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Abstract
Monocular visual SLAM has become a popular research area in recent years because of its advantages of requiring low-
cost hardware and providing high computational efficiency. This paper presents a multiple maps based SLAM system with
four threaded architecture. When multiple maps are introduced the system works consistently in a large area for significant
length of time . A new map is created automatically when tracking fails or the size of the map becomes too large. Tracking
using multiple small maps reduces the accumulation of errors in visual SLAM to a significant extent when compared
with a single map. To enhance the robustness of tracking an algorithm for predicting the camera pose is introduced .
Exhaustive evaluations performed on publicly available indoor and outdoor datasets show that our system satisfies real-time
requirements for robotics applications while providing superior accuracy to state-of-the-art systems.

Keywords Monocular SLAM · Visual SLAM · Robot vision · Multiple maps

1 Introduction

Monocular visual simultaneous localization and mapping
(SLAM) is the problem of localizing the camera pose and buil-
ding a consistent map at the same time using only a single ca-
mera while the robot moves in an unknown environment. In
recent years, monocular visual SLAM has become a popular
research area due to its low-cost hardware requirements,
ease of installation and high computational efficiency.

1.1 Monocular SLAM

Most monocular SLAM methods introduced to date can be
classified into two main groups. The first group consists
of feature-based methods that estimate the camera pose
by minimizing the reprojection errors of the corresponding
image features. Two approaches within this group are the
filter based approach and the key frame(KF) based bundle
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adjustment (BA) approach. Strasdat et al. proved that the KF
based BA approach outperforms the filter based approach
at the same computational cost [1]. Our work focuses only
on the KF based BA approach. One of the more promising
algorithms in this category is the Parallel Tracking and
Mapping (PTAM) proposed by Klein and Murray [2]. The
most notable characteristic of this system is that it runs
tracking and mapping in two parallel threads to meet the
requirements of real-time operation. This algorithm works
quite well for small scale deployments. However, it is
not suitable for large scale applications as it suffers from
several limitations including: 1) relocalization with limited
invariance to viewpoint and 2) error accumulation. To
improve this, Mur-Artal et al. developed a system called
ORB-SLAM [3] which proposed a relocalization algorithm
with a high invariance to viewpoint and a loop closing
method. The second group consists of direct methods that
estimate the camera pose by minimizing the photometric
error based on image intensity information. Engel et al.
proposed a representative algorithm called LSD-SLAM
[4] which was shown to work well in some textureless
environments. However Mur-Artal showed that, compared
to feature based methods, its accuracy is significantly
lower in texture-rich environments [3]. Buyval et al. also
verified this in the application of indoor navigation [5].
Recently Forster et al. proposed a semi-Direct Monocular
Visual SLAM (SVO) [6] which combined the advantages
of both feature based and direct methods. This algorithm
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is promising because it runs at high frame rates and has
been shown to perform well on several MAV(Micro Air
Vehicle) datasets. However we encountered some difficulty
in running this algorithm on several ground vehicle datasets
because tracking failed in a very short time after map
initialization. Younes et al. summarized the published
research on non-filter based monocular SLAM systems [7].
As a result, we chose the feature-based monocular visual
SLAM method for this project.

The key limitation with this method in a large scale
application for long-term operation is the accumulation of
errors. Various methods have been proposed to improve this
through loop closure. Loop detection is the first step of
loop closure. To the best of our knowledge, the appearance
based loop detecting method is superior to others, such as
map-to-map matching or image-to-map matching. The main
representative work is FAB-MAP [8, 9] which detects the
revisited place in the already mapped area by using image-
to-image matching based on bag-of-words techniques. This
algorithm has proven to be greatly successful in localization
in outdoor areas where there are many point features.
Another typical example is SeqSLAM [10] presented by
Milford and Wyeth, which matches the current image with a
sequences of images. One outstanding characteristic of this
system is that it is suitable for use in extreme environmental
conditions such as seasonal changes or inclement weather.
In our application, we did not address the severe appearance
changes. Instead, we continued to follow the approach of
matching a single image. After loop detection, the pose-
graph based optimization method is key to improving map
accuracy for long-term operation. Kummerle et al. put
forward a general pose graph method (g2o) [11] which
introduced the loop edge into the pose-graph and then
solved this nonlinear least squares optimization problem
by using iterative techniques. Examining the general
pose-graph method, Dubbelman proposed a COP-SLAM
algorithm [12] based on a special sparse pose-graph ”pose-
chain” in which edges only exist between two consecutive
camera poses or two loop poses. Another feature of COP-
SLAM is the adoption of seven-DOF(degree-of-freedom)
similarity transformation which adds one extra constraint
to prevent the scale drift. This approach only corrected
the camera pose inside the loop. Another similar approach
was proposed by Mur-Artal [3] which also introduced scale
estimation between two loop frames to remove the scale
drift and subsequently propagate this scale to all other
camera poses.

1.2 Multiple Maps in SLAM

Studies have shown that loop closure can cope with error
accumulation and scale drift when the robot returns to the
explored place(a loop). However, if no loop is detected

or does not exist in the explored area, the problem of
how to deal with the accumulated error is a key issue in
increasing the accuracy of localization. It is known that
the monocular SLAM easily accumulates error as the map
grows. Therefore, we assumed that the bounded map size
using multiple maps when doing exploration might be
helpful. We verify this assumption in our experiments. Two
types of work related to multiple maps are multi-session
SLAM and sub-maps based SLAM. The multi-session
visual SLAM proposed by MacDonald et al. adopted anchor
nodes to combine multiple maps in a common coordinate
system [13]. In this system one map corresponds to one
single session defined by the user, such as a room, in a single
session. Also, there are significant overlaps between maps.
Our objective was to construct multiple maps automatically,
instead of artificially dividing the environment into sub-
regions. We also wanted to reduce the size of overlaps
between adjacent maps. Holmes and Murray proposed one
sub-mapping approach [14] which split the whole map
into sub-maps according to time cost in global BA. If
the time used in global BA reaches a particular threshold,
a new sub-map is spawned. In their system multiple
maps only existed for global BA and the system still
maintained one map. Based on our experience, global BA
does not always improve system accuracy in large scale
applications. In 2015 Bourmaud andMegret released an off-
line visual SLAM system with sub-map estimation from
some consecutive key frames and the alignment of sub-
maps based upon 3D relative similarity estimation [15].
Using the idea that the map is bounded in size, we created
sub-maps online when the bounded value was reached.
All the above mentioned multiple maps related systems
attempt to obtain a globally consistent map. However we
focused on constructing a system in which multiple maps
coexist and the camera is localized automatically in one
map. Another reason for using multiple maps is to maintain
the consistency of tracking. After testing several open-
source SLAM systems, we found that tracking failures were
inevitable even when recovery strategies were applied. To
cope with this issue, we built a new map when tracking
failed then inserted this new map into the last one if the
overlap was detected in a short time.

1.3 Recommendation

We developed this software to improve upon the state-of-
art monocular SLAM system called ORB-SLAM [3]. Our
recommended modifications to ORB-SLAM are:

– Build multiple maps instead of a single one, ensuring
the persistency of localization. When tracking fails a
new map is created automatically from the overlapped
frames which were localized in the last map.

J Intell Robot Syst (2019) 94:389–404390



J Intell Robot Syst (2019) 94:389–404

– Introduce a new thread for managing multiple maps.
This separated thread maintains similar performance to
that of the ORB-SLAM, because the extra function is
running in a different thread. At any given time, only
one map is activated. After each new key frame is
inserted into the current activated map, it is relocalized
in the other unactivated maps. If an overlap is detected,
the map switch/fusion process is triggered based on the
size of the current map.

– Improve the robustness of tracking. The tracker devel-
oped in paper [3] is easily lost especially when the
camera undergoes rotation. Our system predicts the
camera pose based on the decaying velocity model
for translation estimation and the template-based image
tracking method for rotation estimation.

– Enhance the accuracy of the map. In order to cope
with the measurement error, the corresponding features
are refined before triangulation. Forward sparse global
bundle adjustment is performed to optimize a map in
the loop closure thread.

– Compensate for the error accumulation by using multiple
small maps. When the system explores an unknown
scene for a long period of time, error accumulation
significantly decreases the accuracy of localization. If
loop closure is detected, scale consistency is checked
to reduce the error. However if the camera keeps
exploring the new area without going back to the
previous area, this regular approach fails because there
is no loop detected. The detrimental effect of the error
accumulation worsens as the map gets larger. Therefore,
our system limits the size of the map by constructing a
new map if the current one has too many key frames.

1.4 Outline

The rest of the paper is structured as follows. We begin
with an overview of our multiple maps based SLAM system
in Section 2. The system consists of four core components

which are tracking, single mapping, loop closing and
multiple mapping. In Section 3, the method for localizing
the camera pose is introduced. In Section 4 the proposed
mapping algorithms are explained. A loop closing method
(loop correction) to improve the system robustness is
discussed in Section 5. Management of multiple maps is
provided in Section 6. Finally, extensive evaluation of how
our system interprets popular outdoor and indoor datasets
was performed. The results are reported in Section 7.
Concluding remarks are presented in Section 8.

2 SystemOverview

As previously mentioned, this paper proposes a monocular
visual SLAM system that can localize the robot pose up to
a scale factor and construct a map once the robot begins
to explore the environment. When localization fails, a new
map is automatically created. This new map initialization
procedure starts with several explored image frames which
have already been added to the last map. If there are enough
features and good matching feature pairs in these past
images, this new map is probably created successfully from
these images, thus overlaps exist between these two adjacent
maps. When the robot returns to a previously explored
place, it is recognized as a loop and used to correct the map.

Figure 1 illustrates the system structure showing four
threads running in parallel: tracking, single mapping, loop
closing and multiple mapping. The single mapping thread
maintains an activated map which is used for localizing. The
tracking thread estimates the camera pose corresponding to
each image frame and decides which ones can be defined as
key frames. Once an image frame is considered to be a key
frame, the single mapping thread inserts it into the currently
activated map and extracts new map points observed in
this key frame. Subsequently, the loop closing thread starts
performing loop detection in the currently activated map
with the goal of finding revisited places to correct the map.

Fig. 1 The structure of multiple
maps visual SLAM system. The
four threads are run in parallel
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If no loop is detected, the multiple mapping thread tries
to find overlaps in the unactivated maps. If an overlap
between the two maps is detected, this thread starts the map
switch/fusion process. The tracking thread also determines
when a new map is to be created. At any time only a single
map is activated for tracking and single mapping purposes.
Other unactivated maps are used for overlap detection in
the multiple mapping thread. Among these four threads, the
tracking thread has the highest priority and the multiple
mapping thread has the lowest priority. This ensures that
tracking meets the requirement of real time operation.

Our software was developed using several open source
libraries. A binary feature [16] presented by Rublee
et al. (ORB) is similar to an oriented multiple scales
FAST(features from accelerated segment test) corner
detector and an associated 256 bit descriptor. The ORB
features are detected in each frame. This feature is highly
invariant to viewpoint which is beneficial for matching
from wide baselines. Further, the bag-of-words(BoW) [17]
representation for an image proposed by Galvez-Lopez and
Tardos is used to carry out feature matching. The visual
words vocabulary with several levels is built off-line using
the ORB descriptors. The vocabulary was extracted from
a large number of images in various indoor and outdoor
environments to ensure the generality of the vocabulary.
Matching is carried out by first searching through the BoW
representation and then performing ORB feature matching
in the same node at a medium level of the vocabulary
tree. This makes the matching process more efficient. An
inverted index list for each visual word is used for storing
key frames in which that word has been detected. This
increases the speed of image matching during relocalization
and loop/overlap detection. The key frames are connected
as a pose-graph. The weight of each edge in the graph is
dependent on how many visual words are shared by the two
key frames connected by that edge. BA is used for map
optimization where the pose-graph optimization technique
implemented in g2o library [11] is adopted.

3 Tracking

The tracking thread is primarily responsible for estimating
the camera pose in real-time, with the assumption that a map
has already been built. The camera pose is initially predicted
from the last camera pose and then refined by using the map.
If the tracking quality in a particular frame is deemed to be
good, this frame will probably be inserted into the map as a
key frame. If tracking fails in less than five frames, global
relocalization is used to predict the camera pose. If tracking
fails for more than five consecutive frames, the tracker is
considered to be lost and a new map is created.

3.1 Initial Pose Estimation

An initial camera pose is calculated when a new image
frame arrives. The initial camera pose is only a rough
estimate and is refined later by using the map-based tracking
method. The following two methods shown in Fig. 2 are
used for obtaining the initial camera pose.

If tracking quality of the last image frame was good,
the initial pose is predicted based on the camera motion
model and image rotation in 2D space. The camera motion
model is used for estimating camera translation. The 2D
image rotation is employed to estimate camera rotation in
3D space.

In our application the camera is mounted on a robot, so
the camera movement is supposed to be smooth most of
time. The camera motion model in our system is based on
the decaying velocity motion model, expressed as:

Vt = 0.9 ∗
(

Vt−1 + logSE3 (Tt · Tt−1)

dt

)
/2 (1)

where Vt and Vt−1 are the velocity of camera at time t and
t-1 respectively, Tt and Tt−1 are the estimated camera pose
at time t and t-1 respectively, dt is the time interval between
these two consecutive image frames. T is represented using
the Lie Group SE3 and logSE3 is the logarithmic mapping

Fig. 2 The flowchart for
roughly estimating the initial
camera pose for a new image

J Intell Robot Syst (2019) 94:389–404392



J Intell Robot Syst (2019) 94:389–404

operation in the corresponding Lie algebra [18], which
converts a 4*4 rigid transformation matrix to a six degree
vector. The average of the instantaneous velocity from the
last two camera poses and the last velocity Vt−1 is calculated
to reduce the effect of camera shake. Considering that the
estimated camera pose will slow down and eventually stop,
this average is multiplied by a velocity damping factor (0.9).

The predicted camera pose is

T̃t+1 = expSE3 (dt+1Vt ) · Tt (2)

where expSE3 is the exponential map that converts a six
degree vector to a 4*4 rigid transformation matrix.

Because tracking fails easily when the camera is rotated,
a rotation estimator is introduced into our system. This
first estimates the 2D transformation in the image plane
and then converts it to the 3D camera rotation matrix. The
2D transformation is estimated by using the template-based
image tracking method (ESM) proposed by Benhimane
and Malis [19]. This method uses an efficient second
order approximation to minimize the photometric error. The
transformation is initially set as an identity and then updated
by the following equation:

δx ≈ −2 (J (e) + J (xc))
+ · (I (xc) − I (e)) (3)

where x represents the transformation in the image plane.
The transformation consists of translation and rotation.
e represents the identity transformation. The Jacobian J

is the derivative of image intensity with respect to the
transformation. J (e) is constant and computed only once
since it refers to the reference image. The Jacobian J (xc)

which represents the first order derivative of the current
image, is updated at each iteration. The initial estimation
of xc is the identity transformation matrix, (·)+ is pseudo-
inverse, I (xc) and I (e) are the image intensities in the
current and reference images respectively.

The camera rotation in 3D space which causes the
above 2D transformation is estimated by minimizing the
reprojection error

min f (θ) =
N∑
i

(δui)
2 =

N∑
i

(u1(pi) − u2(pi))
2 (4)

The rotation is represented by a 3 degrees vector θ as in Lie
algebra [18]. This minimization problem is solved by the
Gauss-Newton method which iteratively updates δθ :

δθ =
(
J T J

)−1
J · δu (5)

where the Jacobian J (θ) is

J (θ) = ∂u

∂θ
=

[ − xy

z2
fx fx + x2

z2
fx − y

z
fx

−fy − y2

z2
fy

xy

z2
fy

x
z
fy

]
(6)

with fx and fy being the focal lengths of camera at x
and y respectively. (x, y, z) is the 3D point coordinate in

the camera reference frame. Our system selects 4 points
around the image center in the template image and the
matching points in the reference image are obtained by
using the estimated 2D transformation. These points are
back-projected into the camera coordinates to estimate
the 3D camera rotation. Due to the requirement of real-
time operation, the rotation estimator uses a down-sampled
image whose resolution is less than 100 pixels in both x

and y directions. The image is also normalized to have zero
mean and blurred using Gaussian filter in order to reduce
the influence of noise.

If the current tracking quality is evaluated as being poor,
global relocalization is used to predict the new camera
pose. The new image is represented using BoW feature
representation. The candidate key frames are selected
according to an inverted index list of the visual words. The
correspondences are searched from candidate key frames
by combining visual word matching with feature matching
as described in Section 2. The predicted camera pose is
calculated by using the Perspective-n-Point(PnP) algorithm
[20] proposed by Lepetit et al. which estimates the camera
pose from n 3D-to-2D point correspondences.

3.2 Coarse-to-Fine Map-based Tracking

Assuming that the initial camera pose has already been
estimated, the map-based tracking procedure is to project
all map points under this predicted camera view and then
search for more point correspondences in adjacent areas to
update the camera pose. Since searching on a large map is
expensive, we maintain a local map which only contains key
frames connected to the latest key frame in the pose graph.
A two stage tracking approach is adopted in our system.

In the coarse tracking stage, the correspondences are
looked for in a relatively large window. Only map points
in the reference frame are used for coarse tracking. If
the predicted camera pose is calculated from the motion
model, the last frame is used as the reference frame. If it is
calculated using PnP, the reference frame is the previous key
frame used for relocalizing the current image frame.

In the fine tracking stage, local map points without matched
ORB features are projected into the current frame. If enough
inliers are found in the first tracking stage, searching
is performed in a small search window. Otherwise the
correspondences are looked for in a relatively large window.

The camera pose is finally optimized from all correspon-
dences found in both stages by using motion-only BA which
assumes that the estimations of map points are accurate.

3.3 Key Frame Determination

We tried to insert key frames as rapidly as possible to ensure
that tracking is more robust to deal with challenging camera
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movements such as rotations and fast motion. A frame is
considered to be a key frame when the following conditions
are met:

– Tracking quality is good. If less than 10 points
are tracked in the current frame, tracking quality is
considered to be poor. Otherwise, tracking quality
is defined by the percentage of successfully tracked
features at all possible map points. This percentage is
formulated as s = n/m, where m is the total number of
map points which are used for pose optimization and n

is the number of inliers. If s > 0.7 the tracking quality
is considered to be good.

– The camera is a certain distance away from other key
frames already in the map. The distance between two
key frames is normalized by the mean depth of observed
features. The distance between the first two key frames
is used as the threshold for determining if a frame is
far enough away from the nearest key frame. Therefore,
this rule is formulated as:

sci

dc

>
s01

d0
(7)

where sci is the linear distance between the current
frame and the nearest key frame in space, s01 is the
linear distance of the first two key frames while dc and
d0 are the mean depths of the current frame and the first
key frame.

– The key frame queue in the single mapping thread is
empty. This ensures that key frames can be quickly
inserted into the map. If this is the only condition that
is not met, the tracking thread sends a signal to inform
the mapping thread to stop the time-consuming map
optimization process.

3.4 NewMap Creation

Despite many efforts being made to develop a robust track-
ing system, in some challenging environments, tracking is
inevitably lost. When tracking is lost, a new map is created
in our system. If there are more than five frames which can-
not be tracked correctly, tracking is defined as being lost
and the signal to create a new map is sent. Once the signal
is received the mapping thread immediately stops all other
processing to start a newmap creation procedure. Moreover,
when the size of the map has reached the threshold, the new
map creation procedure is also triggered. The initialization
of a new map begins with several past image frames that
were explored in the last map. If there are enough features
in those images, this is done to ensure that an overlap exists
between adjacent maps. Otherwise, our system keeps trying
to build the newmap until there are enough features detected
in the images.

4 Single Mapping

The single mapping thread incrementally constructs a map
which consists of key frames and 3D map points. The
map is refined and expanded once a new key frame is
received from the tracking thread. The map also maintains
an undirected weighted pose graph which describes the
connections between key frames. The weight of each edge
in the graph depends on the number of common map points
that are visible in the two key frames connected by that edge.
After the new key frame and map points are inserted into
the map, BA is performed from all local key frames where
the map points in the new key frame were also observed.
This module is summarized as following two parts: map
initialization and map extension.

4.1 Map Initialization

The goal of map initialization is to obtain an initial set
of 3D points which will be used for tracking. This work
uses the method which estimates the fundamental matrix
between two image correspondences and then triangulates
2D features into 3D map points. In order to realize the
automatic initialization, the first image frame is considered
as the first key frame. Four steps are performed for each
subsequent incoming frame.

Firstly, a search is performed for the second key frame
that meets the following conditions:

– There are enough correspondences within the first key
frame. If there are insufficient correspondences the
current frame is reset as the first key frame.

– There exists enough baseline distance between the
current and the first camera pose for good depth
estimation to be performed. Since base line distance
is related to translation, the first step is to eliminate
the influence of rotation in the image motion. Rotation
is estimated from a downsampled image by using the
rotation estimator described in Section 3.1. Then the
features in the current image are reprojected as:

p′
2 = K · R

f irst
cur ·

(
K−1 · p2

)
(8)

where R
f irst
cur is the estimated current camera rotation

relative to the first camera pose and K is the intrinsic
camera matrix. This is followed by computing the
reprojection error

∣∣p′
2 − p1

∣∣ which gives the image
motion caused by camera translation. If the median
of all reprojection errors from the correspondences is
larger than 20 pixels, the current frame is considered to
have enough base line distance relative to the first key
frame.
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Secondly, the fundamental matrix Fc
r is estimated based

on epipolar constraint theory shown as xT
c · Fc

r · xr = 0.
Here xc and xr are image coordinates of ORB features in
the current frame and the first key frame respectively. In our
implementation, an 8-point algorithm [21] is adopted with
RANSAC(random sample consensus) search.

Thirdly, rotation and translation transformation are
estimated from an essential matrix:

Ec
r = KT · Fc

r · K (9)

where K is the intrinsic camera matrix which is known
through the offline calibration. Four possible rigid transfor-
mations are obtained through the singular value decompo-
sition of Ec

r . For each such transformation, the 2D features
are triangulated into 3D points and the reprojection error is
computed and used to label inliers. The rigid transforma-
tion with the most inliers is considered as the current camera
pose.

Finally, the initial map is constructed by triangulating the
correspondences based on the above transformation matrix.
Bundle adjustment is also performed to refine this map.

4.2 Map Extension

The map initially only contains two key frames. As the
camera moves away from the initial area, the map needs to
be continually extended in order to continue tracking. This
extension is performed when a new key frame is provided
by the tracking thread. Along with adding this key frame
into the current map, the new map points also need to
be put into the map. The ORB features in the new key
frame which have not been matched with known map points
are considered as candidates for the new map points. In
order for these candidates to be added to the map, their
correspondences must be found in another camera view.
The closest key frame is selected as this second view and
correspondences are established using epipolar search. The
ORB features which lie along the epipolar line in the second
view are compared with the candidate map points using
the Hamming Distance Test on ORB descriptors [16]. If a
match is found, the corresponding point is triangulated and
inserted into the map.

Triangulation is based on the hypothesis that the two
rays back-projected from the corresponding points intersect.
This hypothesis is valid if and only if the correspondence
satisfies the epipolar constraint. Since a measurement error
often exists in practice, the ray tends to be skewed.
Therefore, before performing triangulation, the measured
locations of the corresponding points are corrected using a
non-iterative algorithm [21] to minimize :

mins(t) = d(x, l(t))2 + d(x′, l′(t))2 (10)

where x and x′ are the corresponding points in the
two images, l(t) and l′(t) range over all choices of
corresponding epipolar lines parametrized as a one-
parameter family of lines and d(·) are the shortest distances
from the points to the epipolar line. The foot of the
perpendicular thus obtained is the corrected point which is
substituted for the measured point. Finally, the 3D point is
obtained using the direct linear transformation (DLT) [21]
method which finds the solution to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 · t
(3)T
1 − t

(1)
1

v1 · t
(3)T
1 − t

(2)
1

u1 · t
(2)T
1 − v1 · t

(1)
1

u2 · t
(3)T
2 − t

(1)
2

v2 · t
(3)T
2 − t

(2)
2

u2 · t
(2)T
1 − v2 · t

(1)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· P = 0 (11)

where x = (u1, v1) and x′ = (u2, v2) are the corrected
projection positions of the 3D point P = [

x y z
]T

in the two images, T1 =
[

t
(1)
1 t

(2)
1 t

(3)
1

]T

and T2 =[
t
(1)
2 t

(2)
2 t

(3)
2

]T

are the projection transformations.

BA is used to maintain map quality. Full BA, which
processes all key frames and map points, becomes an
increasingly expensive computation as map size increases.
Significant time (in the order of tens of seconds) is required
for a map with more than 150 key frames to converge.
Therefore we adopted a local variant of BA. This variant
only processes the key frames connected to the current key
frame in the pose graph and map points seen by those key
frames.

When the camera moves in the well-explored portions of
the map, the mapping thread is relatively idle. It can then be
used to improve the map by: 1) creating new measurements
corresponding to the new features; 2) pruning redundant key
frames in which 90% of map points have been observed
in at least three other key frames; 3) dropping unreliable
map points which have probably been poorly estimated. The
unreliable map points have only two measurements, but are
predicted to be visible in more than 10 key frames.

5 Loop Closing

Loop closing is a crucial process for enhancing the
robustness of a SLAM system. Its aim is to detect whether
or not the camera has returned to a previously visited
location(marked as a loop) that is already present on the
current map. If the loop is found, it tries to use this
information to compensate for the accumulated error which
usually exists in visual tracking. The loop closing algorithm
that we used is summarized in the following three steps:
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Firstly, the image-to-image matching process is run to
detect revisited areas by using appearance information only.
This procedure tries to find overlapping key frames which
are not connected to the current key frame in the pose graph.
Key frames that share any visual words with the current key
frame are initially scored by the number of shared words.
This score is then recomputed according to the sum of
the scores of all connected key frames. Key frames whose
scores are higher than 75% of the best score are selected as
candidates for further validation.

Secondly, a map based geometrical check is carried out
by computing the 3D similarity transformation between
the current key frame and candidates from the previous
step. The geometrical error is computed based on the
corresponding map points. They are searched by employing
the ORB-based matching method and are aligned by a
similarity transformation. Compared to the 6 DoF(Degree of
Freedom) rigid transformation, the similarity transformation
factors in the scale drift, which can be expressed as

S = [
sR t

]
(12)

where s ∈ R
+ is a positive scale factor while R and t

respectively represent the rotation matrix and the translation
vector in the rigid transformation T = [

R t
]
. Given a set

of 3D-to-3D correspondences, the similarity transformation
is computed by using the closed-form solution presented
by Horn [22]. In this work, the RANSAC method is used
to find the best solution then it performs a guided search
to optimize similarity transformation further. If a candidate
key frame has enough inliers, it is considered to overlap with
the current key frame and the loop closure is thus detected
successfully. Otherwise, this candidate is considered as false
loop.

Finally, geometrical correction is performed to improve
the map if a loop is detected in the previous step. The current
key frame is corrected by adding the scale factor into the
translation vector as:

T̃ w
c = [

R 1
s
t
]

(13)

After correcting the current key frame, one local BA,
which only optimizes the connected key frames in the pose
graph, is performed. The similarity transformation for each
connected key frame i can be calculated using Sw

i = Sc
i ·

Sw
c . Here, Sc

i is the similarity transformation between the
current key frame and the connected key frame i which
is computed using a rigid transformation T c

i by leaving
rotation and translation unchanged and setting the scale
as s = 1. The rigid transformation is obtained by using
T c

i = T w
i · (T w

c

) −1. The corrected pose T̃ w
i for key frame i

is calculated by using Eq. 13.
Further, all associated map points existing in the current

and connected key frames need to be corrected. The

corrected map point j in the key frame i is calculated as
follows:

p̃w
j = (

Sw
i

) −1 ·
(
T w

i · pw
j

)
(14)

where first project map points by using the non-corrected
camera pose T w

i and then projecting it back with the
corrected similarity transformation Sw

i . After the above
correction has been performed, the local map, which only
includes the above key frames and map points, is optimized
by using the full BA process. A new thread is also triggered
to perform global bundle adjustment.

Due to the sparsity of loop closure detections, the loop
closing thread is free for a large portion of the time. The
map optimization is performed during this free time. In the
single mapping thread, only the local map is optimized. To
increase the accuracy of the map, global bundle adjustment
is usually performed as the last step. Since global bundle
adjustment is time consuming, the forward sparse global
bundle adjustment (FBA) method is used instead. Compared
to global BA, FBA only optimizes the forward pose tree
which is extracted from the pose graph. This tree starts
from the current key frame while the next key frame is at
least five key frames apart from the last one and has more
than 50 common words. The tree has been successfully
created when no key frames meet the above criteria. FBA
is performed once when no loop has been detected and
several key frames have been added after the last time it was
performed.

6Multiple Mapping

The multiple mapping thread is responsible for detecting
the overlaps and switching between maps. If the camera
comes back to an area that has already been seen in an
unactivated map, this is set as the currently activated map.
The current map is either fused into the previous one or set
as unactivated. This process consists of the following three
steps:

1. Search all unactivated maps for overlaps: The method
used for overlap detection is similar to that for loop
detection in loop closing thread. Since the detection is
performed in all previous maps, it becomes very time
consuming as the number of maps increases. A map
graph is therefore adopted in the proposed system to
store correlations between the maps. These correlations
depend on the number of mutual activities between the
maps. When the new map is created, the correlations
with the adjacently created map is initialized as one,
the correlations with other maps is initialized as zero.
Whenever a map ‘A’ is switched to or from a map ‘B’,
the number of mutual activities between ‘A’ and ‘B’ is
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increased by one. The search for overlap in previous maps
is performed in descending order based on this map graph.

2. Switch to the previous map: If the number of key frames
in the current map is larger than 50, the overlapped
previous map is set as activated while the current
one is set as unactivated. The remaining threads reset
automatically and use the overlapped map. On the other
hand, if the current map is small, it is fused into the
overlapped map. The fusion method is similar to the
correction method in the loop closing thread, with the
main difference being that all key frames and map
points in the current map are corrected, not only the
connected ones.

3. Perform global BA in a new thread to optimize the
merged map: Since global BA is a time consuming
process, a new thread is created for this step. Since
other threads are still running in parallel, some new key

frames are probably inserted after global BA. These are
updated with respect to the connected key frame which
has already been optimized in the process of global BA.

Our system builds multiple maps to cope with tracking
loss or the accumulation errors on the large map. Only
one map at a time is activated and it is used for tracking
and single mapping. In the case of tracking being lost,
multiple maps improve the robustness and accuracy of the
SLAM system. A small map has relatively small errors. But
the accumulation errors on the large map may lead to the
map becoming useless. Instead of building a large global
map, our system constructs several small maps in order to
limit accumulation errors and improve SLAM accuracy. The
errors in the newly constructed map are not related to the
last map. As the camera is localized in one single map, the
errors in one map don’t affect any other map.

Fig. 3 Map Fusion results for all KITTI sequences, compared with ground truth. The trajectory from ORB-SLAM algorithm is also shown as
yellow stars
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7 Experiments

7.1 Setup

The proposed system runs on a desktop equipped with an
Intel Core i7-3770K 3.5 GHz and a NVIDIA GeForce
7800GT graphic card. All tests were conducted using ROS
(Robot Operating System) Indigo framework on Ubuntu
14.04. In the following experiments, 2000 ORB features
[16] were extracted in the image at 8 different scales with a
scale factor of 1.2.

7.2 System Verification on Outdoor Dataset

The KITTI dataset [23] provided by Geiger et al. was
used to evaluate our system. The eleven sequences in this
dataset are captured from a car equipped with a stereo
camera driving around a residential area. The sequences
have corresponding ground truth calculated by using GPS
and a laser scanner. The camera trajectories estimated in
our multiple maps based SLAM system are shown as Fig. 3
along with the ground truth on ten of eleven sequences.

Sequence 01 includes a highway which has few image
features and a similar structure throughout. Consequently
our system did not track well. The camera poses are aligned
with the ground truth through a similarity transformation. It
can be seen from the results that our system can maintain
tracking during the entire sequence through restarting a new
map automatically. The trajectories from running the ORB-
SLAM algorithm on our setup (see Section 7.1) is shown
by yellow stars in Fig. 3. For our hardware setup, ORB-
SLAM only managed to complete a portion of the trajectory
in most of the sequences such as S00, S02, S05, S07, S08,
S09. However our system worked for long periods of time
because multiples maps were created automatically. Even
when the ORB-SLAM algorithm did manage to function
for an entire sequence, the performance of our algorithm
was superior. The reason is that our system can restrain the
cumulative error by restarting a newmap when the threshold
has been reached. For example in S10 in Fig. 3, significant
error accumulation exists in the latter part of the sequence
when using ORB-SLAM. The enlarged view highlights this
trajectory error in the latter part of the sequence. It shows
that the trajectory estimated by the ORB-SLAM algorithm

Fig. 4 Translation error for all KITTI sequences (red) comparing with ORB-SLAM algorithm (green)
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Table 1 Translation error using
multiple maps of the proposed
system and a single map used
by ORB-SLAM

Multi-Maps Single-Map

KFs RMSE mean median std KFs RMSE mean median std

S00 1848 4.909 3.674 2.97 3.255 246 2.642 2.251 1.797 1.382

S02 2314 3.012 2.337 1.910 1.901 170 0.990 0.788 0.629 0.598

S03 317 1.734 1.347 1.093 1.091 286 2.336 2.161 2.277 0.887

S04 122 1.828 1.364 1.037 1.217 121 2.107 1.802 1.693 1.091

S05 1071 9.577 7.766 6.765 5.605 691 36.800 30.435 25.185 20.687

S06 487 8.921 6.172 3.421 6.441 418 16.697 14.682 15.975 7.953

S07 417 7.822 6.192 5.699 4.779 292 17.472 15.845 14.292 7.364

S08 1950 2.644 1.982 1.555 1.749 157 1.833 1.593 1.461 0.907

S09 800 2.656 2.097 1.400 1.631 291 5.843 5.011 4.794 3.005

S10 544 3.286 2.463 2.221 2.174 505 18.317 14.487 11.225 11.209

(shown as yellow star in Fig. 3) strays away from the ground
truth as the map grows. However our system would have
already started a new map from point ‘A’ that inhibited the
accumulation of localization error.

Figure 4 shows the translation errors that occur when
using our multi-maps algorithm and the ORB-SLAM
algorithm. In some sub-figures, ORB-SLAM errors are not
complete because of the loss of tracking. This comparison
shows that our algorithm performs better in terms of
accuracy.

Further, the absolute trajectory error (ATE) was com-
puted. Table 1 shows the number of key frames and the
RMSE(root-mean-square-error), mean, median and stan-
dard (std) error of the proposed system compared with
ORB-SLAM. ORB-SLAM was only able to track the entire
sequence in only four of ten cases (shown as green lines in
Table 1) and even there its RMSE is higher than the multi-
maps algorithm. The results show that error accumulates
quickly as the number of key frames in the map increases.
In order to improve the tracking accuracy so it can be used

for a long term task, the proposed algorithm builds a new
map whenever the existing map gets larger. For example in
S10, two maps are built in our system instead of a single
one as in the case of ORB-SLAM. The localization error is
much higher (up to 18.317m) mainly because of the error
accumulation after 100 seconds when running the ORB-
SLAM algorithm. Our algorithm, however, starts the second
map at approximately 100 seconds and runs the localiza-
tion within it. For the remaining six sequences, ORB-SLAM
only managed to track a part of the sequence. The purpose
of the proposed system is for it to be usable for a large scale
robotics application and for it to be able to perform persis-
tent long term tracking and mapping. Our results show its
superiority over ORB-SLAM in this domain.

Figure 5 shows the feature points for initializing multiple
maps in sequence S02. The pairs shown in green are used
for computing the initial pose. The ones shown in red are
discarded when computing the fundamental matrix.

Figure 6 shows map fusion results from running
sequences S00, S02 and S05 respectively. In our system

Fig. 5 Feature pairs used for building multiple maps. The green pairs are used to build the initial map
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Fig. 6 Map Fusion. The map shown in green is merged into the map shown in red. The merged map is shown in blue

only the small map shown in green in Fig. 6 with less
than 50 keyframes is considered for merging into another
overlapped map shown in red in Fig. 6.

Figure 7 shows the map switch results from running
a larger dataset which combines three longest KITTI
sequences twice in the following oder: S00-S02-S08-S00-S02-
S08. In one run, there are 7932 key frames in total and 21
maps are created. Loop exists in both sequences S00 and S02.
There is no loop in sequences S08. For sequence S02 and S08,
maps switch for the second running is the same as it is in
the first running. In sequence S00, the map switch is slightly
different between the first run and the second run because
of the wider overlap between maps. This result verified that
the system is capable of switching to the previous map when
the camera returns to a revisited place.

The proposed algorithm significantly improves the initial
pose estimation when compared to ORB-SLAM. This, in
turn, is beneficial to the robustness of tracking. To verify
this, we counted the number of created maps by using
different initial pose estimation methods (shown in Table 2).
In this experiment, the map size is set as unlimited. The
higher the number of maps created, the less robust was
the tracking. This conclusion is based on twenty runs for
each sequence. The results show that our new initial pose
estimation method is more robust than ORB-SLAM.

Figure 8 shows the time spent in running each individual
thread in the proposed system. Events that are more time
consuming are labeled as ‘e0-3’. For sequences S00 and S08,
the map size is not limited and only one map is created
so that the multiple mapping thread is not run. e0 is the
event for closing a loop. A time-consuming process in loop
closing is FBA which only chooses a few key frames for
optimization. For sequence S02 three maps are created. e1
is the event for map switching which includes performing
corrections to the current map. e3 is the event for creating a
new map which is constructed from the overlapped frames
seen in the last map. The bottom right figure shows the time
cost of sequence S09 which we ran three times. e2 is the
event for map fusion which merges the current small map
to the overlapped map. Since tracking was run in parallel to
these events, the results show that tracking can still meet the
requirements of real-time application.

Figure 9 shows the distribution of time cost for estimating
camera poses in tracking for all test sequences. The figure
on the left shows the time distribution obtained from all
data. Occasionally, tracking takes much longer because
other threads are correcting map data which is shared by
the four threads. The figure on the right shows the time
distribution from part of the data in which time cost is less
than 100 seconds. From the comparison, we can see that

Fig. 7 Map Switch. Red for
running sequence S00. Green for
running sequence S02. Blue for
running sequence S08
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Table 2 Average number of created maps using different initial pose estimation methods

S00 S02 S03 S04 S05 S06 S07 S08 S09 S10

this paper 1 2.1 1 1 1.5 1 1 2.3 1.9 1

ORB-SLAM 3 7.9 1 1 2 1 2 4.8 2.2 1

the performance of our system is close to the ORB-SLAM
system that only worked for a small part of long video
sequences when running on our machine setup. Note that
the sample size for our system is 22007, compared to 7144
for ORB-SLAM. This is because often ORB-SLAM only
ran in parts of video sequences (shown as Fig. 3). Generally,
this distribution shows that tracking could maintain around
15-30 Hz, which is suitable for most robotics applications.

7.3 System Verification on Indoor Dataset

The TUM RGBD benchmark [24] provides a good indoor
dataset for evaluating the accuracy of camera localization
along with the ground-truth camera poses obtained from a

high-accuracy motion-capture system. In the light of our
focus on robotics application, we choose four sequences
which are recorded by a Kinect camera mounted on top
of a Pioneer robot. The robot is manually controlled
by a joystick to move through a large hall. It is more
challenging to use this dataset because of the serious camera
shake and many more poor-feature areas such as blank
walls. Figure 10 shows the translation error for every sub-
map. From this figure we can easily see that tracking
fails when the translation errors are increasing quickly.
Our system built a new map automatically when tracking
failure had been detected. In this experiment a blank
space often exists between the adjacent maps, such as the
significant interrupt between sub-map 1 and sub-map 2 in

Fig. 8 Time cost for tracking, single mapping, loop closing and multiple mapping threads. e0: loop closure in loop closing thread. e1: map switch
in multiple mapping thread. e2: map fusion in multiple mapping thread. e3: new map creation in tracking thread
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Fig. 9 Distribution of time cost
for tracking

ll l

Fig. 10 Translation error in four sequences recorded by a Kinect camera mounted on a moving Pioneer robot

Table 3 The RMSE error of the proposed system compared with RGBD-SLAM algorithm

Dimension Proposed System RGBD-SLAM

fr2 pioneer 360 4.24m*4.38m*0.06m 0.080536 0.912504

fr2 pioneer slam 5.50m*5.94m*0.07m 0.805553 1.165072

fr2 pioneer slam2 5.29m*5.25m*0.07m 0.676970 1.723923

fr2 pioneer slam3 4.98m*5.34m*0.07m 0.669821 0.908619

Fig. 11 Trajectory of camera estimated by our system comparing with the RGBD-SLAM system
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the ’freiburg2 pioneer 360’ dataset. This is mainly because
there were not enough features detected.

Table 3 shows the RMSE error of camera poses
estimated by our system compared with the estimate
from the RGBD-SLAM system [24] which is provided
along with the dataset. The RGBD-SLAM algorithm first
searches matching feature points from color images and
then combines the depth information to compute a set
of point-wise 3D correspondences. The camera poses
are estimated from these 3D correspondences by using
RANSAC and ICP algorithms. The camera poses for the
RGBD-SLAM algorithm were obtained from the authors’
website. However, the camera poses estimated from our
algorithm are unscaled. In comparison, the absolute scale
is found through an exhaustive trial and error process to
iteratively search for the minimum trajectory error. The
result shows that the accuracy of our algorithm is higher
than the one in the RGBD-SLAM. The RGBD-SLAM
algorithm estimates the camera pose based on the previous
image frames, but our algorithm uses the map-based method
which re-projects the explored map points into the current
image and then computes the camera pose by optimizing
the re-projection error. The former often causes significant
error accumulation. However, our tracking algorithm is
recognized as being lost and simultaneously a new map is
created to maintain system function when the errors have
severely accumulated.

Taking the ’fr2 pioneer slam2’ dataset as an example,
Fig. 11a shows the camera trajectory estimated by our sys-
tem, which built four maps. The RGBD-SLAM system only
built one map as shown in Fig. 11b. Because of the error
accumulation, the estimated camera pose often drifts. This
drift is also induced by the scale change which is not
estimated inside the SLAM algorithm. In order to compare
the RGBD-SLAM system with our multiple maps, we man-
ually divided the whole map into four sub-maps which have
different scales when aligned with the ground truth. How-
ever the error in the RGBD-SLAM system is still larger
than in our proposed system. This result verified that the
introduction of a new map can efficiently inhibit error
accumulation.

8 Conclusions

This paper proposes a multiple maps based monocular
SLAM system which can automatically create a map when
the current map becomes too large or the tracking quality
becomes poor. This system was evaluated on publicly
available indoor and outdoor datasets. Our results show
that our system can localize the robot in real-time. The
advantage of our system is that localization works on a
long term basis by automatically restarting a new map to

cope with the loss of tracking. The accuracy of our system
was also shown to be superior to the state-of-art monocular
SLAM systems.
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