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Abstract
Robotic systems differ drastically in their sensory capabilities, their computational power and their designated tasks. For
efficient algorithm development, however, we need to have a common modeling framework that enables us to generalize and
re-use existing solutions. A modular approach, which is coherent across different platforms, also allows faster prototyping
of new systems, given that existing functionality can be reused from already implemented modules. In this paper we develop
a modeling framework based on data flow graphs that achieves the following goal: We first merge synchronous data flow
and reactive programming into hybrid flow graphs, where we explicitly model synchronous and asynchronous data flow.
Then we transfer concepts from finite-state machines to achieve a coherent framework which we call Activity Flow Graphs.
The flow of activity enables us to model high level states directly in the data flow graph. The result is a single computation
graph that can express both perception and high level control aspects of any robotic system. This theoretical foundation is
the core of our open-source software framework CS::APEX, which allows the creation, manipulation and evaluation of
Activity Flow Graphs and enables rapid prototyping and experimentation and can be used with any robot supporting the
Robot Operating System (ROS). We then demonstrate the framework with two high level models for a fetch-and-delivery
robot and a person following robot.

Keywords Data flow programming · Activity flow graphs · Framework · Rapid prototyping · Robotics · Mobile robotics

1 Introduction

A common way to model any complex system is
using the various forms of Unified Modeling Language
(UML) diagrams. Finite-state machines (FSMs) are often
used, both in the design and as the foundation of the
implementation. They are, however, not really capable of
modeling concurrent or data-driven processes. Data flow
representations are commonly used to describe such data
processing pipelines [21]. They are mostly stateless and
therefore they nicely complement state machines.

Our work is inspired by UML activity diagrams
[10], which can express computational and organizational
processes. Instead of combining data flow and activity
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diagrams, we propose a novel model that unifies both
domains:

– We propose a framework called Activity Flow Graphs
(AFG). An AFG can represent perception and high level
mission control of a robot in a common data flow graph.

– We show how to transform an existing state machine
based system into an AFG.

– We present an open-source software framework
called the Algorithm Prototyper and Experimenter
(CS::APEX), which provides the necessary environ-
ment for implementing and executing activity flow
graphs, as well as a graphical user interface that allows
rapid prototyping with a visual programming or visual
configuration approach.

The proposed system is based on Synchronous Data
Flow (SDF) [19] and reactive programming. Both SDF
and reactive programming are common ways to model
data flow graphs and offer complimentary benefits: SDF
graphs can be seen as function evaluations, where each
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node in the graph processes all its incoming edges at the
same time, thereby synchronizing the calculation. Reactive
programming, on the other hand, is common in areas such
as user interface design, where the data flow edges are seen
as events and are processed asynchronously, whenever they
arise. The combined framework, which was published in
[6], is called SDF+ in the following and will be reviewed in
Section 3. In Section 4 we unify the two distinct components
of SDF+ to form a hybrid flow graph (HFG) model,
which explicitly models synchronous and asynchronous
data flow. This model can represent pure SDF and reactive
programming graphs. In addition, many constructs resulting
from the combination of the two components can be
represented in a more concise way.

While HFGs can model synchronous, asynchronous and
hybrid data flow graphs, high level states still have to
be represented in an additional model, such as a finite-
state machine (FSM). In many cases, this increases the
complexity of a system, due to the usage of multiple,
differing modeling paradigms. To eliminate the need for
another system, we introduce the concept of activity in
Section 5, which results in the Activity Flow Graph (AFG)
model. The AFG model is capable of representing hybrid
data flow graphs and high level state representation in a

common flow graph. In Sections 6 and 7 we then model two
different robotic systems using AFG.

Finally, in Section 8, we describe our open-source
implementation CS::APEX, which provides a back-end for
running and maintaining AFG graphs, as well as a front-end
graphical user interface for the manipulation and evaluation
of these graphs at runtime.

2 RelatedWork

In this paper we propose a novel way to model high level
robot control based on data flow. Many existing approaches
[2, 6, 12, 16] that model perception and mission control in
a single framework use a combination of multiple models,
such as data flow for perception and finite-state machines
for high level mission control. Statemate [15], an earlier
system, uses three separate model types: Module, state and
activity charts. We, however, define a coherent computation
graph model that can be used to model both perception and
high level mission control in a single data flow framework.
The proposed model is also designed to be adapted into
a graphical user interface (cf. Fig. 1) to enable rapid
prototyping and experimentation in the robotic scene.

Fig. 1 Screen shot of a fully functional AFG model in CS::APEX.
The graph performs several computer vision calculations to detect
bull’s eye signs for the SICK robot day 2014 competition [5], which

is described in detail in Section 6. The graph was designed and eval-
uated using the CS::APEX GUI, which was turned off during the
competition
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One of the best developed, explicit data flow models is
Synchronous Data Flow (SDF), which was first described
by Lee et al. [19]. SDF is synchronous, which means
that a processing node can only be executed, once all its
inputs have received a message. This synchronizes parallel
nodes, since the pipeline is blocked, until all nodes have
finished processing. Additionally, SDF is also commonly
constrained to be homogeneous, which means that a node
always consumes and produces exactly one message on
each input and output in each execution. A well-known
example of a successful implementation of SDF is the
LUSTRE language [13]. LUSTRE is an early SDF-based
programming language that has been designed to implement
reactive systems. Many other tools and frameworks utilizing
flow-based programming have been published in related
domains, such as Ptolemy II [11] and the Ptolemy-based
Kepler [21]. Special purpose frameworks include the Robot
Task Commander [16], the Konstanz Information Miner
(Knime) [1] for data mining, the Waikato Environment
for Knowledge Analysis (WEKA [14]) and Orange [9] for
machine learning and MeVisLab [3] for medical image
processing. There are also commercial products based on
data flow processing, for example LabVIEW and MATLAB
Simulink. More relevant for our work is ecto [12], which
grew out of the ROS [22] scene and also represents
computer vision and perception tasks as a directed acyclic
graph. In contrast to ecto, our approach explicitly handles
node parameters, allowing them to be used as data sources
or sinks. The ecto framework also provides some form of
event-handling, yet these are not part of the interface of a
processing node as in our proposed solution. Graphs in ecto are
meant to be specified and configured using Python
programs.

Other approaches base their unified model on finite-state
machines and extend them by also modeling data flow.
RAFCON by Brunner et al. [4], implements state machines
that support hierarchies and concurrency. The data flow is
used to represent parameters and return values for the states.
The system needs a separate solution for the implementation
of perception tasks. Sequentially constructive statecharts
[25] are another way to represent synchronous computation
based on state machines, which are designed for safety-
critical applications.

To summarize, we compare our approach to the two
closest related works in Table 1. The comparison is
performed based on each model’s capability to represent
synchronous and asynchronous data flow graphs, as well as
high level state transitions.

Flow diagrams are also common in workflow speci-
fication for businesses. Data flow and control flow are
used in business process management to analyze and verify
workflow processes [23, 24]. As with the similar sound-
ing ActivityFlow [20], a workflow process schema typically

Table 1 Comparison to related work

Framework Synchronous Asynchronous High level state

SDF + 0 −
reactive 0 + −
ecto + 0 −
RAFCON − + +
SDF+ + 0 −
HFG + + −
AFG + + +

Comparison of different approaches’ capabilities to model syn-
chronous and asynchronous data flow, as well as high level state
transitions: (+) well-suited, (0) possible, but laborious, (−) not possi-
ble

specifies activities that constitute the workflow process and
dependencies between these activities. Activities thus rep-
resent steps required to complete a business process. In our
model, we view activity as an abstract property that flows
through a graph, similar to data and control flow.

3 Synchronous Data Flow and Event-Based
Message Passing

The proposed approach is an extension of the SDF model
and is hierarchically defined based on the SDF+ model
published in [6], which we shortly summarize here. At
first we look at the synchronous data flow model. We
define both a formal and a graphical way to represent an
SDF+ flow graph. Let G = (V , E) be a directed graph of
processing nodes V and edges E. Then G combines both
aspects from SDF and event-based programming, where
each vk ∈ V represents a processing node. All nodes
exclusively communicate via message passing, which is
realized using the connections E. This way, each node is a
functional unit, solely described by its inputs and outputs.

3.1 Synchronous Data Flow

We represent each node vk as a set of ports that can receive
or send messages. Nodes can exclusively communicate
using message passing via these ports, which defines
a clear and precise interface between them. A node
represents a single process in the computation graph. Each
vk ∈ V is also assigned a processing function fk that
reads messages from incoming connections, then performs
arbitrary computations and generates messages on the
outgoing edges. In addition to the inputs, fk can also read
user-controlled parameters, which fully participate in the
data flow.
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Fig. 2 A node vk reads data from inputs kI and writes data to outputs
kO

For each node vk we define inputs Ik and outputs Ok

Ik =
{

kI1, . . . ,
kIik

}
, (1)

Ok =
{

kO1, . . . ,
kOok

}
, (2)

where node vk has |Ik| = ik inputs and |Ok| = ok outputs.
This is visualized in Fig. 2.

We add an edge (kO, lI ) to E if an output kO of node
vk is sending messages to an input lI of node vl (cf.
Fig. 3). Inputs and outputs are typed and can be connected
if their types are compatible. An output can be connected
to arbitrarily many inputs, but inputs can only be connected
to one output. We allow for an input to be optional, which
means that it is ignored, if it is not connected to an output.
It is treated as a normal input, otherwise.

We call process nodes without inputs sources and nodes
without outputs sinks. When the processing function fk is
executed, it will read the message from each I ∈ Ik and
write a message to some of the O ∈ Ok . After the execution
of fk , the messages for O ∈ Ok will be forwarded to all the
connected inputs.

3.2 Event-BasedMessage Passing

Pure data flow is ideal for processing indefinite streams
of information. A robot’s perception can be modeled using
multiple subsystems that are based on data flow. There are,
however, stimuli the system has to respond to, which are
more irregular and often not predictable. These can be both
triggered by external means or detected within the data
stream. We call these stimuli events and introduce means

Fig. 3 Outputs can send messages to many inputs. Inputs can only be
connected to one output

to handle them in a coherent framework with the data flow
itself.

To realize such asynchronous data flow communication
between nodes in G, we define sets Sk and Ek

Sk =
{

kS1, . . . ,
kSsk

}
, (3)

Ek =
{

kE1, . . . ,
kEek

}
, (4)

representing slots and events of node vk analogously to Ik
and Ok (cf. Fig. 4). Every node vk = (Ok ∪ Ik ∪ Ek ∪ Sk) is
therefore a composition of inputs, outputs, events and slots.
In the graphical notation, we show slots on top of a node
and events on the bottom.

Events can be used to send signals to another node by
connecting them to slots, contributing an edge (iE, jS) to
the edges E. Using SDF+, events can only be connected to
slots and outputs only to inputs, which gives as a definition
for any connection e between two nodes vi and vj as

e ∈ (
Oi × Ij

) ∪ (
Ei × Sj

)
. (5)

We will lift this constraint when we introduce hybrid data
flow in Section 4.

In contrast to the synchronous data flow, events are
more irregular and should be handled asynchronously once
they are triggered, so that not all events have to receive
a message at the same time. This means that slots can
be connected to multiple events and vice versa. By not
using the data flow to send events between nodes, we avoid
sending special marker messages. Additionally, disjoint data
flow sub-graphs can run at different frequencies but can still
communicate via events.

4 Hybrid Flow Graphs

In Section 3 we have recapitulated the core of the SDF+
model published in [6]. Now we propose a unified approach
that solves many of the limitations of SDF+. We begin with
a hybrid flow graph (HFG) model. Let G be an SDF+ graph,

Fig. 4 Events and Slots on a dual graph structure
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Fig. 5 An example graph in the detailed depiction. Optional� tokens
signal synchronous handling, and asynchronicity

then each node vk ∈ V again consists of four different types
of ports, with synchronous inputs Ik and outputs Ok , as well
as asynchronous slots Sk and events Ek . The SDF+ model
requires a connection e between nodes vi and vj to satisfy
Eq. 5, i.e. e can only connect inputs and outputs, or events
to slots (cf. Fig. 5).

When all inputs of a node have received a token, the node
processes them and generates output tokens. The inputs are
thus handled synchronously. Furthermore, the node can only
process another set of tokens on its inputs once all outgoing
tokens have been processed down-stream.

Slots, on the other hand, are handled asynchronously.
When an event sends a signal token to a slot, the token
can be processed immediately. In addition, the event can
immediately be triggered again and is not disabled until the
tokens are processed down-stream.

Limitations of the SDF+ model are mostly linked to
this distinction of the two flow types, which requires
special nodes in the computation graph to translate between
synchronous data flow and asynchronous event flow. The
HFG model is an extension of SDF+ and represents a
single, coherent graphical model. HFG also distinguishes
synchronous from asynchronous data flow, however it
allows for direct connections between the two, without
explicit translation nodes. Inputs Ik and outputs Ok are still
expected to be handled synchronously, whereas slots Sk and
events Ek are asynchronous. We now generalize the edges E

to allow hybrid connections, which means that a valid edge
e between two nodes vk and vl is given by

e ∈ (Ok ∪ Ek) × (Il ∪ Sl) . (6)

This definition allows the creation of hybrid connections,
connecting outputs to slots and events to inputs. As we will
shortly see, this allows more flexible graph constructions,
such as synchronously reacting to an event. Furthermore, no
more translation nodes are necessary to transition between
asynchronous and synchronous data flow.

Fig. 6 Dark ports (inputs and outputs) are handled synchronously,
light ones (slots and events) asynchronously

4.1 Simplified Graphical Representation

In most cases, nodes have multiple different message and
event ports. This can quickly complicate the graphical
notation, especially in large graphs (cf. Fig. 5). We therefore
simplify the notation and do not show the individual ports
where possible, as is demonstrated in Figs. 6 and 7. We omit
multiple edges between nodes, if they are not essential in
the current situation. Connections in the simplified notation
are interpreted according to the style of the port. Dark ports
are handled synchronously and light ones asynchronously.

The main difference between SDF+ and HFG is
visualized in Figs. 8 and 9, where we compare the two
ways to translate between asynchronous and synchronous
data streams, once in Fig. 8 with SDF+ and once in Fig. 9
with HFG. Since HFG is a superset of SDF+, however, both
are valid HFG graphs.

4.2 Exemplary Usage

4.2.1 Synchronous Reaction to Asynchronous Event

In SDF+ we use buffers to translate events to synchronous
data flow. However, avoiding the use of an unbounded
buffer is preferable in long lasting data flow graphs.

Fig. 7 The example from Fig. 5 in the simplified variant. We omit
representing ports and multiple edges in contexts where they are not
necessary
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Fig. 8 In the SDF+ model, translation requires additional nodes and
connections

Additionally, bounded buffers require tokens to be dropped,
once the bound is reached. In contrast, the HFG model
allows complete interaction between synchronous and
asynchronous data streams. This makes it possible to
implement a synchronous reaction to an event, guaranteeing
that every event is handled. Figure 10 shows an example
graph, where an event is synchronously handled and then
converted back into an event.

4.2.2 Converging Data Streams

Besides a synchronous reaction to an event, where we
use hybrid connections from events to inputs, we can also
make use of hybrid connections from outputs to slots. This
is demonstrated in Fig. 11, where a node v has several
slots that each receive tokens from possibly different,
synchronous data streams. All of these streams can operate
at different frequencies, they can even be irregular. The node
v handles all received tokens separately, in contrast to the
synchronous data flow case, where all inputs have to hold a
token for the node to become enabled.

5 Activity Flow Graphs

With HFG we have defined a coherent data flow model for
synchronous data flow and reactive programming. However,
we still need additional structures to model high level state
that changes orders of magnitudes less frequently than the

Fig. 9 With HFG the translation is directly possible and is therefore
less verbose

Fig. 10 A synchronous sub-graph is used to handle the event generated
by vs

data flow. Usually, this is done using some form of an
external finite-state machine. Instead, we propose to use
data flow as a primary model by eliminating the need for an
FSM with the introduction of the activity concept. We show
that the expressiveness of FSMs can be translated into HFG
with minimal changes to the model, resulting in Activity
Flow Graphs (AFGs). Subsequently we show how to apply
AFGs to model high level robotic mission control.

5.1 State Representation

In the example shown in Fig. 12, we demonstrate an HFG
solution to a stateful problem, where the system has to wait
for the arrival of a specific message, before it can continue.
We use this in our examples to let our robots wait for a signal
before the start of autonomous motion.

The example demonstrates one of the main reasons,
why HFG alone is not sufficient to model more complex
systems: Flow graphs are inherently stateless, with all
components representing functional units. A sophisticated
robotic system, on the other hand, always needs to consider
the global state of the robot and its mission.

In the example we can also see that the vertices of the
graph can be split into two disjoint sets, one representing
data flow and the other representing the FSM, where
interactions between the two sub-graphs are only possible
via asynchronous message passing. Instead of giving a more
precise definition for FSMs in the context of flow graphs,

Fig. 11 Node v handles different synchronous data streams
asynchronously
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we directly integrate a generalization the concept of states
and state machine graphs into the unified AFG model.

5.2 Activity Flow

Let us again consider the example from Fig. 12. If we
only observe the state machine, we can interpret the FSM
graph as a data flow graph: Each state is a data flow node
and the transition edges between states are asynchronous
connections. When the FSM transitions from state S1 to S2,
we can imagine a message being sent via the transition δ2.
The FSM always has a single active state, which is why we
can say that the message sent via δ2 transfers the activity of
the graph. This also holds in general, there is always exactly
one active node in an FSM and the activity can only be
transferred using a transition.

We now bring over the activity concept to HFG, with the
aim to eliminate the need for an FSM altogether. Let G be
an HFG with nodes V and edges E. For each vk ∈ V we
define an activated attribute

A(vk) ∈ {0, 1} , (7)

where 1 indicates an activated node. We initially set
A(vk) ← 0 for all vk ∈ V . The behavior of an activated
node is the same as that of an active state in an FSM, i.e. it
stays active until the activity is transferred to another node.
Importantly, whether a node is activated or not does not
necessarily influence the behavior of the node in the data
flow. If no activity is injected into the graph, we have a pure
HFG model. Otherwise, an activated node still participates
normally in the data flow, except for specially implemented
nodes that behave differently, depending on their activation.

For a node to become active, it has to receive the activity
via a connection, i.e. via a message passed from another
node. We therefore define an activity modifier attribute

a(•) ∈ {0, +1, −1} (8)

for tokens •, which can take on one of three values: 0
representing no change, +1 representing an activation and

Fig. 12 Technical example of an interaction between an HFG and an
FSM to wait for a message �: First state S1 emits signal and
transitions via δ2 to state S2. is handled by vl , which sends , once
� is received. Only now will the FSM transition to Sq via δq

−1 a deactivation. An inactive node receiving a token with
a(•) = 1 becomes activated. Likewise, if an activated node
receives a token with a(•) = −1, it will be deactivated.

In order to control the flow of activity, we need an
equivalent structure to the transition in FSMs. We therefore
define an active attribute for connections ek ∈ E as

A(ek) ∈ {0, 1} , (9)

such that only active connections can transfer the activated
property of a node to another. Whereas the activated state of
a node changes over time to reflect the state of a higher level
system, the activity of an edge is a fixed part of the graph
structure.

Sending an active token deactivates the node to achieve
a similar behavior to an FSM. Therefore we set the activity
of node vk to 0 once it has sent an active token. This
way, analogously to an FSM, activity is transferred between
nodes via edges. However, we do not have to define
additional node or port types. Instead, every output kO and
every event kE of node vk is able to relay activity and vk can
be implemented in an activity-agnostic way. This definition
results in a more general model than FSM, since an active
node can send activity to more than one succeeding node at
a time. Additionally, nodes can become activated from other
sources, e.g. any inactive node can send a signal with a

.
More than one node can be active concurrently, which

means that not every AFG can be represented as an UML
state diagram. Using the familiarly sounding UML Activity
Diagram, we can, however, represent the active sub-graph,
if we restrict the generation of activity to a single source.

5.3 Example Use Cases

5.3.1 Data Flow and High Level State Interaction

We can implement a solution to the problem shown in
Fig. 12 using activity flow. The idea is to wait until a node
vk has produced a message and only afterwards continue

Fig. 13 A solution to the same problem as in Fig. 12, with active edges
shown as a double line. The buffer node vb relays incoming tokens�1

to �2. Once activates node vb, the buffer transfers the activity to
Sq with the next�2
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propagating the high level state. This can easily be modeled
using AFG, as demonstrated in Fig. 13. We can use a
buffering node vb, as in Fig. 8. A node vk is sending a
message to vb, which simply relays it in form of an event to
Sq .

As long as vb is inactive, the signals �2 will have
a modifier of a(�2) = 0, so Sq will not be activated.

However, once a token with arrives, vb

will be activated. The next relayed �2 will then have a
modifier of a(�2) = +1, deactivating vb and activating
Sq . We therefore have constructed a graph where Sq will be
activated only after vk has produced a message.

Note that we do not have to consider activity in the
implementation of vk , vb or Sq , all of which are completely
activity-agnostic. Only when constructing the graph we
have to consider which edges have to be active for the
activity flow to be correct. We have a lower complexity than
in the solution shown in Fig. 12, which needed two different
graphs with completely different semantics, as well as many
more nodes and edges.

5.3.2 Unified Data Flow and Robot Control

The previous example has shown how we can use the
activity concept to control the current state of a robotic
system from within the data flow. Additionally, we can
model the reverse situation, where we control the data flow
according to the high level state. This can be used to activate
parts of a perception pipeline exactly when it is needed
and thereby conserve computational power when it is not
needed.

With SDF+ we have to use an FSM to deactivate parts
of the system, where we needed additional complexity and
where we did not have fine-grained control over the data
flow. With AFG we can, for example, throttle a currently
unimportant sub-graph to a lower frequency instead of
completely deactivating it. All of this can be achieved
without any of the involved nodes having to be specially
implemented. This is especially useful for robotic systems

with limited computational power, where not all pipelines
can be executed at the same time.

5.3.3 Finite-State Machine

Additionally, we show that activity flow graphs are capable
of representing any finite-state machine, by translating a
general FSM into AFG. Let (�, S, s0, �, F ) be a finite-
state machine where � is the input alphabet, S =
{s0, . . . , sn} is the set of all states, s0 is the initial state, � is
the set of all transitions and F is the set of all final states.

Fig. 14 shows an example of how we construct an AFG
G = (V , E):

(i) Create a global event ∗E1 that emits an active token to
initialize the graph and represents the initial state s0.

(ii) For each state sk ∈ S, except for s0, create a node vk

representing that state.
(iii) For each transition δt = (si , sj ) ∈ � between si and

sj :

(a) If si �= s0, create an event iEt for node vi

and a slot j St for node vj , and add an active
connection (iEt ,

j St ) to E.
(b) Otherwise create a slot j St for node vj and add

an active connection (∗E1,
j St ) to E.

(iv) Implement each node vk analogously to the imple-
mentation of state vk . Instead of invoking a transition
δt = (si , sj ), publish an active signal token with

on the event iSt .

This shows that activity flow graphs can represent any
finite-state machine. We just have to ensure for each node,
that only one active token is sent at a time, otherwise
G implements a non-deterministic finite-state machine.
AFGs are, however, more expressive than FSMs, because
activity can be transferred to multiple nodes in parallel.
This can, for example, be used to concurrently control
the pose of an omnidirectional robot and determine its
orientation.

Fig. 14 Translation of an FSM
into the AFG framework. States
are replaced by nodes,
transitions are modeled as pairs
of events and slots. Active edges
are shown with double lines
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Fig. 15 The robot receives an item

6Modeling a Fetch-and-Delivery Robot

As a first example we describe an AFG-based solution
used for a robot competition. SICK robot day 2014 was a
competition held in an approximately circular arena with
about 12 m diameter in which four robots competed at the
same time. With a time limit of 10 minutes, each robot had
to alternately collect labeled objects at filling stations and
transport them to delivery stations based on the object label
(cf. Fig. 15). The octagonal collection area, where the robots
had to approach one of four filling stations, was located in
the central part of the arena. Once a robot had reached the
designated filling spot, it had to signal the human operator
to provide an object to be delivered. These objects were
known to be wooden cubes of side length 6 cm, which were
labeled on each side with the designated delivery station
using a bar code imprint. On the outer boundary there
were four delivery stations, one for each possible object
label. Whereas the filling stations could be selected freely,
every delivery station could only be used to hand off one
specific object type. Therefore robot-robot interactions were
inevitable and had to be accounted for.

Both filling and delivery stations comprised of a ring
of diameter 30 cm at a height of around 50 cm and a
bull’s eye target sign for precise positioning (cf. Fig. 16).
Delivery stations were additionally marked with a large
sign displaying one of the digits printed onto the wooden
cubes. The robots therefore had to be able to detect both
the bull’s eye and the number signs. Once a robot had
reached a station, it had to activate a green signal lamp to
indicate its intention to collect or deliver an object. A human
operator would then insert or remove a cube within at most
10 seconds.

6.1 Building Blocks

We reuse all the perception sub-graphs presented in [5].
These include the detection of cross-hair targets and number
signs, the detection and evaluation of items in the robot’s

Fig. 16 The item is removed at a delivery

basket, as well as the analysis of the environmental map.
Underlying systems, such as navigation and mapping, are
also kept. This leaves the implementation of additional
functional units to replace the finite-state machine needed
for the high level control of the robot.

6.1.1 Waiting for a Start Signal and Controlling the
Signaling Light

In the SDF+ model, we require an explicit state that remains
active until a starting signal is sent to the robot. With AFG,

Fig. 17 Two simple sub-graphs to replace explicit states in an FSM.
Activity is only transferred via doubly drawn lines

379



Fig. 18 The sign map node produces a map of known sign poses.
Unknown signs are mapped to ⊥. The cube detection node sends
the number printed on detected cubes. The activity flow is routed
depending on whether the sign pose is known or not

we do not need an explicit state to wait for a message, as
was already demonstrated in Fig. 13. Instead, we only need
a source node that reads on a data channel. Every produced
token is then compared to the predefined starting command,
and activity is transferred once the incoming token matches.
We do not need any problem specific implementation, every-
thing can be achieved using the sub-graph shown in Fig. 17a.

Similarly, controlling the signaling lamp is achieved by
sending a command via an outgoing ROS data channel. As
shown in Fig. 17b, we need to employ an activity gate. The
gate only forwards messages when it is active. This way we
ensure that only one message is sent and with this message
the activity will be transferred to the exporting node. Once

the message is exported, the node triggers an event which
will further forward the activity.

In both cases we do not need any application specific
nodes. Rather, every node in the active sub-graphs shown in
Fig. 17 can be interpreted as its own state.

6.1.2 Searching for a Delivery Station

To deliver an item, the robot has to know the location of
the delivery stations. A Gaussian Mixture Model is used
to track the positions of all known stations. The map may,
however, not yet contain the required station, which needs
to be handled robustly. This is done using the graph shown
in Fig. 18: At first the cube detection node becomes active.
Once a cube is detected, the imprinted number is sent to a
node called MapLookup, which also takes the current state
of the sign map. The output of the sign map node is a
function that maps the number read from a cube to a pose
in the world, whereas unknown stations are represented by
⊥. The MapLookup node emits a signal if the lookup fails,
i.e. when the result is ⊥. Otherwise it forwards the result of
applying the function to the key. This way, the activity flow
branches into two different flows, depending on whether the
delivery station is known or not.

In case the station is known, the pose resulting from
the map lookup is used as the goal pose for the navigation
system. Otherwise, the robot switches into an exploration
mode, where it drives counter-clockwise around the arena,
examining the outside wall for possible stations. This is
again implemented similarly to the FSM case, where a
problem specific node is implemented to generate goal
poses for the navigation stack, based on the current pose of
the robot and the results of map analysis.

Fig. 19 A mostly complete
activity flow graph that solves
the SICK robot day 2014
challenge. The highlighted
nodes form the active sub-graph,
which also includes the cube
detection, one of the perception
graphs shown earlier. Sensor
source nodes and command sink
nodes are not shown to reduce
complexity
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6.1.3 Positioning the Robot Reactively

Positioning the robot is done analogously to the FSM
implementation: To navigate the arena we employ a full
navigation stack, including path planning and following.
Additional movements are done reactively, i.e. not using
global positioning but relative measurements. For this,
the reactive programming approach achieved by the
asynchronous data flow of AFG is a perfect match.

In the original design, the robot first quickly moved about
2 m diagonally forward to populate the occupancy grid
map with enough measurements to extract the central filling
stations. This center exploration is its own state in the SDF+
model and can be replaced with a more generalized AFG
node MoveRobot. When activated, the node MoveRobot
generates motion commands that move the robot for a given
distance in a predefined direction. Additionally, the FSM
has a state to back up the robot by about 1 m after collecting
or delivering an item, for which we can immediately reuse
the MoveRobot node.

In order to precisely place the robot below either a filling
or a delivery station, another node called PositionToTarget
is implemented. Whereas an FSM state would handle the
complete control of the robot, the AFG node is implemented
in a more functional way: As input it takes the pose of the
robot, the detected target signs and the estimated pose of the
target sign, and as output it generates a motion command.
The AFG approach has the advantage that additional
processing nodes can be used before and after the generation
of the movement command. For example, a Bayesian
filter can be used to improve the localization accuracy
of the target without changing the implementation of
PositionToTarget. Another possibility would be an obstacle
avoidance node that post-processes the generated movement
command to avoid collisions.

Fig. 20 The robot’s task is to accompany a person at higher speeds in
outdoor environments. High level control is needed due to unknown
environments and obstacles

Fig. 21 Perceived obstacles in the environment (red) and the person’s
velocity (arrow)

After the robot is positioned relative to the target sign,
it is commanded to drive towards the wall in front of
it until a critical distance is reached. This is achieved
using a general motion node MoveToObstacle, which has
as input the current laser scanner measurement and as
output a motion command. Again, the advantage of the AFG
approach is that we can arbitrarily pre-process the input data
using a data flow graph, e.g. filtering the laser scan. With a
single framework it is also easier to find good parameters to
tweak the performance of the robot, especially when using
a graphical user interface.

6.1.4 Hierarchical Graph

We combine multiple nodes into a sub-graph node to reduce
complexity and to make it easier to reuse existing solutions.
We combine selecting a filling station, navigating to the
station, positioning to the target, and evaluating the cube
into a Fetch Cube node. Similarly, we group the sub-
graphs shown in Fig. 17 into Wait for Start and Explore,
respectively. Delivering a collected cube is also grouped

Fig. 22 The Follow Person graph takes a person and either emits

or , depending on whether a path was found
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Fig. 23 Implementation of the nested graph: A path to the person is
planned. If a path was found, the follower controls the robot until the

token is received

into Deliver Cube, which strongly resembles the Fetch
Cube node. The only difference between the two is the
determination of the target pose and whether to wait for
a cube number or for a ⊥ token at the output of the
cube detection node. Combining the individual building
blocks, we get the AFG shown in Fig. 19, which completely
solves the challenge without the use of any additional high
level control structure. Also, Fig. 1 shows a screen shot of
the exact graph used for cross-hair target detection in the
competition.

7Modeling Human-Following Outdoor
Robot

As another example, we model a high level control system
for a Robotnik Summit XL robot with a stereo camera
setup. The resulting robotic system is capable of following
a person at higher speeds in outdoor environments, as

is visualized in Fig. 20. Using the kinematic controller
published by [17], the robot is able to follow a runner with
a maximum velocity of 2.5 m s−1.

7.1 Perception

We use a single AFG to model perception and high level
control. We use a 3D Velodyne VLP-16 LIDAR to detect
obstacles in the environment and to track the person. The
data is first imported using a generic ROS importing node.
Every scan is then segmented using a variant of the generic
obstacle detection algorithm published in [7]. Detected
obstacles are then clustered and tracked to distinguish
dynamic from static obstacles. A person detection pipeline
based on a Nerian SP1 stereo camera can optionally be used
to further distinguish persons from other dynamic obstacles.

The result of the perception part of the graph is visualized
in Fig. 21, where detected obstacles are shown overlaid on
the LIDAR scan. The currently tracked person is visualized
as an arrow, where the length of the arrow depicts the
person’s velocity.

7.2 High Level Control

Fig. 22 shows the central graph component needed to
model this robot. The Follow Person graph takes a
person’s location and tries to navigate the robot there. The
implementation of the graph (cf. Fig. 23) uses a predefined
navigation strategy to try to reach the person. If a path can
be found using this strategy, the path is sent to the Path
Follower node, which steers the robot along the path. In
addition, a Delay node receives the same path and emits a

token after a few seconds. This token stops the path
following process and returns the activity to the outer graph

Fig. 24 Using two instances of Follow Person we achieve a high level controller, which can recover from navigation errors
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Fig. 25 Trajectory of the robot
following a jogger for ca.
1.7 km in varying environments

via . This way, Follow Person steers the robot for a
predefined amount of time towards the person.

By combining differently parametrized instances of
Follow Person, we can handle challenging situations.
Figure 24 shows a graph using two instances: Follow Fast
and Follow Slow.

Initially, the Person Detection node is activated. The
activity is then transferred to the Object Tracking node with
the first message produced by Person Detection. When a
person is being tracked by the Object Tracking node, the fast
following node gets activated via the �person token. While
it is activated, the robot follows a path towards the person
that only contains forward motion. This way the robot can
drive at its maximum speed without braking.

When Follow Fast is done, i.e. either the end of the
planned path is reached or a time-out was signaled, the

activity flows back to the object tracking via . This
way we achieve a circular flow of control that regularly
activates the Follow Fast node. In case no forward path can

be found in Follow Fast, the token transfers the
activity to Follow Slow, another instance of Follow Person.
In this state the navigation is configured to slower velocities
and the path planner is allowed to plan both forward and
backward motion. This way, the robot can robustly follow
a person at the maximum speed possible. It will only slow
down if no forward path can be found, which rarely happens
in real experiments. One such experiment in shown in
Fig. 25, where the robot followed a person for ca. 1.7 km.

8 Implementation of Activity Flow Graphs
in CS::APEX

In the previous sections we have described activity flow
graphs in detail and we have shown multiple example
applications. Both robotic systems have been developed

using a common framework, called the Cognitive Systems
Algorithm Prototyper and EXperimenter (CS::APEX),
which consists of a graphical user interface and an execution
back-end. The user interface (shown in Figs. 1 and 26)
allows direct interaction with the structure of the data
flow graph and introspection into the flow of data. This
enables rapid prototyping of algorithms and also encourages
reusable code and modular designs.

The aim of CS::APEX is to provide a user-centered
platform for developing and experimenting with flow-
based algorithms for robots and other cognitive systems,
encouraging modularity, extensibility and accessibility. We
are focused on providing a user-friendly interface, giving
useful user feedback and making parameters of the system
more easily accessible. Resulting data flow networks can be
directly deployed on a robot.

The framework consists of two components: A graphical
user interface (see Fig. 1) based on Qt5 and a computation
back-end library for scheduling and maintenance.1 We
achieve modularity by implementing the flow-based graph
structure defined by the AFG model hierarchy, presented in
Sections 3, 4 and 5. Flow graphs automatically encourage
users to implement component-based solutions that only
depend on message types and can thus be easily reused.
Extensibility is accomplished by a plug-in system, which
makes modification of the main components unnecessary
and simplifies the distribution of implemented computing
nodes among collaborators.

The user interface allows the user to dynamically add
and delete computation nodes at runtime. Nodes can also
be disabled and enabled, moved and copied. Furthermore,
the user can add and delete connections between nodes
and inspect the transmitted values. No scripting or manual
configuration file editing is required. The user interface is

1An overview video can be seen at http://youtu.be/weFZZrQ1BeE
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Fig. 26 Screen shot of some of the prototyping and profiling capabil-
ities in CS::APEX. a The user can inspect the data flow at any point,
here the output of a morphological operator node is shown. b Here five
nodes are being profiled, next to each of them we can see a bar plot

of the durations of the last executions. c A global profiling plot on the
bottom of the screen gives more detailed information, accurate to 1 ms.
In this example, two of the nodes are executed in parallel, indicated by
overlapping red boxes

used to generate a network and to provide feedback during
the prototyping process. Once the configuration is done, the
UI is no longer needed and the graph can be executed in a
headless fashion. This way, a prototype configuration can
be used on a robot, without a screen attached.

Adding custom functionality is possible by implementing
new node types and providing parameters to allow fine
tuning. Computation nodes are written in C++11 and
dynamically linked once they are needed. We provide
multiple ways to add new processing nodes: Nodes can be
derived from a base class Node, or from specialized base
classes, like image filters. Furthermore, we provide a utility
class that can automatically generate nodes from a given
C++ function by analyzing the function signature using
template meta programming techniques.

Since the development of CS::APEX began in 2012, we
have developed more than 500 plug-ins to solve a variety
of perception problems for research projects and robotics
competitions: We achieved the second place in the SICK
Robot Day 2014, which was described in Section 6. We
also deployed the framework for the perceptions tasks at the
SpaceBot Camp 2015,2 which was hosted by the national

2http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151
read-15747

aeronautics and space research center of Germany (DLR).
Additionally, we are using the framework in research
projects: We developed a person-recognizing autonomous
transportation system in the BMBF-founded project PATSY,
using data flow graphs to detect objects and people in point
clouds. In the project IZST IOC 104,3 founded by the state
of Baden-Württemberg, we developed vision algorithms
for laparoscopic surgery. The framework is also used by
many students to simplify the development of robotic
prototypes.

The main motivation for the CS::APEX graphical user
interface is to aid the user in rapid prototyping of new
algorithms. As an example we show some of the available
functionality in Fig. 26. The depicted graph is taken from
another model used in the SICK robot day, which was
described in Section 6. This graph, which was created after
the competition, combines all other graphs presented before
in a single instance.

First of all, the example demonstrates the profiling
options available. Five nodes are profiled and for each of
them a bar plot of the past execution durations is shown. On
the bottom of the window there is an additional profiling

3http://www.ra.cs.uni-tuebingen.de/forschung/Chirurgische
Navigation
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panel that shows the execution start and end time points for
all profiled nodes. This enables rapid prototyping since the
user can directly observe the effects of parameter changes
on the performance of any node and on the complete
system.

The second feature shown is data inspection. The user
highlights a connection with the mouse cursor, which opens
a second window that shows the data currently sent via this
connection. Many message types that are available can be
visualized this way.

The final feature shown is the assignment of nodes to
thread groups, which is here additionally indicated by the
color of the nodes. This way nodes from different groups
can be executed at the same time, as can be observed in the
profiling panel.

9 Discussion and Conclusions

An important aspect of any complex system is an
architecture that is well defined and that allows all
collaborating users to develop their required functionality
as easily as possible. Developers in a team have different
programming styles and different levels of experience, but
their implemented functionality should nevertheless be as
reusable and interchangeable as much as possible in order
to maximize efficiency. This can best be achieved by a
consensus on common interfaces between modules. The
computation graph abstraction, which is the foundation of
the AFG hierarchy, is very promising in this aspect. The
interfaces of individual nodes in the graph are defined
by the types of messages the nodes read and write. With
the explicit introduction of synchronous and asynchronous
input ports, this interface description is even more precise in
our approach.

Conventional approaches employ disjoint structures to
model complex robotic behavior: A form of a data flow
graph and finite-state machines. FSMs are needed, because
data flow graphs are inherently stateless, yet complex
behavior requires a form of high level state management.

We have transferred the concept of activity from FSMs
into the data flow. The resulting AFG model is a coherent
way to model a complete robotic system without needing
any additional frameworks. In many cases, AFG models
require fewer states than equivalent, heterogeneous models.
Additionally, the activity concept is unobtrusive to the
implementation of individual nodes.

Another important aspect of large, complex systems
is modularity. Individual modules should have as few
dependencies on each other as possible. This means that
only the modules needed to solve the task at hand have to
be available. Using AFG we naturally achieve modularity,
due to the foundation on pure message passing interfaces.

Dependencies exist only on the types of messages sent
between nodes and not on the nodes themselves. Up to
this point we have implemented more than 500 individual
processing node types and more than 20 messages types.
Due to this modularity, the framework has successfully been
used in many projects, competitions and student theses.

Another design goal for AFG is to provide a coherent
approach, which means that every aspect of the computation
graph should be the same for all types of nodes. This is
where the lower level models (SDF+ and HFG) fall short,
because they still require the use of a finite-state machine
in order to implement higher level state. It is possible to
use the lower level models to implement the perception part
and a separate FSM to model high level control, where both
graphs can communicate with each other. However, this
requires the use of two completely different concepts.

Of course, we could implement a graphical user interface
that combines the construction of hybrid flow graphs and
finite-state machines, but then we would still need to
precisely specify the ways of interaction between the two.
The AFG approach instead generalizes the relevant aspects
of finite-state machines and combines them with hybrid
flow graphs. This combined approach is at first not as
intuitive as the well-known finite-state machines, because
the separation between state and data flow is lost.

However, the approach also has multiple advantages:
First of all, there is no need to explicitly implement different
states in the system. Every node can be directly used as a
state that is active for the duration of the node’s execution.
This is a common case for FSMs, where we switch between
states after specific computations are performed.

Second, the interactions between “states” and normal
nodes are formally defined and behave deterministically.
We can precisely understand the interaction between the
collaborating nodes. This enables the implementation of
algorithms for checking the graph structure and searching
for flaws in the graph. Many flaws are detectable, such as
missing connections that stall the execution of a graph or
incompatible data types (e.g. image output connected to
point cloud input). Since the AFG model is homogeneous,
there is a guarantee that there are no errors in the amount of
tokens sent to a node.

Third, since there is no distinction between different
types of nodes, the model becomes simpler and easier to
adapt into a graphical user interface with which users can
manipulate these graphs.

Lastly, we can use a common scheduling algorithm for all
nodes, which ensures that resources are properly managed.
In our implementation we are using a thread pool, where
each thread can implement any scheduling algorithm, such
as completely fair scheduling (CFS) or stack resource policy
(SRP). In our current implementation, each thread uses a
simple task queue, which implements FIFO scheduling. The
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user can then assign each node to any scheduler. Using the
user interface, the schedulers can be managed, nodes can be
assigned and the execution can be profiled.

We provide CS::APEX as an open-source implementa-
tion of a visual programming environment which imple-
ments AFG and which has already been used for various
robotic systems. The core project is available at https://
github.com/cogsys-tuebingen/csapex/ and various plug-in
projects are also available as open-source projects. All of
them are implemented in C++11, with user interfaces
implemented in Qt5. Among other libraries, these offer
support for ROS, OpenCV and PCL.

AFG has been used to model a freely navigating, person
detecting autonomous transportation system [7, 8]. The
framework has been used in two competitions: SICK robot
day 2014 [6] and SpaceBotCamp.4 Furthermore, we have
used it for evolutionary parameter optimization to determine
control parameters in [18].

For future work, we want to explicitly model time in
the flow graph, allowing the formulation of constraints to
guide the execution of more complex graphs. This would
take AFGs closer to real-time systems, even on regular
architectures and also allow reasoning about the execution
over time using linear temporal logic. Additionally, time
could be introduced into the control of the activity of nodes,
to realize time-out behaviors on a model level, instead of
in the implementation of individual nodes. Future releases
of CS::APEX should include further features to increase the
productivity of developers: The core implementation should
be implemented using a client-server architecture, such that
the user interface can be used on a different machine from
the actual robot. This would greatly improve inspection and
debugging tasks.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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