heuristic for 2 and 3 sUAS. Table 5 shows
our results using 2 sUAS. The results for 3 sUAS are
included in Appendix B. The localization sets are listed in
ascending order based on the number of edges with the 5
localization sets used in our scenario highlighted in gray.
The overall average optimality gap was 0.78%. All of our
problem instances were solved on a computer with a 2 GHz
Intel Core i7 processor and 8 GB of RAM.

6.2 RVRP Results

Using the SNEP solutions for our 5 localization set scenario,
we also show the results of the RVRP, using different values
for θ and ns . Note that we can use the SNEP solutions as
inputs for the RVRP only because we assumed the same
number of homogeneous sUAS for each repair vehicle.
For each problem instance, we consider two yards, s1 and
s2, two sUAS for each repair vehicle, and a repair time,
τrepair,k , of 10 minutes for k = 1, . . . , 5. For simplicity, we
assume the temporary base set up time is negligible. For the
repair vehicle travel time, �, we divide Euclidean distances
between each pair of locations (k, l) in the set Y ∪ B by the
average vehicle speed.

Recall that earlier in Section 4 we considered a simple sce-
nario where we set θ = (1, 1, 1, 1, 1) for L1, . . . ,L5. We
now consider an alternative scenario where θ = (1,5,1,1,3)
meaning that localization set L2 (resp. L5) was activated 5

hours (resp. 3 hours) prior to t0. With all else equal, this
results in an increase in priority to visit these localization
sets earlier. Larger values of θ may arise due to the unavail-
ability of repair vehicles or crews as discussed in Section 4.
For each scenario, we also consider the availability of 1 to
2 repair vehicles at each yard to assess the impacts of ini-
tial repair vehicle placement (i.e., spatial positioning) on the
RVRP solution. Table 6 shows the resulting optimal values
for tworst and repair vehicle routes for each scenario.

Figure 19 shows the optimal solution for the RVRP
considering the scenario θ = (1, 5, 1, 1, 3) with 1 repair
vehicle at Yard 1, and 2 vehicles at Yard 2. As anticipated,
b2 and b5 are visited first by the repair vehicles originating
from yard s2. Surprisingly, the optimal solution sends one of
these repair vehicles along the longer route (s2, b5, b3, s2).
This is due to the longer sUAS exploration time required
for L2. Since the sUAS take more time to explore L2, the
repair vehicle which visits L2 compensates by traveling to
the closer localization set L1, thus resulting in the shorter
repair vehicle route (s2, b2, b1, s2). This implies that the
other repair vehicle is left to travel along a longer route.
The tworst for this problem, is 7.52 hours. When allocated
an additional repair vehicle at Yard 1 (2 repair vehicles at
both yards), tworst remains at 7.52 hours. This is because for
both cases, L2 overwhelmingly takes the longest time from
time of failure alert to repair. Indeed, 7.52 hours in this case
represents a tight lower bound for tworst regardless of repair
vehicle allocation since L2 will always be visited first and
take the longest time.

Finally, we investigate the impact of repair vehicle spatial
positions prior to dispatch. Of the 5 localization sets, L4

Fig. 20 Representative
topologies. Clockwise from top
left: extended star (4 internal
nodes with 3 degrees each),
binary tree (height of 3),
extended star (10 internal nodes
with 3 degrees each), and
extended star (17 internal nodes
with 4 degrees each). The
network densities for each are
shown on the top right. The
lower right has the lowest
density measure

20% 13% 

9% 4% 

J Intell Robot Syst (2019) 93:485–413 407



Extended Star (4,3)

sUAS Exploration Time (hrs)

D
en

si
ty

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0
1

2
3

4
5

Binary Tree

sUAS Exploration Time (hrs)

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
2

4
6

Extended Star (10,3)

sUAS Exploration Time (hrs)

D
en

si
ty

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0
1

2
3

4
5

Extended Star (17,4)

sUAS Exploration Time (hrs)

D
en

si
ty

2.2 2.4 2.6 2.8 3.0 3.2 3.4

0
1

2
3

4

15
0

histogram mean

deterministic solution

lognormal distribution

Fig. 21 Histograms showing the distribution of 1000 simulated sUAS exploration times on select topologies

is located near s1, and is farther from the rest of the
localization sets, which are clustered around s2. Therefore,
the case where 2 repair vehicles are at Yard 1 and only 1 is at
Yard 2 represents an “unbalanced” situation. In this case, the
additional distance traveled by the repair vehicles increases
tworst to 8.03 hours compared to 7.53 hours. Although

in general, the availability of repair vehicles are subject
to numerous factors (e.g., utilization rates), this indicates
the importance of proper spatial allocation, which we
consider as part of our future work. In summary, our results
provide insights in the coupling between the SNEP and the
RVRP, the interconnection between sUAS exploration time

Fig. 22 Probability of missed
network components from 1000
simulations given the endurance
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and repair vehicle travel times, and the overall solution’s
sensitivity to repair vehicle spatial positioning and θ.

6.3 Stochastic Travel Times

Although we solved the SNEP using deterministic values
for the travel times, the complexity of real time naviga-
tion for sUAS warrants a stochastic model to account for
environmental factors (e.g., headwind versus tailwind), the
need to circumvent restricted airspace (e.g., temporary flight
restrictions), and obstacle or terrain avoidance (e.g., manned
aircraft or powerlines). Ignoring the stochasticity of travel
times could otherwise lead to over-optimistic or infeasible
solutions. This is especially pertinent for smaller UAS that can-
not fully compensate for atmospheric disturbances given their
slower speeds and lower propulsion capacity [8]. Obstacle
avoidance as well as atmospheric turbulence prevalent at
low altitudes could also cause the sUAS to deviate from the
expected travel time between any two locations [34].

Based on the available a priori information with regards
to the environment, we can assume that the cruise speed,
denoted as VC , is a random variable with a known
probability distribution. Specifically, we assume that VC is
an independent and normally distributed random variable.
This assumption is relevant for low altitude flights, where
unpredictable winds prevent the use of even the simplest
wind models [34]. Due to the lack of available sUAS flight
data, we use mean cruise airspeed (V C), and the maximum
allowable operating speed (Vmax) from Table 2, resulting in
the following model for VC , as described in [35].

VC ∼N (μ, σ 2)= 1

σ
√

2π
e

(x−μ)2

2σ2 , μ=V C, σ = Vmax −V C

3
(28)

Likewise, we also assume that the climb (resp. descent)
rates are independent, normally distributed variables, where
the mean value is equal to the climb (resp. descent) rate
from Table 2, and the maximum climb (resp. descent) rate
is 5 m/s (resp. -3 m/s), respectively, based on empirical data
from the first class of representative sUAS.

For each simulation, we determine τij , between any two lo-
cations (i, j) ∈ V2

k by dividing the shortest path distance from i

to j with VC . Recall that we do not necessarily impose τij =
τji . We also incorporate the climb and descent rates into the
stochastic travel time based on the altitude change from i to j .

We now investigate the impacts of these stochastic travel
times with notional topologies; this allows us to assess the
impact of not only the random travel times but also the
network topology in the overall SNEP solution. We focus on
the tree and extended star topologies for our representative
localization sets. We select a binary tree with a height of
3, an extended star consisting of 4 internal nodes with
3 degrees each, an extended star with 10 internal nodes
with 3 degrees each, and an extended star with with 17

internal nodes with 4 degrees each. Fig. 20 shows the four
representative localization sets, in the order of decreasing
network density for each localization set Lk , k ∈ �1, K�.
We calculate the network density as follows:

|Lk|
|Vk|(|Vk| − 1)/2

(29)

For each chosen topology, we employ 2 of the first
class of sUAS shown in Table 2 with an endurance time
of 30 minutes. We assume each edge has a distance of 1
km for simplicity, and we normalize the distances so that
the longest distance can be reached given the mean cruise
airspeed and endurance of the sUAS. Also, the sUAS travel
along the edges of the graph. For simplicity, we set the
operating altitude to 120 m, equivalent to the maximum
allowable altitude for each monitoring location and 80 m for
the base location, since we assume that bk ∈ Vk . Finally,
we assume that the sUAS can monitor adjacent components
(i.e., edges) incident to a monitoring location (i.e., node).

We employ Monte Carlo simulation to investigate the
impacts of the proposed stochastic travel times on the sUAS
optimal exploration time, ξ∗

k . For each selected topology,
we first solve the SNEP using our heuristic, assuming
deterministic values for τij . Using the optimal routes for
each sUAS as a guide, we attempt to follow each prescribed
route using the simulated random travel times. This results
in some incomplete routes, that is, the sUAS will not be able
to reach some of the monitoring locations toward the end
of the route if the cumulative travel times are longer than
the endurance. Therefore, there is a likelihood of missing
some components in each localization set Lk, k ∈ �1, K�,
depending on the composition of the monitoring set Ck

i for
each missed monitoring location i ∈ Vk . We are concerned
with two measures of performance: first, the distribution
of the sUAS optimal exploration times, or ξk , for those
sUAS flights that successfully observed all components, and
second, the number of missed components for a given sUAS
endurance. Figure 21 shows the histograms showing the
distribution of exploration times based on 1000 simulations.

We can now make a few key observations. First, we find that
each histogram is best approximated with a log-normal distribu-
tion, based on the Akaike Information Criterion (AIC) compared
to other distributions like the Gamma and Weibull. We also note
that the lognormal distribution’s shape parameter decreases as the
network density decreases. Furthermore, the histogram mean
(respectively the mean of the associated log-normal distribu-
tion) is larger compared to the deterministic SNEP optimalvalue.
The difference between these two values grows as the network
density decreases (with differences of 0.046, 0.018, 0.062, and
0.075). In general, given the same number of nodes (and there-
fore the same number of potential connections), a lower
network density will lead to higher exploration time values
due to increased travel distances.
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Next, we investigate the impact of sUAS endurance
on the number of missed components as a result of the
simulated travel times. A network component e is missed
if the sUAS do not visit any of the monitoring locations
in Vk(e). We used a benchmark endurance of 30 minutes
to normalize the distances based on the first category of
sUAS in Table 2. We set the maximum distance to a
node from the base to half of the endurance. Figure 22
shows the probability of missed components from 1000
simulations with different endurance values ranging from
30 minutes to 1 hour. By using these values, we can
represent different sUAS platforms to some extent. For
each of the endurance values, we observe the number of
times a network component is missed. We note that the
extended star with 4 internal nodes resulted in very few
missed components. This is a direct result of its topology,
which requires only half of the endurance to travel to the
3 internal nodes adjacent to the base and back; by visiting
the internal nodes, the sUAS can successfully observe all of
the components. As expected, with higher endurance values
we observe a lower probability of missed components. In
general, we observe that topologies with lower network
density measures result in a higher probability of missed
components. We also observe that endurance values higher
than 45 minutes result in virtually no missed components
for each of the network topologies shown. This suggests
that class 2 and 3 sUAS from Table 2 with capable sensors
(larger monitoring sets) could satisfy mission requirements
despite the uncertainty from the external environment.

In summary, our computational study shows that our heuris-
tic can provide high quality solutions for the SNEP within a
time frame that meets operational requirements. Accounting
for stochasticity in travel times can significantly increase
the overall sUAS optimal exploration time. This suggests
that the overall RVRP solution will likely incur even fur-
ther delays in practice. Moreover, in some situations, fol-
lowing the prescribed route from the SNEP output can
lead to missed network components depending on the
endurance of the sUAS platform. Thus, in real-world envi-
ronments, proper choice of sUAS platform and conservative
route planning is needed to avoid costly setbacks from
unidentified failures. Still, sUAS-based inspection can lead
to significant cost and time savings in comparison to con-
ventional, purely ground-based, operations.

7 Summary and FutureWork

In this paper we provided an end-to-end operational frame-
work to model an sUAS-based inspection process in large-scale
infrastructure networks. We introduced important features of
the sUAS platform and the operating environment in the

development of MIP formulations for the SNEP and RVRP, where
the overall objective is to minimize the maximum time elapsed
from time of failure alert to time of repair, over all localization
sets. Given the significant solution time required for larger ins-
tances of the SNEP, we developed a scalable heuristic based on
the weighted set cover problem to limit the number of monitoring
locations to consider. We showed that our heuristic can achieve
quality solutions for 2 and 3 sUAS within seconds. We also
studied the effect of stochastic travel times on the SNEP
solution based on performance metrics such as distribution
of sUAS exploration times and probability of missed net-
work components. Further study is required to assess how
we might reformulate our heuristic to provide robust SNEP
solutions and to analyze the effects on the RVRP solution.

One can also consider an adaptive model that can adjust to a
dynamic operating environment. Indeed, unexpected changes in
monitoring requirements, airspace restrictions, communication
strength, and obstacles in the operating environment can impact
the sUAS exploration times and performance. One approach
could be to formulate the SNEP as a Markov Decision Process
to address dynamic travel times arising from these changes. This
could provide valuable insights to inform and support sUAS pol-
icy decisions to reduce sUAS exploration time.

Another extension to this work could incorporate
randomness in repair times for the RVRP. As mentioned
in Section 2, one can use data on the average age of the
infrastructure, or material type of network components in
a localization set to build a statistical model to estimate
τrepair,k for each k ∈ B. One can also consider using a
criticality factor for each localization set to determine the
necessary repair time. This factor could be based on the
proximity to population centers or environmentally sensitive
areas that would indicate higher priority over others for
faster repair. Finally, since we assume that repair time
includes the repair vehicle travel time to the exact failure
location(s), one can also consider randomness in this travel
time (e.g., due to road obstructions).
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Appendix A: Table of Notations

Table 7 Table of notations
Notation Definition

E Set of vulnerable network components, e ∈ E
θk Time since failure alert in Lk to t0

t0 Time of dispatch

Y Set of all yards, s ∈ Y
B Set of temporary bases

Lk Localization set

Vk Set of monitoring locations sUAS can visit where k ∈ B
Ck

i Subset of network components an

sUAS can isolate from location i in Vk

bk Temporary base location at Lk

ξk sUAS exploration time of Lk

tworst RVRP objective value, the time

elapsed from failure alert to time of repair

τrepair,k Time to repair the failure(s) in Lk

τbatt Time to replace the sUAS battery

R Altitude

u Number of sUAS in each repair vehicle

ns Number of repair vehicles at yard s

τmax sUAS endurance

τ k
ij sUAS travel times for every pair of locations (i, j) ∈ V2

k

T k sUAS Travel Time Matrix for Lk

� Repair Vehicle Travel Time Matrix

γkl The repair vehicle travel time from k to l in the set Y ∪ B.

P Set of simple routes

p Simple Route

Appendix B: Results for 7 Localization Sets Using 3 sUAS

Table 8 Results of SNEP MIP exact solutions for 3 sUAS compared to heuristic

3 sUAS

Localization Set MIP Heuristic Optimality

No. Nodes Edges Obj Time (sec) Obj Time (sec) Gap

1 5 6 0.209 0.02 0.209 0.014 0%

2 11 10 0.413 2.04 0.413 0.022 0%

3 16 16 0.586 770 0.586 4.122 0%

4 18 17 0.706 34 0.706 0.187 0%

5 15 18 0.857 14851 0.857 0.099 0%

6 16 20 0.825 54 0.825 0.86 0%

7 17 22 0.745 36545 0.745 0.134 0%

The last row indicates figures based on the best incumbent MIP objective value found in the given time
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Appendix C: Explanation of Big-M Upper
Bound for Constraint 13

Fig. 23 Here |Vk | = 3. If xib = 0 then tib = 0. If xib = 1, then tib is
at most 2 × τmax and 1 × τbatt after having visited node j first
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3. Bräysy, O., Gendreau, M.: Vehicle routing problem with time
windows, part i: route construction and local search algorithms.
Transp. Sci. 39(1), 104–118 (2005)

4. Chabot, D., Craik, S.R., Bird, D.M.: Population census of a large
common tern colony with a small unmanned aircraft. PloS one
10(4), e0122,588 (2015)

5. Chvatal, V.: A greedy heuristic for the set-covering problem.
Math. Oper. Res. 4(3), 233–235 (1979)

6. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central
depot to a number of delivery points. Oper. Res. 12(4), 568–581
(1964)

7. Croes, G.A.: A method for solving traveling-salesman problems.
Oper. Res. 6(6), 791–812 (1958)

8. Dadkhah, N., Mettler, B.: Survey of motion planning literature in
the presence of uncertainty: Considerations for uav guidance. J.
Intell. Robot. Syst. 65(1-4), 233–246 (2012)

9. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem.
Manag. Sci. 6(1), 80–91 (1959)

10. Deng, C., Wang, S., Huang, Z., Tan, Z., Liu, J.: Unmanned aerial
vehicles for power line inspection: a cooperative way in platforms
and communications. J. Commun. 9(9), 687–692 (2014)
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