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Abstract
This paper presents a novel concurrent optimal trajectory planning method for a team of quadrotors to switch between various
formation patterns in the confined indoor environment. Using static shape-based, dynamic trajectory-based approaches,
different formation patterns of quadrotors can be optimally and rapidly arranged and localized. The modified algorithm of
optimal reciprocal collision avoidance (ORCA) is applied to produce the nominal collision-free trajectories for the quadrotor
team as the first stage, which is extended to three-dimensional space and the downwash effect induced by the propellers
is effectively addressed. Considering the flatness property of the quadrotor dynamics, the jerk-optimized trajectories based
on the cubic clamped B-spline are then generated and these corresponding constraints are also satisfied. Moreover, a robust
perfect tracking (RPT) outer-loop controller is designed to compensate the poor resolution of the indoor localization system.
Finally, simulations are conducted to verify these proposed algorithms, and the real-world flight result was successfully
showcased at the opening ceremony of Rotorcraft Asia & Unmanned Systems Asia 2017.
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1 Introduction

Benefitting from the development of miniature, high-
performance processors in recent decades, unmanned aerial
vehicles (UAVs), especially quadrotors, have reached a
new stage of becoming smaller, safer, faster and smarter
[17]. Moreover, since successful navigation relies on
complete interconnected loops of localization, mapping,
planning and control, various methods proposed and
implemented by researchers are pushing quadrotors to
fulfil complex tasks, such as for the multiple vehicle
application scenarios in most cases, including package
delivery [1], disaster rescue [2], warehouse management
[12], and for the entertainment [3]. Due to the requirements
of cooperative tasks, it is critical to prevent the inter-
quadrotor collision during the switching process of different
formation patterns. Thus the focal point of this paper is
to make multiple quadrotors track smoothed trajectories
robustly in a confined indoor space, which are generated
by algorithms satisfying dynamic constraints and collision
avoidance.
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Multiple quadrotors have unstable and under-actuated
dynamic proprieties intrinsically, thus arbitrarily generating
collision-free trajectories is often unachievable. In [18],
Kuriki proposed an artificial potential field approach that
kept collision-free for the linearized quadrotor model, which
was built on small-perturbation assumption and near the
hovering mode. In addition, collision avoidance questions
can be formulated as constrained optimal control problems.
In [14], Hehn declared that nonlinear dynamics were
suitable for the time-optimal maneuvering trajectories but
brought about expensive computation. Just as a remedy,
the flatness system theory was imported to generate
trajectory for quadrotors, Mellinger in [20] proposed a
snap-optimized collision-free trajectory generation method
for heterogeneous quadrotors with the help of flat output
properties. Rosales developed a new strategy in [23] based
on the formation control, which applies the null space of a
Jacobian matrix to achieve the different control objectives
in a non-conflicting way.

Contrary to the cited approaches, the method pro-
posed in this paper separately generates trajectories of the
quadcopters in sequential stages. The nominal trajectories
are collision-free, dynamically constrained and smoothed,
thereby allowing the robust tracking controller in each quad-
copter to accurately track these trajectories. To achieve this
objective, necessary algorithms aforementioned need to be
modified and integrated. From the geometric perceptive, the
terminology of velocity obstacle (VO) was firstly proposed
in [10] to define all possible velocities that lead to colliding
with observed velocities of dynamic obstacles. Then Berg
improved optimal reciprocal collision avoidance (ORCA)
in [25], which is a decentralized, real-time algorithm for
multi-agent conditions, to assign each agent a safe veloc-
ity based on the observed velocities of its neighbors to
guarantee collision-free in a known time horizon. However,
as ORCA is designed for real-time and does not contain
high-order dynamics, it is often unsuitable for real-world
implementation. The B-spline interpolation has an advan-
tage of crossing every waypoint of the nominal trajectory
exactly, and it uses the control points to fit the given shape
and can acquire local refinement. Here, it is necessary to
guarantee the initial and terminal boundary conditions of
the trajectory, which are usually set to be hovering with
zero velocity and acceleration of the quadrotor. The tradeoff
between accurate path presentation and smooth curvature
within constrains of the B-spline is a necessary issue to be
considered. Finally, a robustly stable outer-loop controller
is crucial for multiple quadrotors to track reference trajec-
tories by rejecting disturbances from other quadrotors and
prevent collisions. Due to the existence of actuator con-
straints, the maneuver capabilities of quadrotors should be
restricted.

The main contributions of this paper are fourfold: 1)
Static and dynamic formation patterns are created by
optimization methods for goal arrangement; 2) ORCA
algorithm is modified that provably ensures the collision
avoidance of differential flatness based teams of quadrotors
in three dimensional space; 3) a cubic clamped B-spline
interpolation method is developed to smooth the nominal
trajectory with high-order dynamic constraints and local
refinement; 4) a robust tracking controller for each member
of the quadrotor team is designed based on the flatness
properties, the actuator constraints are converted into the
maneuver constrains of quadrotors. It needs to mention that
the static obstacle avoidance problem is not considered in
this paper.

The remainder of the paper is structured as follows:
Section 2 gives an overview of proposed method; Section 3
proposes two goal arrangement approaches for the genera-
tion of formation patterns; Section 4 modifies conventional
ORCA algorithm to create nominal collision-free trajecto-
ries for multiple quadrotors; Section 5 describes the smooth-
ing means to generate feasible dynamic-constrained trajec-
tories; The tracking controller is designed considering mea-
surement uncertainty and actuator constraints in Section 6;
Section 7 analyzes the proposed algorithms and demon-
strates corresponding simulations; Section 8 shows exper-
imental results of actual quadrotor team flight; Section 9
concludes the paper and summarises the future directions
for this work.

Notation Throughout this paper, x represents scalars, x
vectors, X matrices and X sets. ⊕ denotes the Minkowski
sum of two sets, and ‖·‖ is the Euclidean norm of a
vector, 1D, 2D and 3D are respectively short for one-
dimensional, two-dimensional and three-dimensional. The
quadrotor team members mentioned are homogeneous,
for brevity, we assume the same number of quadrotors
and goals, thus defining the set of quadrotor index as
Sp = {1, 2, · · · , n}, and the set of goal index as Sg =
{1, 2, · · · , n}.

2Method Overview

The approach proposed in this paper pays attention to the
switching problem of various formation patterns in 2D or
3D with a team of quadrotors in an indoor environment
with confined space, and a whole structure of the method is
summarized in Fig. 1.

Given a team of quadrotors with the same radius and height,
then adding the corresponding static and dynamic formation
patterns, this method can be divided into the following
steps. First, the goal positions of all these quadrotors
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Fig. 1 Flowchart of formation switching strategy for a team of
quadrotors

are computed and optimized to formulate certain preset
formation patterns, which can be switched by the goal
assignment method of the Hungarian Algorithm [22] or
just the labelled point-to-point assignment. Second, a two-
stage trajectory generation approach is used, in which an
inter-quadrotor collision avoidance algorithm is designed
firstly during the process of formation switching, and then
the generated nominal trajectories are smoothed subject
to the dynamic constraints. Successively, these smoothed
safe trajectories are transformed into quadrotor states and
controls using the differential flatness property. Finally,
the outer-loop tracking controller is designed to enable
synchronous trajectory following and allow for real-time
adaptation to disturbances.

It is essential to mention the function of two checkers.
Regarding the generation of smooth trajectories, a local
collision checking is an indispensable component. If

colliding condition is activated, minor refinement is needed
to tune this piece of trajectory. After tracking controller
has been designed, the full states and control inputs of
the quadrotor are sent into the checker to guarantee that
actuator limits are not disturbed. Otherwise, the limitation
of maneuver is activated to rectify the reference trajectory.
This process can be repeated until the appropriate flight
trajectories obtain both safety and actuator constraints.

3 Formation Pattern Generation

3.1 Static Pattern Generation: Shape-based
Approach

In 2D plane, the contours of various shapes can always
be simplified into a polygon. If the number of quadrotors
is fixed, the goal arrangement problem can be considered
as uniformly distributing these quadrotors inside a polygon
region. Decomposition of 2D polygons can be done using
Delaunay triangulation [21] or Voronoi tessellation [7]. As
the former method always results in silver triangles, the
latter one would be a better choice. Therefore, a Voronoi
tessellation method using iterative Lloyd’s algorithm is
modified and used to optimize the goal locations. Take the
convex regular octagon and concave regular pentagram for
example, the number of six goals are uniformly spread in
these two polygons be projected into unit grid area U =
[0, 1] × [0, 1] as shown in Fig. 2a and b.

3.2 Dynamic Pattern Generation: Trajectory-Based
Approach

The trajectory-based approach gives a series of specific
rotational motions to every member of the quadrotor team.
For real-world implementation, the trajectories used by
guidance modules should contain all acceleration, velocity
and position references. By generating the motion elements
with rotation, we modify this reference from translation to
rotation according to the relation between translational and
rotational movements. The trajectories are then generated
based on rotational coordination, including references of
angular acceleration, angular velocity and angle. Then, this
problem can be formulated as a triple integrator Two-Point
Boundary Value Problem (TPBVP), which has a typical
format similar to that in [26]. We use the point mass model
to represent a quadrotor with initial static state constraints,
including the angular velocity limit 0.4rad/s, the angular
acceleration limit 1rad/s2 and the angular jerk limit 1rad/s3.
The generated 240◦ angle-related TPBVP references and
part of figure-eight trajectory of a single quadrotor are
shown in Fig. 3a and b respectively.
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Fig. 2 Visualization and
optimization of six goals
distributing in an octagon and a
pentagram

4 Collision Avoidance Algorithm

4.1 Downwash Effect

From the geometric perspective, the convex hull of the
start and goal locations with Minkowski sum can form
a closed area, in which the collision-free trajectories are
needed. Without reassigning goals or changing the above
planned straight-line trajectories, we can use the algorithm
of Concurrent Assignment and Planning of Trajectories
(CAPT) in [24]. This algorithm works well in 2D plane, we
then extend it to 3D as shown in Fig. 4a. The generated

straight-line trajectories can be seen as tunnels, therefore
CAPT is also valid.

We can easily see that in 3D as shown in Fig. 4a, the
trajectories generated by the CAPT algorithm are straight
lines. However, the projecting lines of these trajectories
on the horizontal plane can not guarantee collision free in
the vertical direction as shown in Fig. 4b, indicating that
one quadrotor would fly directly below an other one at
the same time on the horizon. In reality, the quadrotor has
strong downwash effect generated by its four propellers
in the vertical direction. The solution in [20] shows that
the minimum separation in the altitude must be at least

Fig. 3 240◦ angle-related TPBVP references and trajectory generated of partial figure-eight with a single quadrotor
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Fig. 4 Straight-line trajectories
of five quadrotors generated by
3D CAPT algorithm and
downwash condition occurring
with two quadrotors in the
vertical direction

8r , where r is the radius of the quadrotor. In the confined
height space such as the indoor environment, it is not always
possible to meet this requirement.

4.2 Velocity Obstacle Computation

To account for the downwash, we can model a single
quadrotor i as an omnidirectional cylinder C(pi , ri , hi) with
a center pi , radius ri , and cylindrical half height of hi in
3D space. In addition, the pitch and roll movements are not
considered at the beginning.

Modelling as a cylinder in 3D space, we take a pair of
quadrotors, say i and j , for example as shown in Fig. 5a.
Assuming this pair of quadrotors are localized in positions
pi and pj , and simultaneously moving with velocity vi

and vj respectively, the velocity obstacle of quadrotor i

induced by quadrotor j within time frame t ∈ [0, τ ] can be
defined as VOτ

i|j in the velocity space, which is a truncated
cone within shadow in Fig. 5b. Therefore, for every pair
of neighboring quadrotors i and j , the reciprocal collision
avoidance condition of 3D space within t ∈ [0, τ ] can be
defined as

vi /∈VOτ
i|j =

τ⋃

t=0

((
C
(
pj , rj , hj

)⊕ C (−pi , ri , hi)
)
/t
)+ vj

(1)

For the purpose of analysis, this VOτ
i|j can be projected

to horizontal and vertical planes separately. In this paper,
the superscript H and V denote the projections of velocities
or positions in the horizontal and vertical plane respectively.
Thus the constraints can also be projected into two planes,
the horizontal and vertical projecting constraints of avoiding
VOτ

i|j within t ∈ [0, τ ] are
⎧
⎪⎪⎨

⎪⎪⎩

∥∥∥pH
j − pH

i +
(
vH
j − vH

i

)
t

∥∥∥ ≥ ri + rj

∥∥∥pV
j − pV

i +
(
vV
j − vV

i

)
t

∥∥∥ ≥ hi + hj

(2)

From Fig. 5b above, it is easy to see that VOτ
i|j in

3D space contains five linear constraints, the collision
avoidance from left, right, top, bottom and heading
directions respectively. As safety is a primary concern in
an indoor environment, adding constraints is necessary to
ensure the reliability at the cost of performance. Therefore,
the velocity obstacle from top and bottom directions should
be enlarged to remove downwash effect.

Fortunately, the downwash effect can be eliminated by
constructing the ORCAτ

i|j . The projection of which in the
horizontal plane is a shaded half plane as shown in Fig. 6.
Vector wj is the minimum vector added in vi to stretch out
the VOτ

i|j with the direction of a normal vector nj , and the
perpendicular half-plane to wj at vi + αwj represents a set

Fig. 5 Cylinder modelling and
velocity obstacle of two
quadrotors in 3D space
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Fig. 6 ORCA region of two quadrotors in horizontal plane of
projection

of velocities closest to vi and can hence avoid reciprocal
collision. Since the ORCA half-plane is perpendicular to
the horizontal plane when not considering pitch and roll
movements, then it is easy to find wj = wH

j .

wj = argmin
v∈VOτ

i|j

∥∥v − (
vi − vj

)∥∥− (
vi − vj

)
(3)

If the multiple α is selected to be larger than 1,
ORCAτ

i|j can completely contain VOτ
i|j . α can be set as

0.5 so as to guarantee that quadrotors i and j take half
of the responsibility for collision avoidance, respectively,
according to the proof in [25]. Thus the ORCA space may
slightly penetrate into the VO as the darker shaded region
shown in Fig. 6.

ORCAτ
i|j = {

v| (v − (
vi + αwj

)) · nj ≥ 0, α = 0.5
}

(4)

After adding another n − 1 quadrotors in the set Sp, this
intersected half-planes ORCAτ

i may eventually become a
polygonal column, which is perpendicular to the horizontal
plane in 3D space. We then introduce the maximum speed
constraint of the quadrotor i, and the ORCA space becomes

ORCAτ
i =

⎛

⎝
n⋂

i �=j∈Sp

ORCAτ
i|j

⎞

⎠
⋂(

max
i∈Sp

E
(
0, vH

i , vV
i

))

(5)

Assuming the maximum vertically climbing and
descending speeds of the quadrotors are the same and the
maximum speed in the horizon is larger than the vertical
one, E

(
0, vH

i , vV
i

)
is an ellipsoid centred at the position 0,

with horizontal circle radius vH
i and vertical elliptic radius

vV
i .
On the basis of the above modelling, the assigned goal

location for a quadrotor i with current position pi and
velocity vi , the preferred velocity ṽi that is pointed to the
goal. The optimal collision-free command velocity v∗

i in the

following time τ should be as close as ṽi , and confined with
ORCAτ

i as

v∗
i = argmin

v∈ORCAτ
i

∥∥v − ṽi

∥∥ (6)

This is a quadratic optimization function formulated in
3D space, and the constraints brought by ORCAτ

i are all
in the horizontal plane, while the vertical direction only
contains maximum speed constraints. For the purpose of
simplifying this problem, we only consider the vertical con-
straints separately, and project ORCAτ

i onto the horizontal
plane. The horizontally projected quadratic optimization
can be effectively tackled by a low dimensional linear pro-
gram as described in [25] with complexity O(n), regardless
of whether the maximum horizontal speed constraint vH

max,i
is included. After tackling the horizontal part, the verti-
cal speed vV

i can be computed and selected within the
constraint of maximum speed vmax,i in 3D space.

4.3 Optimal Reciprocal Collision Avoidance
AlgorithmModification

Based on the above analysis, the ORCA algorithm is
not suitable for real-world application, as it requires the
assumption of symmetry and reciprocity. For instance,
relative position and velocity observed by a pair of
quadrotors should be the same, and the responsibility taken
by this pair must be set as half to avoid collision. In
practice, the uncertainty of sensors affects this assumption.
Thus we use the ORCA algorithm as the first stage to
generate a collision-free trajectory for every quadrotor in the
simulation environment. The ORCA trajectory generation
algorithm of quadrotor i is shown below. In more detail,
for each simulation time-step �t , we assume every single
quadrotor knows the current positions and velocities of all
the other ones, thus these relative variables also can be
calculated. In addition, because the quadrotor is modelled
as a cylinder with virtual radius, in order to avoid the impact
caused by its pitch and roll movement, the radius of the
quadrotor should be extended with a safety threshold for the
navigation along a pre-designed trajectory in a real world
environment.

In order to meet the performance requirements, within a
length of trajectory clamped by the start and goal locations
pi and gi , we define a velocity v̄H

i of the quadrotor i,
which denotes the predefined horizontal velocity limit and is
smaller than vH

i,max after projecting into the horizontal plane.
In addition, due to the symmetry of the quadrotors, a small
random vector dH

i needs to be added to ṽi so as to avoid
deadlock. Finally, the horizontal arrival time of quadrotor
i is tHi with the terminal condition of minimum distance
threshold εg,p, and the generated trajectory containing a
series of waypoints pH

i .
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Algorithm 1 Algorithm for ORCA Trajectory Generation
of Quadrotor i

Input: Horizontal start and goal locations pH
i , gH

i , horizon-
tal velocity v̄H

i , minimal distance threshold εg,p

Output: Horizontal arrival time tHi , horizontal locations of
waypoints on the generated trajectory pH

i

counti = 0
pH

i [0] ← pH
i (x, y)

while
∥∥gH

i − pH
i

∥∥ ≥ εg,p do
if
∥∥gH

i − pH
i

∥∥ ≥ v̄H
i then

ṽH
i = v̄H

i · (gH
i − pH

i

)
/
∥∥gH

i − pH
i

∥∥
else

ṽH
i = gH

i − pH
i

end if
ṽH
i = ṽH

i + dH
i

Compute v∗
i
H

pH
i = pH

i + v∗
i
H · �t

counti + +
pH

i [counti] ← pH
i (x, y)

end while
tHi = counti · �t

return tHi , pH
i

Algorithm 1 generates the single trajectory for horizontal
plane. The vertical direction will also need to produce the
corresponding series of positions accordingly. In an indoor
environment, the height size is much shorter than the lengths
of the horizontal area. Meanwhile, as the quadrotor has the
ability to fly faster in the horizontal plane, the start and goal
locations in the vertical direction can be placed relatively
close. Therefore, we generally place these locations under
the condition of
∥∥gH

i − pH
i

∥∥
∥∥gV

i − pV
i

∥∥ ≥ v̄H
i√

(vmax,i )2 − (v̄H
i )2

> 1 (7)

We can then select the vertical arrival time tVi of the
quadrotor i as

tVi = tHi ≥
∥∥gV

i − pV
i

∥∥
√

(vmax,i )2 − (v̄H
i )2

(8)

It can be easily found that the relation between tVi and tHi
is not strict. If they are equal, then the quadrotor i arrives
at the terminal goal synchronously from the horizontal and
vertical directions. The final goal arrival time in 3D space is
tHi . Therefore, the vertical trajectory of quadrotor i can be
generated by Algorithm 2.

By combing Algorithm 1 with 2 can produce the final
trajectory of the quadrotor i in 3D space. Additionally, the
Algorithm 2 generates a uniform velocity in the vertical
direction, for example, if we need a quadrotor to move along

Algorithm 2 Algorithm for Vertical Trajectory Generation
of Quadrotor i

Input: Vertical start and goal locations pV
i , gV

i , vertical
arrival time tVi

Output: Vertical locations of waypoints on the generated
trajectory pV

i

counti = 0
totali = round

(
tVi /�t

)

pV
i [0] ← pV

i (z)

for k = 1 : totali do
pV

i = pV
i + k · (gV

i − pV
i

)
/totali

counti + +
pV

i [counti] ← pV
i (z)

end for
return pV

i

a sine wave trajectory, Line 5 then can be modified to be a
sine function.

Algorithm 1 and 2 can generate the trajectories for
each quadrotor in parallel. However, the synchronizing
arrival problem of all quadrotors in the set of Sp can
not be guaranteed, as the time lengths in the generated
set

{
tHi , i ∈ Sp

}
for each quadrotor are not always

the same. Before switching to the next movement, the
predesigned movement in current process must be achieved.
Therefore, Algorithm 3 is used to compensate the time-
lag so as to make all quadrotors in the team reach their
goals simultaneously, and this will inevitably delay those
quadrotors that could take shorter travelling times to their
goal locations.

Algorithm 3Algorithm for Time Compensation of Quadro-
tor Team

Input: Horizontal and vertical start locations of quadrotor i
pH

i , pV
i , horizontal arrival time of quadortor i tHi , a team

of quadrotors i ∈ Sp

Output: Horizontal and vertical locations of waypoints on
the generated trajectory pH

i , pV
i

counti = 0
tH = max

{
tHi , i ∈ Sp

}

pH
i

[
tHi

] ← pH
i (x, y)

pV
i

[
tHi

] ← pV
i (z)

if tHi ≤ tH then
counti = round

((
tH − tHi

)
/�t

)

end if
for k = 1 : counti do

pH
i [counti] = pH

i

[
tHi

]

pV
i [counti] = pV

i

[
tHi

]

end for
return pH

i , pV
i
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From above Algorithm 3, we know the whole quadrotor
team arrival time is tH , and all of these generated
trajectories have the same time length. However, through
the above analysis, we find that tVi may vary due to the
different lengths of tHi under the condition of Eq. 8. For the
purpose of simplification, we can render the whole team’s
vertical arrival times

{
tVi , i ∈ Sp

}
to be the same, which is

set as tV , and let tVi = tV = tH . Then, we modify Line
5 of Algorithm 2 from tVi to tH and remove the vertical
part of Algorithm 3. Once we select a quadrotor team, these
physical parameters and flight abilities of each one are all
the same. Fortunately, the arrival time of the whole team can
be successfully synchronized as tH .

We redesign the trajectory generation into a non-real
time one so as to allow manipulation of the time-step �t

of simulation according to the continuity and smoothness
of generated trajectories. For the purpose of analysis, we
define the generated trajectory by Algorithm 1, modified
Algorithm 2 and 3 of each quadrotor i ∈ Sp as a nominal
one

γnorm,i (t) = (T ,Pi ) (9)

where t ∈ T , T = {tH0 , tH1 , · · · , tHf } is a set of generated

time list, and Pi = {(pH
t0,i

, pV
t0,i

), (pH
t1,i

, pV
t1,i

), · · · ,

(pH
tf ,i , p

V
tf ,i)} is a set of corresponding generated 3D

waypoints.

5 Jerk-Optimized B-Spline Trajectory
Gneration

5.1 Differential Flatness of Quadrotor Dynamics

During the previous procedure, the nominal trajectories
γnorm,i (t), i ∈ Sp are obtained by ORCA corresponding
algorithms. These generated γnorm,i (t) may contain sharp
turns with large accelerations, which would be impossible
for the quadrotors. Taking the higher-order dynamics of
the quadrotor into account means the smoother of the
generated trajectory. Here, balancing the dynamic feasibility
and smoothness is principal, thus the analysis of quadrotor
dynamics is the prerequisite.

As shown in [19], the quadrotor can be seen as a
differential flat system with flat outputs σ = [p, ψ]T , where
p is the position vector of the center of mass, and ψ denotes
the heading angle. The states and inputs of the system can
be written in terms of algebraic functions of appropriately
chosen flat outputs and their derivatives.

By using the differential flatness property, trajectories
can be generated by leveraging the nonlinear dynamics
of the quadrotor, rather than simply viewing the system
dynamics as constraints. A quadrotor has the ability to

behave as an omnidirectional agent, thus for the purpose of
simplifying the trajectory generation, ψ is set to be a non-
alternating value for the entire duration. Any sufficiently
smooth trajectory in the flat output space can then be
converted analytically back into a feasible state trajectory
and corresponding control input using the endogenous
transformation.

5.2 Clamped Normalized B-Spline

The formerly generated γnorm,i (t), i ∈ Sp has equal time
intervals, thus a cubic Clamped Normalized Uniform B-
Spline (CNUBS) is designed to regenerate the practical
trajectories of the whole quadrotor team.

This kind of cubic B-spline has the knot vector
[0, 0, 0, 0, 1, 2, 3, · · · , m − 1, m, m, m, m], where the first
and last three elements represent the start and goal boundary
conditions. We denote the number of specific control points
as mc, and set m = mc − 1 so as to make the knot vector
have mc + 6 elements. Therefore, the whole cubic B-spline
of the separated axis {x, y, z} can be expressed as

S3(s)=
0∑

k=−2

ckNk+2,3(s)+
mc∑

k=1

ckB3(s − k +1)+
mc+3∑

k=mc+1

ckNk+2,3(s)

(10)

where ck is a projected scalar of 3D control points in a
single axis, and s is the path parameter spanning through
[0, 1, 2, · · · , m − 1, m]. As defined in [15], the middle part
of B3(∗) is the common basis element of the B-spline,
and the first and last three special bases of Nk,3(∗), k ∈
{0, 1, 2, mc + 3, mc + 4, mc + 5} are boundary conditions
with mutually reversed versions. In addition, this B-spline
is a third-order one and thus the subscript of all these bases
is 3.

Furthermore, we rearrange the Eq. 10 into a compact
form as

S3(s) =
mc+5∑

k=0

c̄k	k,3(s) (11)

where c̄k = ck−2 is a shifted expression, 	k,3(∗) =
{B3(∗), Nk,3(∗)}.

For a dynamic system like the quadrotor, we need to
substitute the time t for the path parameter s, because of
the relationship between control points and knot vector
according to [6]. Thus there is a linear relationship between
two variables s and t

s

t
= mc + 6

tw
= β (12)

where tw is the whole time of the trajectory, and β is a scale
factor.

To formulate an optimization problem of the minimum
jerk trajectory in 3D space, as defined above, we can
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simplify it into three independent problems of dealing with
the optimization variable ck separately on the axes {x, y, z}.
Thus the following optimization is built on the single axis
presupposition.

5.3 Minimum Jerk Optimization

The trajectories γnorm(t) generated by the ORCA algorithm
can be seen as a given data set of time-dependent shapes.
We represent time set T and position set P as two vectors
in 1D condition
{
td = [T ]T = [t1, t2, · · · , tl]T
pd = [P]T = [p1, p2, · · · , pl]T (13)

where l is an integer and denotes the same length of the both
vectors.

Furthermore, the cost function of achieving minimum
jerk is formulated as

J = w

∫ ∞

−∞
j2d (t)dt +

l∑

k=1

(S3(βtk) − pk)
2 (14)

where w is a positive weight coefficient, and jd(t) is the
jerk to be minimized, which can be denoted as the third
derivative of Eq. 11

jd(t) =
mc+5∑

k=0

d3

dt3
c̄k	k,3(s) (15)

Although it can be proved based on [16] that the
minimum jerk trajectory has a closed solution, the real-
world application still needs a large amount of computation.
In order to formulate a convex quadratic programming (QP)
optimization expression that can be solved by optimization
solvers like quadprog of MATLAB or CPLEX of IBM,
we need to rearrange (14) with the vector type c̄ =
[c̄0, c̄1, · · · , c̄mc+5]T into

Jmin = min
c̄

{
c̄T (wG + HT H)c̄ − 2pT

d Hc̄ + pT
d pd

}
(16)

It is easy to find that wG+HT H is always semi-positive
definite (SPD), where

H =

⎡

⎢⎢⎣

	0,3(βt1) 	1,3(βt1) · · · 	mc+5,3(βt1)
	0,3(βt2) 	1,3(βt2) · · · 	mc+5,3(βt2)

...
...

. . .
...

	0,3(βtl) 	1,3(βtl) · · · 	mc+5,3(βtl)

⎤

⎥⎥⎦ ,

G = [
gi,j

]
i,j∈{0,1,2,··· ,mc+5} =

[
β5
∫ ∞

−∞
d3	i,3(s)

ds3

d3	j,3(s)

ds3
ds

]
.

When jd(t) is not 0, it becomes positive definite (PD),
thus a unique minimum of this above QP problem can be
guaranteed.

Then, the first and second derivative constraints of the B-
spline trajectory, which respectively represent velocity and
acceleration, need to be taken into account as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
t

dS3(s)

dt
≤ K1(i)c̄ ≤ max

t

dS3(s)

dt

min
t

d2S3(s)

dt2
≤ K2(j)c̄ ≤ max

t

d2S3(s)

dt2

(17)

where K1 and K2 are both (mc + 6) × (mc + 6) matrices

K1 = β

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 3 0 0 · · · 0 0 0 0

0 −3

2

3

2
0 0 · · · 0 0 0

0 0 −1 1 0 0 · · · 0 0
0 0 0 −1 1 0 0 · · · 0
...

. . .
...

0 0 · · · 0 0 −1 1 0 0

0 0 0 · · · 0 0 −3

2

3

2
0

0 0 0 0 · · · 0 0 −3 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K2 = β2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −9 3 0 · · · 0 0 0 0

0
3

2
−5

2
1 0 · · · 0 0 0

0 0 1 −2 1 0 · · · 0 0
0 0 0 1 −2 1 0 · · · 0
...

. . .
...

0 0 · · · 0 1 −2 1 0 0

0 0 0 · · · 0
3

2
−5

2
1 0

0 0 0 0 · · · 0 6 −9 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, K1(i), i ∈ {0, 1, 2, · · · , mc + 4} denotes the ith
row of K1, and K2(j), j ∈ {0, 1, 2, · · · , mc + 3} is the j th
row of K2.

Moreover, the boundary conditions of the trajectory are
considered, which are the first and last three fixed elements
of c̄. Thus a linear equality constraint can be formulated as

Aec̄ = be (18)

where Ae is a (mc + 6) × (mc + 6) matrix

Ae =
⎡

⎢⎣
I3 0 0

0
. . . 0

0 0 I3

⎤

⎥⎦ .

Finally, combining (16), (17) and (18), a convex QP
problem is formulated and can be efficiently solved
by numerical software toolboxes. After solving this QP
problem, we can get c̄∗ on the axes {x, y, z} separately. Thus
these trajectories can be reconstructed by Eq. 11. As these
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base functions of CNUBS are defined recursively, and the
de Boor Algorithm has the ability to generate the trajectory
of arbitrary frequency discretization form, this algorithm is
utilized and running independently on each axis.

5.4 Spline Local Refinement

B-splines provide sufficient flexibility to compute a
derivative-continuous trajectory and to perform local
refinement by adjusting the control points or knots.
However, the B-spline constructed by above approach
may not have a collision-checking along such generated
trajectories as mentioned in [9]. Thus our goal is to check
the unsatisfied portions of the B-spline that disturb the
minimum distance and pull them near the nominal collision-
free trajectory, at the same time to keep the collision-free
portions unchanged.

Algorithm 4 Algorithm for Spline Local Refinement

Input: Nominal trajectory γnorm(t), t ∈ [0, tl], iteration
number iteration

Output: Smoothed collision-free B-spline trajectory γB(t)

for k = 1 : iteration do
Randomly Choose γnorm(t), t ∈ [ta, tb] from the input

nominal trajectory
Construct B-spline γB(t) to interpolate m + 1 points

on γnorm(t), t ∈ [ta, tb]
Perform spline collision checking for γB(t)

Resolve the colliding segments in γB(t) based on
spline modification

Refine γB(t) locally to satisfy minimum jerk con-
straints
end for

The whole smoothing algorithm is shown in Algorithm
4. Given an input nominal trajectory γnorm(t), t ∈ [0, tl],
we can first interpolate it with a smooth spline curve
γB(t). If the number of sampling points is enough, γB(t)

can approximate γnorm(t) with arbitrary precision. Thus,
a collision-free and smooth γB(t) can be always found.
Then, we iteratively shortcut the nominal trajectory. At
each iteration, we randomly choose a segment γnorm(t), t ∈
[ta, tb] and construct a smoother B-spline trajectory γB(t)

that interpolates the boundary points and corresponding
intermediate points. Next, we apply spline collision
checking criteria like minimum distance to evaluate whether
every portion along the trajectory γB(t) is collision-free.
When a collision happens between neighboring trajectories,
we can resolve the collisions by using a recursive method to
modify the spline curve. After a collision-free trajectory is
computed, we then perform local refinement to satisfy the
dynamic bound constraints.

6 Robust Controller Design

6.1 Robust Perfect Tracking

In order to suppress the disturbances generated from other
quadrotors and keep collision free, a robust outer loop is
crucial to be designed for quadrotors to accurately track
reference trajectories in real time. Because the quadrotor
body acceleration command ac dose not affect the heading
direction, the yaw angle reference ψc is not considered in
the following outer-loop controller design process, which
will be generated independently.

As the differential flat characteristics of the quadrotor,
after extracting the rotational dynamics, the quadrotor can
be seen as a point mass model decoupld in three degree
of freedom (DOF) space with constraints of velocity,
acceleratioin, jerk, etc. Therefore, for the control law
design, in each DOF the outer-loop quadrotor translational
dynamics can be simplified as a double integrator as

{
ṗ = v
v̇ = a

(19)

where p, v, a respectively denote the position, velocity and
acceleration vectors of the quadrotor.

The robust perfect tracking (RPT) control approach
proposed in [5] accurately meets the requirements. Unlike
the nonlinear controllers developed in [4] and [11], in
theory, the designed RPT controller can make the linearized
system, without any input and state constraints, track
any given reference trajectory with arbitrarily fast enough
settling time. To use RPT control method, we formulate the
linear time invariant (LTI) system as

⎧
⎪⎨

⎪⎩

ẋ = Ax + Bu + Ew

y = C1x + D1w

h = C2x + D2u + D22w

(20)

where x, u,w, y, h are respectively state, input, disturbance,
measurement and controlled output. The designed RPT
controller is to form a dynamic measurement control law as

{
v̇=Ac (ε) v + Bc (ε) y+G0 (ε) γ + · · · + Gk−1 (ε) γ k−1

u=Cc (ε) v + Dc (ε) y+H0 (ε) γ + · · · + Hk−1 (ε) γ k−1

(21)

where γ represents the reference trajectory, and ε is a
parameter need to be selected properly. The controller v is
capable of

1) Asymptotically stabilizing the closed-loop system to
follow zero reference.
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2) Once e(t, ε) acts as tracking error, for arbitrary initial
condition x0, existing

‖e‖p =
(∫ ∞

0

∣∣e (t)p
∣∣ dt

) 1
p → 0 (22)

s.t . ε → 0

These derivatives are to create additional inputs in non-
zero reference condition. For example, formulating the
reference trajectory γ (t) as Taylor series expansion at t =
0, it can also be effectively tracked by RPT controller.

In order to design a good tracking performance RPT
controller, the above nominal system needs to be augmented
as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋa =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
xa +

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤

⎥⎥⎥⎥⎥⎥⎦
ua

ya = xa

ha = [
1 0 0 0 0 0

]
xa

(23)

where xa = [ ∫
pe pr vr ar p v

]T
, and pe = pr −p is the

position tracking error, pr , vr , ar are respectively position,
velocity and acceleration control references. Then the linear
feedback control law can be obtained as

ua = Faxa (24)

where

Fa =
[

kiω
2
n

ε3

ω2
n+2ζωnki

ε2

2ζωn+ki

ε
1 − ω2

n+2ζωnki

ε2
− 2ζωn+ki

ε

]

where ε is a design parameter to adjust the settling time, and
ωn, ζ, ki are the parameters that determine the desired pole
locations of the infinite zero structure of 
a by

pi (s) = (s + ki)
(
s2 + 2ζωns + ω2

n

)
(25)

6.2 Actuator Constraints

After the robust tracking controller has been designed,
when the collision avoidance maneuver like sharp turn is
performed, the quadrotor might act significant deviation
from reference trajectory. In this situation, more control
effort is required for the quadrotor to get back to the
reference point along the trajectory, which might break
the constraints of the actuators. A virtual vehicle method
proposed in [8] is used to tackle this issue by adjusting
the speed of the virtual vehicle as the norm of the tracking
error ‖pe‖ changes. Therefore, a virtual time parameter s(t)

is defined as ṡ(t) = e−ks‖pe‖, where ks is a non-negative
virtual gain.

This parameter is fed into the virtual input, which is the
third-order derivative of the position of the trajectory. There
is ṡ < 1 when the tracking error is large, and ṡ = 1 when
the tracking error is zero, which indicates that it follows the
trajectory at the desired speed. In more details, if ks = 0,
then ṡ = 1 and it will cause a larger pitch angle and
thrust, if ks = 50 then ṡ < 1, both the pitch angle and
thrust will decrease. With the help of this mechanism, the
instantaneous excessive control effort will be reduced, and
the actuator constraints can be satisfied.

7 Numerical Analysis

In order to verify the feasibility of proposed collision
avoidance algorithm, we use the simplified point mass
model to simulate six quadrotors, set the start locations
denoted with circles to form a flat circle shape and the
goal locations denoted with stars to build up a tilted regular
pentagram shape, both of which are generated by the
proposed shape-based approach. Since the time-consuming
of computing ORCA velocity can be effectively tackled by
a low dimensional linear program with complexity O(n) of
the increasing quadrotor number at the millisecond level.
The Hungarian Algorithm is utilized, which generates the
nominal trajectories denoted by dashed lines with time-
step 0.25s and smoothed trajectories denoted by solid lines
with time-step 0.05s as shown in Fig. 7. In this figure, the
quadrotors’ virtual radius is 1m, horizontal maximum speed
is 1m/s and the synchronizing arrival time is 10s.

To analyze the downwash effect avoidance of this
proposed algorithm, we first adopt collision avoidance
algorithm and use the same configuration as defined above
to simulate the swap actions of two and four quadrotors.
The nominal trajectories are shown in Fig. 8a and b. Here,

Fig. 7 Trajectories generated of six quadrotors switching from flat
circle shape to tilted regular pentagram shape
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Fig. 8 Trajectories generated of two or four quadrotors swapping positions

we abandon the Hungarian Algorithm and make quadrotor’s
start and goal positions localize at the same altitude. From
these figures and generated corresponding time list, there
are no straight-line trajectories and the vertical overlap does
not occur at the same time, thus the downwash effect of
these quadrotors can be successfully avoided. Although
the generated trajectories may not be smooth enough due
to the relatively larger preset time-step, the results are
not affected and these nominal trajectories will be further
smoothed by jerk-optimized B-spline algorithm considering
the downwash effect avoidance.

For the purpose of testing collision avoidance ability, we
select the start and goal locations randomly and densely
in a confined 30m×30m×30m 3D space with constraints
of the CAPT algorithm and vertically non-overlapping
condition, and set the same configuration as previous
simulations. Using the Hungarian Algorithm, the generated
trajectories of 50 quadrotors are shown in Fig. 9a. As the
vertical distances are always infinite at each time-step, the
corresponding horizontal minimum distance between every

pair of quadrotors is shown in Fig. 9b. These figures show
that the minimum distance is always larger than the preset
virtual radius 1m, thus collision within a large quadrotor
team is successfully avoided during the flight of about
10.5s. Moreover, another fifty tests were performed and no
collision occurred.

8 Flight Test Results

The proposed quadrotor team performance kicked off the
opening ceremony of Rotorcraft Asia & Unmanned Systems
Asia 2017 at the Changi Exhibition Centre in Singapore.
For the preparation of this ceremony, the designed six
quadrotors as shown in Fig. 10 with high control bandwidth
are adopted. Each one uses four propellers of 6.5 inches
diameter, with a motor-to-motor width of 450mm and
weight of 950g.

Many flight tests were carried out before the official
ceremony to guarantee the proposed algorithms and

Fig. 9 Trajectories generated and minimum distance in the horizontal plane of fifty quadrotors with randomly-distributed start and goal positions
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Fig. 10 Rendering of the designed quadrotor

controllers. The whole procedure of the flight test follows
Fig. 1 and includes two steps: 1) The first one can be
seen as the preparation of the flight test. It is to obtain
required static and dynamic patterns and collision-free
trajectories. This step is carried out on the ground station
withMATLAB and the collision checker should be activated
to make these trajectories feasible. This step is similar to
Section 7 and omitted here. 2) The second step is to test
the flight performance, log and analyze the results. The
generated patterns and trajectories need to be uploaded into
the on-board computers of PIXHAWK ETH attached to the
quadrotors, and the designed tracking controller is used to
make each quadrotor follow the given trajectory accurately.
In this step, actuator constraints should be checked to ensure
that quadrotors move consistently within their maneuver
limits. This section is to give these results and corresponding
discussion.

To match the theme of “Experience The Drones Of
The Future” for this opening ceremony, we designed a
special static heart-shaped formation, which is given in
Fig. 15a. And other static patterns, such as the circle
and the rectangle, are also designed. For these dynamic
formation patterns, the figure-eight and spiral are selected
and realized, the result of figure-eight is shown in Fig. 16.
The generated reference trajectories with the jerk-optimized
B-spline algorithm constrains the maximum absolute value
of velocity within 1m/s and acceleration within 1m/s2 in
horizontal direction, and 0.5m/s and 0.5m/s2 in vertical
direction. The position references are shown in Fig. 13, and
the velocity and acceleration references are given in Figs. 14
and 11 respectively.

After generating required formation patterns and
collision-free trajectories. The designed tracking controller
needs to be implemented. In practice, due to the constraints
of physical system and inner-loop dynamics, we would like
to limit the bandwidth of the outer loop to be at least one
third of the inner-loop system bandwidth. The outer-loop
control frequency is set as 50Hz in PIXHAWK ETH. In

Fig. 11 X, Y, Z(Height) reference acceleration of a single quadrotor

order to verify the robustness of the outer-loop flight con-
trol system, we examine the frequency response of each
individual channel of the outer-loop system. Then, x and y
positions are with parameters of ωn = 0.8, ζ = 0.8, ε = 1
and ki = 0.9, these two results are the same and shown in
Fig. 12a. In height direction, parameters are ωn = 1.0, ζ =
0.8, ε = 1 and ki = 0.55, the result is shown in Fig. 12b.
It is clear that all of the channels have a gain margin larger
than 10 dB and a phase margin greater than 75 degrees. The
robustness of the outer-loop control system is good.

The show environment is a confined space of
7m×16m×6m. To set up the localization system, a rela-
tively low cost and low power method of indoor localization
utilizing ultra-wideband (UWB) radio was chosen, of
which the mean error for distance measurement is around
0.1m. With the robust performance of outer-loop RPT con-
troller, the X, Y and Z (height) positions track the reference
trajectories accurately for the entire duration despite the
relatively poor measurement of UWB compared with Vicon
even refined by the method in [13]. Figure 13a, b and c
show a single quadrotor’s reference, actual state positions
and their errors in 3D space respectively.

Meanwhile, these velocity results of X, Y and Z
direction are given in Fig. 14. The benefit of the RPT
controller is clearly shown here as the quadrotor not
only tracks its position well, but also has good velocity
control performance. The results also show that the velocity
constraint of the quadrotor within −1m/s to 1m/s in
horizontal direction is satisfied. The velocity in height
direction is also inside the boundary of −0.5m/s to 0.5m/s
except some overshoot responses near the ground because
of the shaded UWB signals and rotational movements with
lager acceleration.

From Figs. 13 and 14, we can see that these positions
and velocities are not tracked so accurately in the height
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Fig. 12 Gain and phase margins of X, Y, Z (Height) position control

Fig. 13 X, Y, Z(Height) reference, state positions and related tracking errors of a single quadrotor
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Fig. 14 X, Y, Z(Height) reference, state velocity/acceleration and related tracking errors of a single quadrotor

direction compared to the horizontal plane. This is due
to the larger horizontal acceleration, especially during the
process of tracking rotational trajectories. In addition, the
height positions and velocities of UWB measurement near
the ground are not precise as signals are partially blocked by
the desk on the platform. The actual preset trajectories are
activated and invalid from the height of 2m respectively at
the start and terminal stages.

Then, the formation switching result is given in Fig. 15a.
It shows the reference smoothed by CNUBS and actual
flight trajectories of six quadrotors switching from a static
tilted heart shape to a larger static tilted rectangle, where
dashed lines represent reference trajectories and solid lines
denote actual flight ones.

Since there are only six members, the shape of heart
is of relatively low resolution. Figure 15b illustrates that
the whole swicthing time is about 10s and the minimum
distance of quadrotors in the horizontal plane during the
actual flight process is always larger than the preset safety
region of 1.5m, thus the effect of downwash is successfully
avoided.

The partial dynamic figure-eight reference trajectory
after being smoothed by CNUBS and actual flight trajectory
of one quadrotor are illustrated in Fig. 16a. Meanwhile,
Fig. 16b shows the actual trajectories of the whole team
flying in a dynamic figure-eight formation.

Our designed staic and dynamic formation patterns
switched successfully during the entire show. Figure 17a, b
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Fig. 15 Actual flight and minimum jerk references, minimum distance of actual flight in the horizontal plane of six quadrotors switching from
tilted heart shape to tilted rectangle shape

Fig. 16 Actual flight, minimum jerk reference of partial eight shape with a single quadrotor and actual flight of eight shape with six quadrotors

Fig. 17 The snapshots of switched three different formation patterns with six quadrotors: heart, rectangle and partial figure-eight
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and c show the snapshots of the resulting heart, rectangle
and partial figure-eight formation patterns of six quadrotors.
The full show video can be viewed at https://www.youtube.
com/watch?v=eSdghUK-a-8.

The flight test results in this section show that our
proposed algorithms and controllers are suitable for a
confined indoor space with multiple quadrotors. First, static
and dynamic formation patterns can be generated according
to the user’s requirements adaptively and quickly. Second,
these switching trajectories generated by our modified
ORCA algorithm can not only keep collision-free between
agents, but can also keep off the downwash effect caused
by other quadrotors. Third, these dynamic constraints of
collision-free trajectories can be satisfied under the jerk-
optimized B-spline method. Fourth, the RPT controller is
designed to satisfy all the dynamic constraints of quadrotors
with good robustness and tracking performance.

9 Conclusion

In this paper, trajectory planning approaches have been
developed for a quadrotor team to deal with formation flight
challenges in an indoor confined space environment. Firstly,
both static and dynamic formation patterns are generated
optimally and efficiently. The modified 3D ORCA algo-
rithm is utilized to create the nominal trajectories, which
can effectively avoid the adverse downwash effect generated
by other quadrotors. A cubic B-spline approach then inter-
polates these nominal trajectories to satisfy the minimum
jerk constraint, thus the smoothed trajectories are gener-
ated and locally refined, which is suitable for quadrotor
dynamics. Next, considering the actuator limits of quadro-
tors, the robust outer-loop tracking controller is designed
to compensate the low resolution of sensors. Finally, all
of these methods are successfully verified by the relevant
simulation results and adopted in the real-world flight test.
The static obstacle avoidance will be carried out to com-
plement the current work in the near future. Then, the
coming research directions will be focused on issues such as
distributed formation and swarm control, real-time forma-
tion pattern and trajectory generation, fault detection and
toleration.

Acknowledgements This work was supported by National Natural
Science Foundation of China [grant number 61673327], China
Scholarship Council [grant number 201606310153], as well as
Aviation Science Foundation of China [grant number 20160168001].
The authors would like to thank Prof. Ben M. Chen and his Unmanned
System Research Group at National University of Singapore.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Agha-mohammadi, A.-a., Ure, N.K., How, J.P., Vian. J.: Health
aware stochastic planning for persistent package delivery missions
using quadrotors. In: IEEE /RSJ International Conference on
Intelligent Robots and Systems, pp. 3389–3396. Chicago (2014)

2. Alvissalim, M.S., Zaman, B., Hafizh, Z.A., Ma’sum, M.A., Jati,
G., Jatmiko, W., Mursanto, P.: Swarm quadrotor robots for
telecommunication network coverage area expansion in disaster
area. In: Annual Conference of the Society of Instrument and
Control Engineers of Japan, pp. 2256–2261. Akita (2012)

3. Augugliaro, F., Schoellig, A.P., D’Andrea, R.: Methods for
designing and executing an aerial dance choreography. IEEE
Robot. Autom. Mag. 20(4), 96–104 (2013)

4. Basri, M.A.M., Husain, A.R., Danapalasingam, K.A.: Enhanced
backstepping controller design with application to autonomous
quadrotor unmanned aerial vehicle. J. Intell. Robot. Syst. 79(2),
295–321 (2015)

5. Chen, B.M., Lee, T.H., Peng, K.M., Venkataramanan, V. Hard
Disk Drive Servo Systems, 2nd edn. Springer, London (2006)

6. De Boor, C.: A Practical Guide to Splines, vol. 27. Springer-
Verlag, New York (1978)

7. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi Tessella-
tions: Applications and Algorithms. SIAM Rev. 41(4), 637–676
(1999)

8. Egerstedt, M., Hu, X., Stotsky, A.: Control of mobile platforms
using a airtual vehicle approach. IEEE Trans. Autom. Control
46(11), 1777–1782 (2001)

9. Elbanhawi, M., Simic, M., Jazar, R.N.: Continuous path
smoothing for car-like robots using b-spline curves. J. Intell.
Robot. Syst. 80(1), 23–56 (2015)

10. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments
using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

11. Guadarrama-Olvera, J.R., Corona-Sánchez, J.J., Rodriguez-
Cortes, H.: Hard real-time implementation of a nonlinear con-
troller for the quadrotor helicopter. J. Intell. Robot. Syst. 73(1-4),
81–97 (2014)
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