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Abstract
Deliberative capabilities are essential for intelligent aerial robotic applications in modern life such as package delivery
and surveillance. This paper presents a real-time 3D path planning solution for multirotor aerial robots to obtain a
feasible, optimal and collision-free path in complex dynamic environments. High-level geometric primitives are employed to
compactly represent the situation, which includes self-situation of the robot and situation of the obstacles in the environment.
A probabilistic graph is utilized to sample the admissible space without taking into account the existing obstacles. Whenever
a planning query is received, the generated probabilistic graph is then explored by an A� discrete search algorithm with an
artificial field map as cost function in order to obtain a raw optimal collision-free path, which is subsequently shortened.
Realistic simulations in V-REP simulator have been created to validate the proposed path planning solution, integrating it
into a fully autonomous multirotor aerial robotic system.

Keywords Path planning · Obstacle avoidance · Dynamic environments · Aerial robotics · Multirotor · UAV · MAV ·
Remotely operated vehicles · Mobile robots

1 Introduction

In order to enable new robotic applications in modern life
such as package delivery, search and rescue, or surveillance,
it is essential for future small multi-rotor aerial robots, also
known as drones or unmanned aerial systems (UAS), to
incorporate deliberative capabilities. They allow the robot
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to look ahead in time and generate a task to be performed
taking into account the current states of both the robot and
environment, and predicting the potential consequences of
the planned behaviors in the future. Trajectory planning, as
a crucial deliberative capability, is the ability to generate a
feasible collision-free set of motion commands which can
be executed by the robot, in order to reach a particular
desired state, called the goal.

A useful trajectory planner needs to be able to generate
feasible collision-free trajectories fast enough so as to
enable efficient reactions to changes in the goal, in the
environment, or in the state of the robot. This is especially
critical in aerial robots, since their unstable nature does not
allow them to passively wait for a slow response from the
trajectory planner.

Additionally, complex and highly dynamic environment
(such as the ones represented in Figs. 12 and 21) poses great
challenges for both collision-free planning components and
perception components, as such environment is constantly
changing and consists of both moving and static objects.
The perception components are responsible for estimating
the state of the environment using a representation that is
useful for the planning components. Therefore, they are
highly related.
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Before continuing, it is important to clarify the difference
between the concepts of path and trajectory. According to
Aguiar and Hespanha [2], a path is a continuous function
that connects two points of any particular space. A trajectory
is defined as a path with explicit parametrization of time and
therefore, specifications on velocity, acceleration, jerk, etc.
are introduced.

Commonly used multirotor aerial robots are under-
actuated, i.e. they only have four controllable inputs to move
in a higher dimensional space. This type of aerial robots
are non-holonomic systems in their complete state space
(i.e. pose, velocity, and acceleration), i.e. its state depends
on the trajectory taken in order to achieve it. Moreover,
planning collision-free trajectories requires knowledge of
not only constraints and state of the aerial robot but also
constraints and state of the environment where the robot
performs, which increases the complexity of search for a
feasible collision-free trajectory.

For simplifying the complexity of the feasible collision-free
trajectory search problem, a slow-motion (near-hovering)
assumption can be used. This assumption is valid for trajectory
planning as long as aggressive maneuvers such as flips are
not required, it is therefore eligible for aforementioned appli-
cations. With this assumption the state of aerial robots can be
simplified to their heading (yaw angle) and their position,
which makes them holonomic systems.

The trajectory planning problem can be executed sequen-
tially, as proposed in Richter et al. [29], with first of all a
collision-free path planning and afterwards the post-processing
of this path to obtain a feasible collision-free trajectory.

A typical solution adopted for complex and highly
dynamic environment is to incorporate two layers in the path
planning system, ros [1], one capable of finding a global
solution for the complex problem without considering the
dynamic objects of the environment, and the other able
to obtain a local solution (which can be deliberative or
reactive) for the collision avoidance of dynamic obstacles
that are in the vicinity of the robot. Despite having
demonstrated their performance in multiple applications,
these two layered path planning systems are not capable
of finding an optimal solution for the complete problem of
navigating in a complex dynamic environment.

This paper, as the continuation of our previous work,
Sanchez-Lopez et al. [37], presents a single layered 3D
deliberative path planning solution for the collision-free navi-
gation of multirotor aerial robots in dynamic environments.
Our path planner incorporates a single layer to obtain an
optimal feasible collision-free path in a complex dynamic
environment formed by static and moving objects. The situation,
including the self-situation (the situation of the aerial robot
itself) and the situation of the environment, is compactly
represented by high-level geometric primitives. More-
over, to reduce the computational cost of the planner, the

admissible space is sampled at launching time, i.e. with-
out incorporating information of the objects present in
the environment, by means of a probabilistic graph. At
query time, the probabilistic graph is explored by a discrete
search algorithm, i.e. A� algorithm, to find an optimal
raw collision-free path. To guarantee the generated path
is collision-free and also speed up the search, an artificial
potential field map is employed by the discrete search algo-
rithm as its cost function. Finally, the obtained raw path is
shortened.

Despite being a single-layered approach, the proposed
collision-free path planner is able to operate real-time and
tackle complex dynamic environments, as the following
features are in place: (1) compact definition of the situation;
(2) sampling of the admissible space at launching time
without the need of modifying it when the situation
changes; (3) utilization of an artificial potential field
map as a cost function of the discrete search algorithm,
which incorporates the situation of the obstacles in the
environment; (4) usage of a search algorithm, which
guarantees optimality of the collision-free path, if exists. To
the best of our knowledge, this is the first 3D collision-free
path planner for multirotor aerial robots, real-time capable,
and specially designed for highly dynamic environments.

The contributions of this paper, when compared to our
previous work, [37], are as follows: (1) extension from 2D
to 3D spaces; (2) adaptation of the representation of the
work-space for 3D environments; (3) enhanced definition
of the admissible space, incorporating concepts imported
from control theory, (4) refined description of the artificial
potential field map, which improves the quality of the
collision-free path; (5) improved design of the path planning
solution with newly added functionalities.

The remainder of the paper is organized as follows:
Section 2 presents an overview of the state of the art on
path planning. Section 3 introduces the complete solution
of the proposed path planning, which is composed of
two parts, as described below. The core functionality of
the presented solution, i.e. the path planning, is detailed
in Section 4, whereas newly added functionalities are
presented in Section 5. In Section 6, the proposed path
planning solution is validated through simulations and real
experiments. Finally, Section 7 concludes the paper and
points out some future work lines. We recommend the
reader to print the paper in color, as the images it contains
are complex and color is needed to follow them.

2 RelatedWork

Path planning for robotic applications as a research topic
has been actively studied in recent years. While most
works focus only on 2-dimensional (2D) or 2.5-dimensional
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(2.5D) methods, approaches for 3D path planning remain
less explored. Nevertheless, different types of approaches
such as node-based optimal algorithms, sampling based
algorithms, and bioinspired algorithms have been proposed
for tackling 3D path planning in the literature, Yang et al.
[44].

Node-based optimal algorithms, also called discrete
search algorithms, aim to search for an optimal collision-
free path through a generated node network (or grid map).
For 3D environment path planning, A� algorithm, Hart et
al. [8] and Dechter and Pearl [7], has been a popular choice
among others due to its fast search ability. However it is only
limited to tackling static environments. The counterpart D�,
Stentz [39], on the other hand, is able to deal with dynamic
environments, though can produce unrealistic distance.

Another widely implemented family of algorithms
is sampling-based algorithms, including rapidly-exploring
random trees (RRT), LaValle [16], Probabilistic Road
Maps (PRM), Kavraki et al. [13], visibility graph, Lacasa
et al. [15], and Artificial Potential Field (APF), Hwang
and Ahuja [11]. In general, this kind of algorithms
requires mathematical representation for the workspace.
They sample the environment in various forms such as a
set of nodes or cells, and then either map the environment
or search randomly in order to obtain a feasible path.
Therefore, according to Yang et al. [44], APF is categorized,
as a sampling-based algorithm.

In comparison to node-based optimal algorithms, mathe-
matic model-based algorithms use kinodynamic constraints
in conjunction with polynomial forms to optimize path plan-
ning, while the former utilize grids to describe configuration
space with the assumption that robot is a point and that only
acceleration and velocity constraints are considered. Exam-
ples of these types of algorithms are linear algorithms e.g.
Mixed-Integer Linear Programming (MILP) methods, Yue
et al. [46], and optimal control algorithms e.g. Tisdale et al.
[41].

Bioinspired algorithms stem from imitating the behavior
of humans or other natural creatures with the motivation
to enable algorithms to learn by themselves from their
own experience. In general, they do not rely on complex
environment models to reach a near optimal solution. This
type of algorithms is often used when general mathematic
model-based algorithms fail or trapped into local minimum.
However, algorithms of this type generally have high time
complexity and their performance may vary significantly
depending on the model diagrams. Popular examples of
bioinspired algorithms are neural networks (NN), Kassim
and Kumar [12], Particle Swam Optimization (PSO),
Kennedy [14], genetic algorithm (GA), Holland [9], etc.

Each type of aforementioned algorithms has their
advantages and disadvantages. In order to be able to cope
with increasingly complex 3D environments in robotics

applications, recent research efforts have been made to
overcome the shortcomings of individual algorithms by
exploring different combinations among them and beyond.

In Liu et al. [18], a search based planning method
incorporating discretized optimal control problem solving
was proposed for fast online replanning during continuous
flight. Lin and Saripalli [17] proposed a method based
on the closed-loop RRT algorithm and developed three
variations of it to handle different types of aerial robots
and varying dynamic obstacle conditions. Arantes et al. [3]
combined visibility graph with a multi-population genetic
algorithm. Chen et al. [6] fused APF with optimal control
theory. A multi-layered path planning approach is proposed
in Nieuwenhuisen et al. [22], which employs a mission
planning layer consisting of global and local path planning
and a reactive layer based on APF. Hossain and Ferdous
[10], developed a path planning method based on Bacterial
Foraging Optimization (BFO) technique, Gaussian cost
function and a high level decision strategy and results are
compared with PSO method. Yao et al. [45] introduced
a 3D path-planning algorithm based on interfered fluid
flow for dynamic obstacle obstacle avoidance. Yan et al.
[43] illustrated a 3D path planning approach which utilizes
random sampling in a bounding box in the whole 3D
space to improve the efficiency of PRM, and then applies
A� algorithm to the generated roadmap for feasible path
generation. Narayanan et al. [21] presented an anytime
planner which is essentially a fast A� variant based on time
interval for dynamic path planning.

3 Path Planning Solution

The complete path planning solution is formed by two
components: the manager and the path planner. Both
components use three different paradigms for inter and intra
communication: data streams, request/reply tasks (called
services), and preemptable tasks (called actions). This path
planning solution is shown in Fig. 1.

The main functionality of the planner component (as
explained in Section 4) is the generation of collision-
free paths given a goal and taking into account the
estimated pose of the aerial robot in world coordinates,
and the estimated information relative to the static
and dynamic objects existing in the environment. The
situational awareness information is provided by the
situation awareness system in the required format and it is
received through three different data streams. This collision-
free path is calculated thanks to a provided service, whose
request is the goal to achieve, and whose reply is that
calculated collision-free path.

Besides, in a parallel execution thread, the path planner
includes an action that, when enabled, it continuously
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Fig. 1 Path planning solution. It is formed by two components: the
manager and the path planner. The continuous lines represent the data
streams; the dashed lines, the services; and the dotted lines, the actions.

In both services and actions, the black arrows represent the server side,
whereas the white arrows encode the client side

checks if a given collision-free path remains collision-
free despite the changes in the situation awareness (see
Section 5.1).

Furthermore, once again in a parallel execution thread,
the path planner provides a service that calculates a better
collision-free path, if any, in terms of cost (as described
in Section 5.2). The request of this service is the goal to
achieve and the reference collision-free path. Its reply is the
new collision-free path, if any.

The manager handles the path planner component, acting
as an intermediary with the mission planner. It receives the
goal to achieve given by the mission planner, by means
of an action that it provides, continuously returning the
most optimum collision-free path despite the changes in
the situation (both self-localization and environment). It
requests the path planner the generation of a collision-
free path, activating the collision-free check action after
receiving it. Whenever the collision-free check is not
passed, it requests again the path planner the generation of
a collision-free path. Moreover, in parallel to the collision-
free check, the manager cyclically calls the better collision-
free generation service to find a new optimum collision-free
path.

4 Path Planning Algorithm

This section presents the proposed algorithm for the
generation of collision-free paths, which is implemented
as a service of the path planner component presented in
Section 3.

4.1Work Space

The work space incorporates the knowledge of the complete
situation, including the self-situation and the situation of
the environment. This situation knowledge is given by
the situation awareness system, but the presented planning
algorithm imposes the kind of descriptor required.

The proposed path planning algorithm describes the situation
by means of high-level geometric primitives (see Section 4.1.1)
unlike other commonly used more computationally expen-
sive representations such as grid maps or octrees, [42]. The
main advantages of this simplified environment representa-
tion are (1) compact description of the environment without
loss of resolution (i.e. no need of approximations), and (2)
capability of easily handle dynamic environments.

Moreover, the presented path planning algorithm distin-
guishes between static and dynamic objects included in the
environment (see Section 4.1.2).

4.1.1 Situation Described with High-Level Geometric
Primitives

All the objects of the environment including the aerial robot
itself are described as a set of uniquely labeled high-level
geometric primitives. As mentioned, using this environment
representation reduces the required information to com-
pletely describe it, but without the need of approximations
(e.g. a cylinder has to be approximated when using an octree
to describe the environment). This contributes to reduce the
complexity of the distance to an object evaluation whenever
is required, speeding up the planning algorithm.
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For simplicity, our proposed approach only implements
three kinds of high-level geometric primitives to describe
objects of the environment: cuboids, cylinders, and ellip-
soids. The parameters that describe the implemented high-
level geometric primitives are:

– Pose (position and orientation) of the center of the
reference frame attached to the object in world
coordinates, pW

O� = {tW
O�, q

W
O�}.

– Dimensions of the object, rO� = [
rx, ry, rz

]T . For
ellipsoids, their radii are used; while for cuboids, the
dimension of their sides are used; and for cylinders, the
two first parameters describe their radii, and the third
one their height.

It is important to highlight that the robot situation is as
well described by means of high-level geometric primitives,
once again, without the need of approximations. For
simplicity, our proposed path planning algorithm assumes
that the shape of the robot is a cylinder.

Figure 2 shows an example of a work space.
It is worth to mention that for the sake of completeness,

our algorithm is not limited to the previously presented
three kinds of high-level geometric primitives. In general,
any kind of geometric primitive might be used for the

situation description (e.g. planes, pyramids, cones, barrels,
etc). Moreover, an object of the environment with a complex
shape might be described as a set of simple geometric
primitives. Furthermore, if an object has a very complex
shape that cannot be easily described as a set of geometric
primitives, other kinds of representation can be used, such
as an octree including exclusively the shape information of
this object.

4.1.2 Distinction Between Static and Dynamic Objects
of the Environment

As mentioned before, the presented path planning algorithm
distinguishes between static and dynamic objects included
in the environment. This distinction allows to ignore the
moving objects whenever they are far enough from the robot
(in the admissible space explained below), i.e. distance
between them is greater than a configurable threshold which
depends on the velocity of the moving objects. That implies
the fact that the moving objects will most likely change their
current pose before the robot reaches that point whenever
they are far, which thus simplifies the path planning query.

It is worth to mention that our path planner do not take
advantage of the dynamic part of the situation information

Fig. 2 Environment formed by
several cuboids and cylinders
(gray). The robot is represented
by a purple cylinder whose
center is at the point
tW
R = [−4, −2, 0.7]T with an

orientation qW
R = [1, 0, 0, 0]T
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(i.e. velocity and acceleration) of the moving objects,
remaining as a future work. Despite this, our path planner
is capable of handling dynamic environments as it is able
to plan collision-free paths in a reduced time thanks to its
features listed in Section 1 and detailed along Section 4.

4.2 Admissible Space

The work space (presented in Section 4.1), W , is included
in the Lie group SE(3) space, W ∈ SE(3), which has
dimension 6. It has to be converted to a space, called
admissible space, A, where the collision-free path can be
searched taking into account all the restrictions of the robot.

4.2.1 Configuration Space

The configuration space, C, is a space that maps the work
space into a space where the search of the collision-
free path is possible and simplified. In the presented path
planner, the state of the robot is simplified to its pose
(i.e. velocity and acceleration is not considered). Also, as
mentioned before in Section 4.1.2, the dynamic part of the
situation information (i.e. velocity and acceleration) of the

moving objects is not taken into account. Therefore, the
configuration space is defined as a 6-dimensional space that
is directly generated using the work space. Moreover, in the
configuration space, the objects included in the work space,
are dilated taking into account the dimensions of the robot
using the Minkowski addition. It is important to highlight
that the objects dilating is done along the 6 dimensions of
the configuration space, i.e. it does not only depends on the
position, but also depend on the orientation of the robot. For
example, if the robot is described as a cylinder, the objects
dilation clearly depends on the orientation of this cylinder.

To be able to plan a collision-free path, the previously
defined configuration space cannot be used. It might be
possible that some parts of the state of the situation cannot
be perceived (e.g. the pitch and the roll of the aerial
robot cannot be observed). It might be also possible that
some parts of the state of the robot cannot be directly
modified to reach the goal and are imposed (e.g. the planner
cannot modify the yaw angle of the aerial robot and it is
externally imposed). To overcome these limitations of the
configuration space, we need to incorporate in a new space
all the imposed restrictions on the motion, together with the
restrictions on the perception of the situation. In this new

Fig. 3 Simple example to
illustrate the concepts
introduced in this section
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Fig. 4 Observable space of the example introduced in Fig. 3 in the
case that θ is not observable

space, the search of the collision-free path can be done. To
define this space, we use two intermediate spaces that are
inspired by the state-space control theory: the observable
space and the controllable space.

To illustrate the concepts introduced in this section,
the simple example represented in Fig. 3 is used. In
this example, an holonomic 2D elliptical robot with three
degrees of freedom, x, y, and θ can move in the work space
shown in Fig. 3a. Its configuration space is 3-dimensional,
and for illustration purposes, only two slices of it, for the
limit values of θ = 0◦ and θ = 90◦, are shown in Fig. 3b
and c, respectively.

4.2.2 Observable Space

First of all, we define the observable space, O, as a subspace
of the configuration space, O ⊆ C that incorporates all the
restrictions on the perception of the situation. For all the
restrictions, i, on the perception of the situation, an infinite
set of j subspaces of the configuration space, Ci,j for all the

j values that the restriction i can have. The observable space
incorporate the worse case by means of:

O = ⊕∀i,jCi,j (1)

where ⊕ is the operation composition of subspaces.
For example, in case that the pitch, φ, and roll, θ , of the

aerial robot, are not observable, we have infinite restricted
configuration spaces, Cφ,j and Cθ,k , for all the j -values and
k-values that the pitch and roll can have (φ, θ ∈ [−π, π ]]),
being the observable space, O, the worse case subspace
defined as:

O = (⊕∀j∈[−π,π]Cφ,j

) ⊕ (⊕∀k∈[−π,π]Cθ,k

)

In the presented path planner, the pitch and the roll
components of the orientation the robot are not assumed
to be available, and therefore, the observable space is a
4-dimensional subspace of the configuration space.

Following the example introduced in Fig. 3, in the case
that θ is not observable, while the other degrees of freedom
are observable, the observable space is 2-dimensional, and
it is shown in Fig. 4.

4.2.3 Controllable space

Second, we define the controllable space, U , as a subspace
of the configuration space, U ⊆ C that takes into account
the non-modeled imposed restrictions on the motion. For
every non-modeled imposed restrictions, i, on the motion,
a subspace of the configuration space, Ci,αi

for a value
αi that the imposed restriction i takes, is generated. The
controllable space is the part of the configuration space that
considers only all the imposed restrictions as:

U = ∩∀iCi,αi
(2)

This controllable space changes constantly whenever the
values of the imposed restrictions, αi change.

Fig. 5 Controllable space of the
example introduced in Fig. 3 in
the case that θ is not controllable
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For example, in case that the yaw of the aerial robot, ψ , is
externally imposed with a value αψ , the controllable space
is defined as:

U = Cψ,αψ

In the presented path planner, only the position is
assumed to be controllable, being the values of its
orientation imposed but not modeled, and therefore, the
controllable space is 3-dimensional. Note that for an aerial
robot, the pitch and the roll are directly related to the x and y

by means of its motion model. Nevertheless, for simplicity
we assume that this relationship cannot be modeled, and
therefore, we treat the pitch and the roll as a non-modeled
imposed given values.

Continuing with the example introduced before, in Fig. 3,
if now, θ , instead of being not observable as before,
is not controllable, while the other degrees of freedom
are controllable, the controllable space is 2-dimensional.
The controllable space depends on the values of the non-
modeled imposed restriction, in this case, the value of θ .
Figure 5 shows the controllable space for two different
example values of θ .

4.2.4 Valid Space

Once the observable and the controllable spaces are
determined, the valid space, V , has to be defined, combining
them as:

V = ∩∀k

(⊕∀i,jCi,j

)
k,αk

= ∩∀kOk,αk
= U (O) (3)

that is, the controllable space considering the observable
space instead of the configuration space.

In the presented path planner, the valid space is 3-
dimensional.

4.2.5 Admissible Space

Finally, the valid space is mapped to the admissible space,
A, to find the control inputs needed to obtain a collision-free
path to reach a goal.

In the proposed path planner, the control inputs are the
position of the aerial robot, and it is assumed to be holonomic.
Therefore, the mapping from the valid space to the admissible
space is a unit transformation, and consequently, the
admissible space is the same than the valid space.

Fig. 6 Admissible space of the
example presented in Fig. 2. The
robot is located in the point
P0 = [−4, −2, 0.7]T
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Figure 6 shows the admissible space of the example
presented in Fig. 2.

4.3 Probabilistic Graph

To reduce the time that the planner requires to find a
collision-free path, the admissible space is probabilistically
sampled. This probabilistic sampling generates n random
points (also called nodes or vertices) following a uniform
distribution within the admissible space boundaries. The n

sampled points are connected by means of edges to their
nearest m neighbors (called m-neighborhood), creating a
probabilistic graph. The connection between any of two
nodes of the probabilistic graph has to fall completely inside
the admissible space. The generation of this probabilistic
graph is the most computationally expensive operation.

The probabilistic graph is generated at launching time,
and therefore, no knowledge of the objects existing on
the work space is taken into account (as shown in
Fig. 7, continuing with the previous example). Whenever
a static object is included in the situation awareness of the
environment (i.e. a static object is mapped), the probabilistic

graph could be modified to remove its nodes that fall inside
the objects.

The previously known knowledge of the static objects
of the environment can be as well incorporated to the
probabilistic graph by modifying the uniform sampling
function of the node generation into a custom probability
density function. Moreover, this custom probability density
function might be adapted to include the a priori knowledge
of existing important areas (e.g. corridors).

The number of nodes n of the probabilistic graph must be
representative of the environment. If the robot is operating
in an environment that is not very cluttered, the number of
nodes n might be reduced to decrease the complexity of the
graph search and therefore the path planning time.

Whenever the path planner receives a planning query
from the current state, x0, to the desired state, xf , their
values are converted to the admissible space, P0 and Pf

respectively, and connected to the probabilistic graph as
temporary nodes, that are deleted from the graph once the
search has finished.

This proposed probabilistic graph approach differs
from other existing probabilist approaches such as PRM,

Fig. 7 Probabilistic graph with
1000 nodes and 6-neighborhood
of the example presented in
Fig. 2. The robot is located in the
point P0 = [−4, −2, 0.7]T . The
goal point is Pf = [−3, 1, 1]T
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Kavraki et al. [13], where the probabilistic graph is
generated including the information of all the objects
of the environment. On the one hand, our approach
requires higher time to complete the search of a collision-
free path as the graph includes some nodes that fall
inside the obstacles. Nevertheless, on the other hand,
it allows handling dynamic environments without the
need of modifying the probabilistic graph (which is very
computationally expensive).

4.4 Cost Function: Potential Field Map

To guide the collision-free search task, and to incorporate
the knowledge of the objects of the environment, a potential

field map on the admissible space, that depends on the initial
and desired state, is created as follows:

p(P ) = pq(P ) + pO(P ) (4)

where P is any point of the admissible space, pq is the
contribution to the potential field map of the planning
query (see Section 4.4.1), and pO is the contribution to the
potential field map of the obstacles of the environment (see
Section 4.4.2).

Figure 8 illustrates the concept of the potential field map
following the previous example.

This concept of the potential field map has been previously
introduced in Hwang and Ahuja [11], but used in a different
way than presented in our work. In our work, the potential

Fig. 8 Different slices of the potential field map for a query from P0 = [−4, −2, 0.7]T to Pf = [−3, 1, 1]T . For visualization purposes, the
potential field map has be extracted for three different values of z
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field map is used to guide the graph search algorithm
described in Section 4.5 and therefore, our planner never
falls in a local minima when calculating the collision-free
path, computing always the most optimum path.

4.4.1 Potential Field Map of the Planning Query

To guide the search in the direction from the initial point, P0,
to the target point, Pf , a potential field map cost function,
pq , is created.

The potential field map of the planning query, pq = pq(
P,P0, Pf

)
, in a point P of the admissible space given by

its coordinates xP
i , is defined as an elliptic hyperparaboloid

expression where the minimum is located in Pf :

pq =
∑

∀i

(
xP
i − x

Pf

i

)2

ci

+ d (5)

being

ci =

⎧
⎪⎨

⎪⎩

∑
∀i

(
x
P0
i

−x
Pf
i

)2

kr1i

k0−kf
, if i = 1

kr1i
· c1, otherwise

(6)

d = kf (7)

where the coefficient kr1i
determines the priority of the

planned movement in a specific direction i, when compared
with the priority in the first direction; the coefficient k0

determines the value of the potential field map in the initial
point; and the coefficient kf determines the value of the
potential field map in the final point. All these coefficients
determine the aggressiveness in the search of the planner.

4.4.2 Potential Field Map of the Obstacles

To include the situation of the objects of the environment,
being able to find a collision-free path in the probabilistic
graph, a potential field map cost function, pO , is created.

The potential field map of the obstacles, O, of the
environment, pO = pO (P,O), in a point P of the
admissible space given by its coordinates xP

i , is defined as:

pO =
{

∞, if d ≤ 0
k1

1+ek2·d , otherwise
(8)

where d is the minimum distance (in the admissible space)
to all the objects of the environment in the point P of the
admissible space, and k1 and k2 define the tendency of the
planned path to approach to the obstacles.

Fig. 9 Raw collision-free path
generated with the A� algorithm
from point P0 = [−4, −2, 0.7]T

to point Pf = [−3, 1, 1]T of the
admissible space
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4.4.3 Cost of Moving Between Two Points

Given a potential field map p, it generates a surface S given
by S = [P, p (P )]T , for all points P of the admissible
space.

The cost of moving between points A and B of the
admissible space following the curve CA→B , is given by the
line integral for the unit scalar field along the curve CA′→B ′ ,
that is the projection of the curve CA→B over the surface S:

c (A, B) =
∫

CA′→B′
1 · ‖dl‖ �

∑

CA′→B′
‖�l‖ (9)

where A′ = [A, p(A)]T , B ′ = [B, p(B)]T , and dl =
[dt(P ), dp(P )]T , with dt(P ) being the tangent vector of the
curve CA→B in the point P .

If the curve CA→B is parametrized by s ∈ [smin, smax],
then, any point P of this curve is given by tP (s), and for a
�s = si − si−1:

�l =
[

�t

�p

]
=

[
tP (si) − tP (si−1)

p (tP (si)) − p (tP (si−1))

]
(10)

and sampling the s interval, the cost of moving between
points A and B, is calculated combining Eqs. 9 and 10,
getting:

c (A, B) �

smax∑

si=smin

√
‖�t‖2 + ‖�p‖2 (11)

In the case that the curve, CA→B is a straight line
connecting points A and B, the following parametrization
can be used:

s ∈ [smin, smax] = [
0,

∥∥tPB
− tPA

∥∥]
(12)

being a generic point P of the admissible space over the
curve CA→B given by:

tP (s) = tPA
+ s · nC (13)

where

nC = tPB
− tPA∥∥tPB
− tPA

∥∥ (14)

Fig. 10 Shortened collision-free
path (in red) from point
P0 = [−4, −2, 0.7]T to point
Pf = [−3, 1, 1]T of the
admissible space
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Fig. 11 Shortened collision-free
path from the initial position of
the robot to the goal
tf

W
R = [−3, 1, 1]T in the work

space

and for a �s = si − si−1:

�t = �s · nC (15)

and therefore, sampling the s interval, the cost of moving
between points A and B, is calculated by:

c (A, B) �

smax∑

si=0

√
�s2 + (p (tP (si)) − p (tP (si−1)))

2

(16)

The number of sampling points of the s interval, nsi , is
calculated taken into account that the �s has to be smaller
than the smallest dimension of all the obstacles, and hence,
at least a sampling point will fall inside the obstacle if it is
crossed.

4.5 Graph Search Algorithm

Whenever the planner receives a planning query, it uses a
simple but efficient widely used A� algorithm, [7], to find
the minimum cost path that connects the initial (current),
P0, and desired state, Pf , in the probabilistic graph. This
informed search algorithm searches among all possible

paths to the solution for the one that incurs in the smallest
cost, and among these paths, it first considers the ones that
appear to lead most quickly to the solution. At each iteration
of its main loop, it needs to determine which of its partial

Fig. 12 V-REP simulation environment. Static objects are colored as
silver, while moving objects are colored as red (aerial) and yellow (ground)
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Fig. 13 Simulation experiment at t = 0 s. The aerial robot is represented with a purple cylinder, the static objects are depicted in gray, and the
moving objects in turquoise. The planned collision-free path is represented by a dashed red line, whereas the followed path is a solid blue line

path to expand into one or more longer paths. It selects the
path that minimizes:

f (Pi) = g(P0, Pi) + h(Pi, Pf ) (17)

where Pi is the working node of the graph on the current
iteration, g(P0, Pi) is the smallest cost of the path from node
P0 to node Pi in the probabilistic graph, and h(Pi, Pf ) is an
heuristic that estimates the cheapest path from node Pi to
node Pf in a straight line in the admissible space.

To guide the A� algorithm during the search task,
and to incorporate the knowledge of the obstacles of the
environment, the cost function defined in Section 4.4 based
on the potential field map, is used.

The cost g(P0, Pi) is given by the sum of the cost needed
to move between node P0 and node Pi in the probabilistic
graph:

g(P0, Pi) =
Pj+1=Pi∑

Pj =P0

c
(
Pj , Pj+1

)
(18)

where the cost function c
(
Pj , Pj+1

)
incorporates the contri

bution to the potential field map of the query and the obstacles.
The heuristic cost h(Pi, Pf ) is given by the cost needed

to move from node Pi to node Pf in a straight line in the
admissible space:

h(Pi, Pf ) = c
(
Pi, Pf

)
(19)

where the cost function c
(
Pi, Pf

)
only incorporates the

contribution to the potential field map of the query (but not
the obstacles).

After the exploration of the graph, the path, tr , (also
called plan) has to be created by revisiting the explored
nodes. The raw collision-free path computed by the A�

algorithm in the previous example can be seen in Fig. 9.

4.6 Path Shortening

Once a collision-free path, tr , has been found by the A�

algorithm, a post-processing is applied to shorten it to ts .

Fig. 14 Simulation experiment at t = 4.85 s. For a detailed figure description, please refer to Fig. 13
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Fig. 15 Simulation experiment at t = 9.7 s. For a detailed figure description, please refer to Fig. 13

Figure 10 shows the shortened path of the previous
example in the admissible space, whereas Fig. 11 shows the
shortened path in the work space.

The initial node, P0, and the final node, Pf , are always
the beginning and ending points of the shortened path. The
middle points of the shortened path are calculated following
Algorithm 1. In this algorithm, the path is shortened taking
only into account the contribution to the potential field map
of the obstacles of the environment (but not the query).

Algorithm 1 Path shortening algorithm

Initialization: ts = {}, Pi = P0, Pj = Pi+1

Loop:
while Pj = Pf , ∀Pj ∈ tr do

if c
(
Pi, Pj

) ≥ ∑Pk+1=Pj

Pk=Pi
c (Pk, Pk+1) then

ts = {ts , Pj }, Pi ← Pj

end if
Pj ← Pj+1

end while
ts = {ts , Pf }
Note: The cost function c

(
Pi, Pj

)
incorporates only the

contribution to the potential field map of the obstacles.

5 Path Planner Additional Functionalities

Besides the collision-free path generation service (described
in Section 4), the path planner component presented in
Section 3, provides two key additional functionalities
described along this section: the collision-free path check
action (Section 5.1), and the better collision-free path
generation service (Section 5.2).

5.1 Collision-Free Path Check

The planned collision-free path, ts , has to be checked
whenever the environment changes to determine if it is still
collision-free. The cost of the already planned collision-free
path ts is calculated by:

c(P0, Pf ) =
Pj+1=Pf∑

Pj =P0

c
(
Pj , Pj+1

)
(20)

where the cost function c
(
Pj , Pj+1

)
corresponds to the

potential field map, incorporating only the contribution of
the obstacles. The path is considered to be collision-free, if
its cost is lower than a threshold. Otherwise, it needs to be
replanned.

5.2 Better Collision-Free Path Generation

As the environment is constantly changing, the previously
planned collision-free path, ts , despite being collision-free,
might not be the most optimal in terms of cost.

To overcome this fact, the better collision-free path
generation service has been developed. This service,
executes the collision-free path generation service as
described in Section 4, but keeping the previously planned
path. Then, using Eq. 20, the cost of both candidate
collision-free paths is computed. If the new collision-free
path has a strictly lower cost than the previous path, it
is returned as a better collision-free path, otherwise, the
previous path is considered as the most optimum one.

6 Evaluation and Results

This section presents the methodology and evaluation of the
proposed path planning solution.
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Fig. 16 Simulation experiment at t = 11.8 s. For a detailed figure description, please refer to Fig. 13

6.1 Methodology

The proposed path planning solution is implemented in C++
using the Robot Operative System (ROS), [28], as middleware.

The path planning solution has been integrated into dif-
ferent fully autonomous multi-rotor aerial robotic systems
with the aim to evaluate its performance within a com-
plete system. To achieve a fully autonomous operation, a
large number of additional components, which are out of
the scope of this paper, have been used. These additional
components are: perception and state estimation, Sanchez-
Lopez et al. [35], Bavle et al. [4]; control, Pestana et al.
[24], Olivares-Mendez et al. [23]; mission plan specifica-
tion, Molina et al. [19, 20]; multi-robot mission planning,
Sampedro et al. [31]; and human-machine interfaces, Suárez
Fernández et al. [40], among others.

Moreover, the path planning solution has also been
integrated in the open-source framework for aerial robotics
Aerostack, Sanchez-Lopez et al. [33, 36], although only the
2D version has been released as open-source code.

Nevertheless, having a working situation awareness
system for a dynamic 3D environment, is still an open
problem that the scientific community is currently tackling,
which limits the validation scope of the proposed path
planning solution.

Simulations of fully autonomous multi-rotor aerial robots
performing in highly challenging dynamic environments are
presented in Section 6.2. In these simulations, scenes are
formed by a complex static environment in combination
with a large number of moving objects. Dynamic models
of different multi-rotor aerial robots have been included
in these scenes. Using the above-mentioned different
components, the simulated multi-rotor aerial robots are
required to navigate in these scenes fully autonomously. At
the end of this section, the simulation results are evaluated.

To complement the simulations, Section 6.3 presents
the previous usages of the 2D version of the proposed
path planning solution in a fully autonomous aerial robotic
system, and discusses the difficulty found on the validation
of the presented 3D version.

Fig. 17 Simulation experiment at t = 16.1 s. For a detailed figure description, please refer to Fig. 13
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Fig. 18 Simulation experiment at t = 20.45 s. For a detailed figure description, please refer to Fig. 13

6.2 Simulations in Dynamic Environments

The proposed path planner has been evaluated by means of
realistic simulations. The simulations were carried out using
the V-REP simulator, [30], with different scenes as the one
shown in Fig. 12.

For the sake of brevity, only one simulation is presented
in this paper, but a complimentary set of simulations can be
found online.1

The presented simulation is carried out in an environment
of 15 × 15 × 4 = 900 m3, using a DJI M100 like aerial
robot platform (approx. 40 cm of radius and a height of
40 cm). The used scene, shown in Fig. 12, incorporates
multiple static objects, colored as silver, some of them
forming a house with a door-like aperture, and two Velux-
like roof openings. The scene incorporates four ground
moving objects (colored as yellow) as well with cylindrical
and prism shape, and six cylinder-shaped aerial moving
objects (colored as red). The apertures of the house are
occasionally blocked by the moving objects. The aerial
moving objects have been incorporated to increase the
complexity of the navigation, as the ground moving objects
can be easily avoided by flying above them. The complete
information of the situation, both of the robot and the
objects of the environment, is received directly from the
simulator.

The aerial robot takes off behind two walls outside the
house at initial position P0 = [−5.525, −6.625, 1]T , and it
is requested to reach goal position Pf = [5.0, 5.0, 0.7]T ,
which is located inside the house.

The configuration parameters of the path planning
solution are the following:

1Complimentary set of simulations: (i.e. https://youtu.be/4zMjwlbD2P8)

– Admissible space: threshold distance to ignore the
moving objects, dO = 5.0 (m in the admissible space).

– Probabilistic graph: number of nodes, n = 5500, with a
6-neighborhood (6.11 nodes / m3).

– Potential field map of the planning query: kr1y
= 1.0,

kr1y
= 3.0, k0 = 1.0 · 106, and kf = 0.0.

– Potential field map of the obstacles: k1 = 1.0 · 106, and
k2 = 2.5.

– Path check: distance of loosing the path, dt = 0.6.
– Better path generation: period on requesting a better

path, Tbetter = 1.0 · tplanning (s), where tplanning is the
time (in seconds) that the path planner needed to plan
the previously planned collision-free path.

The simulation starts at t = 0 s, once the aerial robot is
hovering in the air, and the goal is sent to the path planning
system. As shown in Fig. 13, the planned collision-free path
climbs up the walls that are outside the house and enters the
house through the right roof opening.

As soon as the aerial robot advances following the path,
some of the mobile obstacles are located within the distance
range dO of the robot, therefore, they are considered in the
admissible space. The collision-free path is subsequently
adapted, as can be seen in Fig. 14.

In Fig. 15, the moving obstacle entered in the previously
planned collision-free path, which forced the planner to
generate a new collision-free path by flying over the moving
obstacle.

Figure 16 shows a new better collision-free path that
the planner has found while it is moving toward the
goal, adapting the path to the changes of the dynamic
environment.

In Fig. 17, the aerial robot is passing by a moving object.
Figure 18 shows the exact time instant where the aerial

robot is targeting the roof opening and is ready to descend
to enter the house.
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Fig. 19 Simulation experiment at t = 23.35 s. For a detailed figure description, please refer to Fig. 13

The aerial robot crosses the roof opening at t = 23.35 s,
as shown in Fig. 19.

Finally, in Fig. 20, the aerial robot safely reached the
goal inside the house after having avoided all the possible
collisions and adapted its behaviors with respect to the
dynamic obstacles presence in the environment.

Despite the high complexity of the simulations, incor-
porating complex static obstacles, and multiple dynamic
objects, the proposed path planner is capable of performing
in real-time within a fully autonomous system, and generat-
ing collision-free paths to reach complex goals (this could
never have been reached using only a reactive approach),
adapting them to the changes in the environment due to
dynamic obstacles.

6.3 Real Flights in Dynamic Environments

Validation of the proposed path planning solution requires
not only simulations but also real flights of the fully
autonomous aerial robotic system.

The previous version of the here proposed path planner,
described in Sanchez-Lopez et al. [37], has been validated

thanks to its intensive usage in multiple research projects,
including three international competitions, IMAV 2013,
Pestana et al. [25, 27], IARC 2014, Sanchez-Lopez et
al. [26], and IMAV 2016; and in several applications for
search and rescue (see Fig. 21), exploration, and inspection
applications among others, Sanchez-Lopez et al. [32, 33],
Sampedro et al. [31], Sanchez-Lopez et al. [34, 36]. Its
performance has been demonstrated in applications where
multiple aerial robot agents are used as moving obstacles,
while in others human beings are employed. In all these
usages, the planner was able to calculate feasible collision-
free paths with real-time operation, generating new paths
fast enough when necessary.

Nevertheless, it is a highly challenging task to validate
the newly added 3D navigation capabilities of the proposed
path planner with a real fully autonomous aerial robotic
system. It requires not only a 3D test area available, but
also additional components for perception, control, mission
planning, etc., that are out of the scope of this paper. As
stated before, having a working situation awareness system
for a dynamic 3D environment is still an open problem that
the scientific community is currently tackling. This makes

Fig. 20 Simulation experiment at t = 28.55 s. For a detailed figure description, please refer to Fig. 13
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Fig. 21 Real flight experiment of [36], using the previous version of
the here presented path planning solution for a multi-robot search and
rescue application

the full validation of the proposed path planner with a real
flight highly challenging, and this will remain as a future
work.

7 Conclusions and FutureWork

In this paper, we have presented a real-time collision-free
path planning solution for 3D navigation of multi-rotor
aerial robots in complex dynamic environments, which is an
extension of our previous work, [37].

Our path planner represents the situation, including the
self-situation and the situation of the environment, with
high-level geometric primitives, unlike other less compact
descriptions using grid maps or octrees. The admissible
space, where the optimal solution has to be searched, is gen-
erated incorporating novel concepts imported from control
theory. It is sampled at launching time utilizing a prob-
abilistic graph. Unlike other widely known probabilistic
approaches such as PRM, this probabilistic graph does not
incorporate the information of existing objects in the envi-
ronment. Whenever a planning query is received, an A�

discrete search algorithm is employed to explore the prob-
abilistic graph in order to find a raw optimal collision-free
path (subsequently shortened), which therefore guarantees
the optimality of, if any exists, the obtained collision-free
path. To include the information of existing obstacles in
the environment without modifying the probabilistic graph
(what is computationally expensive), an artificial potential
field map is employed as the cost function of the discrete
search algorithm. Unlike typical implementations of arti-
ficial potential field maps, our planner always finds an

optimal path without dropping into local minima. These key
features of the proposed path planning algorithm enable its
real-time operation in complex dynamic environments.

The proposed path planning solution has been integrated
within a complete fully autonomous robotic system for
its evaluation. It has been fully evaluated by means of
realistic simulations using the V-REP simulator in complex
environments with multiple moving objects.

The evaluation results support that the proposed path
planning solution is capable of performing in real-time
within a fully autonomous system, generating collision-
free paths to reach complex goals, and adapting them
to the changes of the environment due to the dynamic
obstacles.

Our future work lines mainly include evaluation of
other discrete search algorithms which are potentially more
suitable for dynamic environments, such as the D�, Stentz
[39], implementation of more complex high-level geometric
primitives to represent the situation, and development of
newer shortening algorithms to obtain a smoother path.

Moreover, an important limitation of the proposed path
planner is the need of sampling admissible space at
launching time. This limitation disqualifies the planner for
exploration usage and limits its performance when the
number of nodes is insufficient. To overcome this limitation,
algorithms such as a Lazy-PRM, Bohlin and Kavraki [5],
or a C-PRM, Song et al. [38], might be used for further
improvement of the proposed solution. In addition, higher
dimensional search spaces (including, for example, heading
and velocity) should be implemented in the future work.
Finally, validation of our proposed path planning solution
by means of real flights has to be completed by developing
adequate situation awareness components.
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