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Abstract
The aim of this paper is to provide a global overview of mobile robot control and navigation methodologies developed over
the last decades. Mobile robots have been a substantial contributor to the welfare of modern society over the years, including
the industrial, service, medical, and socialization sectors. The paper starts with a list of books on autonomous mobile robots
and an overview of survey papers that cover a wide range of decision, control and navigation areas. The organization of
the material follows the structure of the author’s recent book on mobile robot control. Thus, the following aspects of
wheeled mobile robots are considered: kinematic modeling, dynamic modeling, conventional control, affine model-based
control, invariant manifold-based control, model reference adaptive control, sliding-mode control, fuzzy and neural control,
vision-based control, path and motion planning, localization and mapping, and control and software architectures.

Keywords Mobile robot · Autonomous mobile robot · Control · Path planning · Motion planning · Navigation ·
Localization · Mapping · Control architecture · Software architecture

Mathematics Subject Classification (2010) 68T40 · 70E60 · 93C85 · 70Q05 · 70B15

1 Introduction

Terrestial (Ground) robots are distinguished in fixed-place
robots and mobile robots. Fixed-place robots are robots of
which the base is fixed at a specific place, and hence they
have a workspace limited by their kinematic structure and
the size of their links. Unlike fixed-place robots, mobile
robots are robots that can move from one place to another
autonomously, i.e., they have the special feature of mov-
ing around freely within a predefined workspace to perform
given tasks and achieve desired goals. Today’s autonomous
mobile robots (AMRs) can move around safely in cluttered
surroundings, understand natural speech, recognize real
objects, locate themselves, plan paths, navigate themselves,
and generally think by themselves. The design of AMRs
employs the methodologies and technologies of intelligent,
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cognitive, and behavior-based control, and attempts to max-
imize flexibility of performance subject to minimal input
dictionary and minimal computational complexity.

Therefore, AMRs belong to the broad class of intelligent
robots. Ronald Arkin [7], defines an intelligent robot as ‘a
machine able to extract information from its environment
and use knowledge about its work to move safety in a
meaningful and purposive manner’. In general, a robot is
referred to in the literature as a machine that performs an
‘intelligent connection between perception and action’.

The navigation and control field of AMRs has achieved
over the years high maturity, both in theory and practice,
and a large number of authored and edited books have
been published in the international scene. Twenty authored
books are listed in Table 1, in which the authors’ names,
publication years, and gross contents of them are provided
[1–20]. Ten edited books written by invited or conference
authors are [21–30]. Also, several special issues of
international journals, and numerous state-of-art papers
exist in the literature which present surveys of particular
areas within the autonomous mobile robotics field [31–
52]. A brief summary of some of these papers is given in
Section 2.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0805-9&domain=pdf
http://orcid.org/0000-0002-9700-9313
mailto:tzafesta@cs.ntua.gr
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Table 1 Books on
Autonomous Robot Navigation
and Control (1991–2017)

Author Year Content

A.M.Meystel [1] 1991 Intelligent motion control. Evolution of autonomous mobile

robots (AMR). Autonomous mobility. Cognitive control of AMR.

Nested hierarchical control. Intelligent Modules (planner,

navigator, pilot).Cartographer.

J.C. Latombe [2] 1991 Configuration space (CS) of rigid object. Obstacles in CS. Road

map methods. Cell de composition (exact, approximate).

Potential field methods. Dealing with uncertainty. Movable objects.

J.L. Leonard [3] 1992 The navigation problem. Sonar sensor model. Model-based

localization. Map building. Simultaneous map building and

localization. Directed sensing strategies. Why use sonar?

J.L. Jones [4] 1995 TuteBot. Computational Hardware. Designing and prototyping.

Sensors. Mechanics. Motors. Robot programming. Robot

applications. Robot design principles. Unsolved problems.

H.R. Everett [5] 1995 Design considerations. Dead reckoning. Odometer sensors.

Doppler and inertial navigation. Typical mobility configurations.

Tactile and proximity sensing. Triangulation ranging. Active

triangulation. Range from focus. Return signal intensity. Guide

path following. Position location sensors. Ultrasonic and optical

position location systems.

J. Borenstein [6] 1996 Sensors for mobile robot positioning. Heading sensors. Active

beacons. Sensors for map-based positioning. Landmark

navigation. Active beacon navigation systems.

R.C. Arkin [7] 1998 Whence behavior? Animal behavior. Robot behavior. Behavior-based

architectures. Representation issues. Hybrid

deliberative/reactive architectures. Perceptual basis for

behavior-based control. Adaptive behavior. Social behavior.

Fringe robotics-Beyond behavior.

J. Canny [8] 1998 Robot motion planning problems. Motion constraints.

Elimination theory. The roadmap algorithm. Performance

improvements. Lower bounds for motion planning. Motion

planning with uncertainty.

X.Zhu [9] 2001 Outdoor mobile robots. Motion Control. Cooperative motion

control and architecture. Kinematic motion control.

U.Nehmzow [10] 2003 Robot hardware. Robot learning. Making sense of raw sensor.

Navigation. Novelty detection. Simulation. Modeling robot-

environment. Robot behavior analysis. Locomotion. Mobile

robot kinematics. Perception. Mobile robot localization.

Planning and Navigation.

R. Siegwart [11] 2005 Locomotion. Mobile robot kinematics. Perception. Mobile robot

localization. Planning and Navigation.

F. Cuesta [12] 2005 Fuzzy systems. Stability analysis. Bifurcations in simple

Takagi-Sugeno fuzzy systems. Intelligent control of mobile robots with

fuzzy perception. Stability of mobile robots with fuzzy reactive

navigation. Intelligent system for parallel parking of cars

and tractor-trailers.

K. Berns [13] 2009 Historical overview of autonomous land vehicles. Vehicle

kinematics. Sensor systems. Where am I? The localization

problem. Map building. Navigation strategies. Control

architectures. Software frameworks.
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Table 1 (continued)
Author Year Content

G. Dudek [14] 2010 Fundamental problems. Mobile robot hardware. Non-visual

sensors and algorithms. Visual sensors and algorithms.

Representing and reasoning about space. System control. Pose

maintenance and localization. Mapping and related tasks. Robot

collectives. Robots in practice. The future of mobile robots.

G. Cook [15] 2011 Mobile robot control. Robot attitude. Robot navigation.

Application of Kalman filtering. Remote sensing. Target tracking

including multiple targets with multiple sensors. Obstacle

mapping and its application to robot navigation. Operating a

robotic manipulator. Remote sensing via UAVs. Robot parts. Kinematics.

C.A. Berry [16] 2012 Introduction. Hardware. Control. Feedback control.

Representation. Control architectures. Software. Navigation.

Localization. Mapping. Simultaneous localization and mapping.

R. Tiwari [17] 2012 Graph based path planning. Common planning techniques.

Evolutionary robotics. Behavioral path planning. Hybrid

graph-based methods. Hybrid behavioral methods. Multi-robot-systems.

A. Kelley [18] 2013 Introduction. Math fundamentals. Numerical methods.

Dynamics. Optimal estimation. State estimation. Sensors for

state estimation. Control. Perception. Localization and mapping.

Motion planning.

S.G. Tzafestas [19] 2014 Mobile robots. Mobile robot kinematics. Mobile robot

dynamics. Mobile robot sensors. Mobile robot control.

Lyapunov-based method. Affine systems and invariant manifold

methods. Adaptive and robust methods. Fuzzy and neural

methods. Vision-based methods. Mobile manipulation modeling

and control. Mobile robot path, motion, and task planning.

Mobile robot localization and mapping. Generic systemic and

software architectures. Experimental studies. Mobile robots at work.

L. Jaulin [20] 2017 Three-dimensional modeling. Feedback linearization.

Model-free control. Guidance. Instantaneous localization.

Identification. Kalman filter.

2 Overview of Twelve Survey Papers
onMobile Robots

The AMR areas covered by these surveys are:

• Deep learning in AMRs.
• Multiple cooperative AMRs.
• Self-organized pattern formation in AMRs.
• AMR learning paradigms and applications.
• Performance measures of mobile manipulators.
• Multi-robot coordination and decision problems.
• Gathering fat robots and patrolling by mobile robots.
• Control architectures of AMRs.
• Autonomous search and pursuit-evasion.
• Control of mobile robots with trailers.
• Simulation tools and their selection via user selection.
• Geometric registration and configuration selection.

A short outline of them is as follows:

• Tai and Liu [31], provide a survey of deep learning (DL)
landscape in robotics which includes the development
of deep learning in related fields, especially the
essential distinctions between image processing and
robotic tasks. DL methods are distinguished in two
classes: perception, and control systems. DL may be an
answer for the future of robotics and serve for solving
robust and generic robotic tasks.

• Cao, Fukunago, and Kalug [32], review the research on
systems composed of multiple autonomous mobile robots
exhibiting cooperative behavior. Groups of robots are con-
structed aiming at studying group architecture, resource
conflict of cooperation, learning, and geometric problems.
This paper gives a critical survey of existing works
along with a discussion of open problems in this field.
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• Yamauchi [33], provides a survey of pattern formation
of autonomous robots focusing on self-organization of
mobile robots, especially the power of forming patterns.
The existing results show that the robot system’s
formation power is determined by their asynchrony,
obliviousness, and visibility. Besides the existing
results, this paper presents a number of open problems
related to pattern formation in mobile robotics.

• Cunha [34] provides an overview of the state-of-art of
the different applications of machine learning method-
ologies in mobile robotics. He starts by presenting
the credit assignment problem, namely: temporal credit
assignment, structural credit assignment, and task credit
assignment. Then, an overview is given of various
learning paradigms characterized by solving each credit
assignment problem in a different way.

• Bostelman, Hong and Marvel [35], give a survey of
available research results concerning the performance
measurement of mobile manipulators. The survey
provides a literature review of mobile manipulation
research with examples and experimental applications.
Also the survey presents an extensive list of planning
and control references with factors into performance
measurement.

• Yan, Jouandeau and Cherif [36], deal with the
analysis of multi-robot coordination, especially with
the literature on problems related to communication
mechanisms, planning strategies, and decision making.
Having made great progress in basic problems of single-
robot control, much of the current research is focused to
the study of multi-robot coordination. The authors also
review a series of related problems.

• Bandettini, Luporini and Viglietta [37], provide a
survey of the open problems of (i) gathering fat (non-
point) robots which may be opaque in the sense
that other robots cannot ‘see through it’, and (ii) the
problem of boundary patrolling by mobile robots with
constraints only on speed and visibility. For at most
four robots an algorithm exists in the literature, but
the question is whether gathering is always possible
for more than 4 robots. A set of mobile robots with
constraints only on speed and visibility is working
in a polygonal environment having boundary and
possible obstacles. The robots must perform a perpetual
movement, so that the maximum time span, in which a
point of the boundary is not watched by any robot, is
minimized.

• Medeiros [38], presents a survey of the flavor in existing
robot control architectures and identifies attributes of
intelligent robot control architectures. He discusses the
NASREM architecture, the subsumption architecture,
the LAS architecture, and the TCA architecture.

• Chung, Hollinger and Isler [39], present a survey of
recent results in pursuit evasion and autonomous search
relevant to mobile robotic applications. A taxonomy of
search problems is given that highlights the differences
resulting from several assumptions on the searches,
targets, and the environment. Then, a list of a number of
fundamental results in the areas of pursuit-evasion and
probabilistic search is provided, including a discussion
of the field of implementations of mobile robotic
systems. Finally, several current open problems in the
area are highlighted to explore avenues for future work.

• David andManivanan [40], review a number of existing
studies in the control of mobile robots with trailers,
which accomplish their task in a faster and cheaper way
than an individual robot. The main issue of their study
is the complexity and stability of the complete system
which is nonlinear and unstable. This paper provides a
survey of various control strategies and algorithms for
the backward motion of mobile robots with trailers, and
identifies some unsolved problems in this area.

• Ivaldi, Padvis and Nori [41], overview the panorama
of simulation tools that are presently used in robotics.
They propose to evaluate user feedback as a way to
make an objective and quantitative comparison, which
is actually difficult to be done since many of the tools
are not open source. To this end, they created an on-line
survey about the use of dynamical simulation tools, and
analyzed the participants’ answers to get a descriptive
information fiche for the most relevant tools. This can
be helpful to robotics workers in choosing the best
simulation tool for each particular application.

• Pomerleau, Colas and Siegwart [42], review the
geometric registration algorithms in robotics, which
associate sets of data into a common coordinate system
and have been extensively used in object reconstruction,
inspection, and localization of mobile robots. They,
focus on mobile robotics applications in which point
clouds are to be registered, presenting a formalization of
geometric registration and casting algorithms proposed
in the literature. They review some applications of this
framework in mobile robotics that cover different kinds,
of platforms, environments, and tasks. The ultimate
goal of the authors was to provide guidelines for the
selection of geometric registration configuration.

In the next Sections 3 through 9, an overview of the following
mobile robot control and navigation topics will be provided:

• Mobile robot kinematics and dynamics.
• Mobile robot control (standard control, state feedback

linearized control, invariant manifold-based control).
• Mobile robot adaptive and robust control (MRAC,

sliding mode control).
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• Mobile robot fuzzy and neural control.
• Mobile robot vision based control.
• Mobile robot path and motion planning.
• Mobile robot localization and mapping.

Section 10 will review the major intelligent control and
software architectures for mobile robot systems.

3Mobile Robot Kinematics and Dynamics

3.1 Mobile Robot Kinematics

Robot Kinematics deals with the configuration of robots
in their workspace, the relations between their geometric
parameters, and the constraints imposed in their trajectories.
The Kinematic equations depend on the geometrical
structure of the robot. For example, a fixed robot can have
a Cartesian, cylindrical, spherical, or articulated structure,
and a mobile robot may have one two, three, or more wheels
with or without constraints in their motion. The study of
kinematics is a fundamental prerequisite for the study of
dynamics, the stability features, and the control of the robot.
The development of new and specialized robotic kinematic
structures is still a topic of ongoing research, toward the end
of constructing robots that can perform more sophisticated
and complex tasks in industrial and societal applications.

As in fixed-place robots, the fundamental mathematical
tool is the concept of ‘homogeneous transformations’, and
the concept of ‘nonholonomic constraints’. The kinematics
of robots (articulated, mobile, etc.) involves the direct
kinematics (from the joint space qεRn to the task space
pεRm) and inverse dynamics (from pεRm to qεRn):

p = f(q), q = f−1(p)

and, respectively, direct differential kinematics and inverse
differential kinematics:

dp = Jdq, dq = J−1dp, J =
[

∂xi

∂qj

]
∈ Rm×n

where p = [x1, x2,. . . .,xm]T.
The major nonhlonomic wheeled mobile robots (WMR)

are: (i) the differential drive WMR, (ii) the tricycle WMR,
and (iii) the car-like WMR, which have been extensively
studied. The basic kinematic model which is used for
modeling the above WMR is the unicycle (Fig. 1). This
model is described by the equations:

ẋQ = vQ cosφ, ẏQ = vQ sinφ, φ̇ = vφ (1)

By eliminating vQ from the first two equations, we obtain
the nonholonomic constraint:

−ẋQ sinφ + ẏQ cosφ = 0 (2)

Fig. 1 Kinematic structure of a unicycle

An extension of the car-like WMR is the car-pulling trailer
WMR, in which N single-axis trailers are attached to a
car-like robot with rear-wheel drive.

The two classes of holonomic WMRs that have been
mostly studied are: (i) the multi-wheel omnidirectional
WMR with orthogonal (universal) wheels, (ii) the four-
wheel omnidirectional WMR with mecanum wheels (roller
angle ±45◦).

Representative references on mobile kinematics, where
several complexities (e.g., motion with slip, motion in
uneven terrain, etc.) are handled, are [53–59].

3.2 Mobile Robot Dynamics

Like kinematics, dynamics is distinguished in:

• Direct dynamics.
• Inverse dynamics.

Direct dynamics provides the dynamic equations that describe
the dynamic responses of the robot to given forces/torques
τ1, τ2, ...., τm that are exerted by the motors.

Inverse dynamics provides the forces/torques that must
be exerted to get desired trajectories of the robot links.

In the inverse dynamic model the inputs are the desired tra-
jectories of the link variables, and outputs the motor torques.

The dynamic equations of a WMR are derived by the
Newton-Euler and Lagrange equations which have been
fully studied in mechanics.

The general Lagrange model of a multilink robot is:

D(q)q̈ + h(q, q̇) + g(q) = τ , q = [q1, q2, ..., qm]T (3)

where, for any q̇ �= 0,D(q) is an n × n positive definite
matrix. The corresponding model for a nonholonomic robot
with m nonholonomic constraints:

M(q)q̇ = 0, M(q)an m × n matrix, has he form:

D(q. )q̇ + C(q, q̇)q̇ + g(q) + MT(q)λ = Eτ (4)
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where λ is a vector Lagrange multiplier. Now, defining
a matrix B(q) such as q̇(t) = B(q)v(t), and working on
Eq. 4, we get the unconstrained Lagrange model:

D̄(q)v̇ + C̄(q, q̇)v + ḡ(q) = Ēτ (5)

where D̄ = BTDB, C̄ = BTDḂ + BTCB, ḡ = BTg, Ē =
BTE.

The dynamic model (5) has found extensive use for
finding the dynamic models of WMRs of any kind (with
slip, uneven terrains, differential drive, omnidirectional,
etc.), and applying control schemes [60–63].

The Newton-Euler dynamic model is simpler in the sense
that does not need extensive derivations like the Lagrange
model, and in many cases it is preferred [64–66].

4WheeledMobile Robot Control

4.1 Standard Controllers

The standard general robot controllers that have been studied
over the years are:

• Proportional plus integral controller.
• Lyapunov function-based controller.
• Computed torque controller.
• Resolved motion rate controller.
• Resolved motion acceleration controller.

All these controllers have been extensively applied to WMRs.
The control procedure of a WMR involves two stages,
namely [19, 67]:

• Kinematic tracking/stabilizing control.
• Dynamic tracking control.

The first uses the kinematic model of the robot, with a proper
candidate Lyapunov function, and yields the control laws
for the linear and angular velocities (v, ω) of the robot. The
second uses the Lagrangemodel or theNewton dynamicmodel
which may involve or not the motor dynamics and the
gear box. This procedure belongs to the general class of
back-stepping control [67–70]. A solution of the control of
omnidirectional robots, which uses the resolved accelera-
tion control scheme, was provided in [19, 71]. The case of
parking control of a car-like WMR was studied in [72], and
a formation (leader-follower) controller was derived in [73].

4.2 Advanced Controllers

Here, we will deal with two kinds of advanced controllers,
namely:

• State feedback linearization-based controllers.
• Invariant manifolds-based controllers.

The first class of controllers uses the affine dynamic model
[74, 75]:

ẋ = go(x) +
m∑

i=1

gi (x)ui, x ∈ Rn, g(x) ∈ Rn

= go(x) + G(x)u, G(x) = [g1(x); ..., gm(x)]
where x = [x1, x2, ...xn]T, u = [u1, u2, ..., um]T(m ≤ n).

The drift term go(x) represents the general kinematic
constraints of the system. Fundamental concepts of affine
theory are:

• Diffeomorphism: A function of the form:

z = ϕ(x), x ∈ Rn, z ∈ Rn

where ϕ(x) is a vector function (field) with the properties (i)
ϕ−1(ϕ(x)) = x, ϕ(ϕ−1(z)) = z for all x ∈ Rn and z ∈ Rn,
and (ii) both functions have continuous partial derivatives of
any order (smooth functions).

• Lie derivative: The function

∂s(x)
∂x

= ∇s(x) =
[
∂s(x)
∂x1

,
∂s(x)
∂x2

, ...,
∂s(x)
∂xn

]

where s(x) = s(x1, x2, ...., xn) ∈ R is a smooth scalar real-
valued function and f(x) ∈ Rn is a vector field, is said to be
the Lie derivative of s(x) along the field f(x).

• Lie bracket: It is symbolized by [f, g](x) and defined as:
[f, g](x) = (∂g/∂x)f(x) − (∂f/∂x)g(x), x ∈ Rn, where
∂f/∂x and ∂g/∂x are the Jacobian matrices of the fields
f (x) and g (x).

The second class of mobile robot stabilizing control uses
the concept of invariant manifolds, and leads to nonlinear
controllers directly. A manifold is a topological space which
is locally Euclidean, i.e., around every point there is a
neighborhood which is topologically the same as the open
unit ball in Rn.

Invariant Manifold A manifold M = {x ∈ Rn : s(x) = 0},
where s : Rn → Rm is a smooth map, is invariant for
the dynamic system ẋ = f(x, u) if all system trajectories
starting in M at t = to remain in this manifold for all t ≥ t0.
This implies that the Lie derivative of s along the vector field
f is zero, i.e., Lfs(x) = 0, for all x ∈ M .

The concepts of invariant set and invariant manifold
extend the concept of equilibrium point (which is an invari-
ant monoset), and enable the construction of Lyapunov
functions for nonlinear systems. The invariant set-based
Lyapunov stability is based on the LaSalle local and global
invariant set theorems [75], the Krasovskii theorem, and the
Brockett theorem [76].
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4.2.1 Mobile Robot State Feedback Linearization

There are two classes of linearization via state feedback: (i)
input-state linearization, and (ii) input-output linearization
[75]. The nonholonomic mobile robots can be modeled by
the affine system:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm

For single-input systems (u ∈ R) there has been derived a
generalized linearizing feedback law through the derivation
of a generalized controllable canonical form [74, 75].
This control law was adapted to mobile (differential drive,
car-like) robots in [77]. Then, the trajectory tracking
control was solved for the resulting linearized systems,
using conventional linear state-feedback control [19, 77].
Analogous results were obtained in [59, 78].

4.2.2 Mobile Robot Invariant Manifolds-Based Stabilizing
Control

This approach leads directly to nonlinear controllers without
prior feedback linearization. The two general models
that have been used are: (i) the nonholonomic Brockett
integrators (simple, double, extended), and (ii) the (2-n)
chain models. This approach treats in an elegant way the
nonholonomic constraints, and a rich literature exists with
a large repertory of different controllers [76, 79–85]. The
simplest problem is that of stabilizing control of a unicycle
in chained model form (Fig. 1):

ż1 = u1, ż2 = u2, ż3 = z2u1

where u1 = vφ and u2 = vQ − z3u1.
The problem is to find a static quasi-continuous state

feedback control law u = u(z),u = [u1, u2]T, z =
[z1, z2, z3]T. It can be easily verified that the control law:

u = [−k1z1, −k1z2], k1 > 0 (6a)

makes the origin z = [z1, z2, z3]T = [ 0 0 0 ]T globally
asymptotically stable. The resulting closed-loop system is:

ż = f(z), f(z) = [−k1z1, −k1z2, −k1z1z2]T (6b)

The manifold:

M = {z ∈ R3 : s(z) = z1z2 − 2z3}
is an invariant manifold of the closed-loop system,

since: Lfs(z) =
3∑

i=1
(∂s/∂zi)fi(z1, z2, z3) = z2(−k1z1)

+z1(−k1z2) − 2(−k1z1z2) = 0. The time derivative of s(z)
along the trajectories of Eq. 6b is found to be:

ṡ(z) = z1u2 − z2u1 = 0

Thismeans that the trajectories, once on the surface (manifold)
M , remain there. Now, since z1(t) → 0 and z2(t) → 0
as t → ∞, for any trajectory on M we have z3(t) → 0

as t → ∞, and so: [z1(t), z2(t), z3(t)]T → [ 0 0 0 ]T as
t → ∞. We see that M does not depend on k1. Now,
to construct a stabilizing control law which makes M an
attractive manifold the control law (6a) must be enhanced
so as to satisfy the attractivity condition:

If s(z) < 0, then ṡ(z) > 0 z ∈ R3

If s(z) > 0, then ṡ(z) < 0 z ∈ R3 (7a)

A possible enhancement is:

u =
[ −k1z1 − z2H(s)/

(
z21 + z22

)
−k1z2 + z1H(s)/

(
z21 + z22

)
]

, z21 + z22 �= 0 (7b)

where the scalar mapping H(s) is selected so as:

sH(s) < 0,

to assure the satisfaction of the attractivity condition (7a).
A function H(s) with this property is H(s) = −k2s. It
can be easily verified that the closed-loop system with the
controller (7b) and z21(0) + z22(0) �= 0 drives the unicycle to
the origin, while avoiding the manifold

M∗ =
{
z ∈ R3 : z21 + z22 = 0, z1z2 − 2z3 �= 0

}

5Mobile Robot Adaptive and Robust Control

Adaptive control is suitable for systems that involve slowly
varying parameters or uncertainties/disturbances due to load
variation, fuel consumption, etc. [86, 87]. Robust control is
applied in cases where there are strong parameter variations
or uncertainties, under the assumption that bounds of these
uncertainties are a priori unknown [87]. The adaptive
controllers (control laws or control algorithms) improve
their performance as the adaptation evolves with time.
Robust controllers can face fast disturbances, fast variations,
and non-modeled characteristics, and are attempt to keep an
acceptable performance right from the beginning. Almost
always, the adaptive control techniques require some linear
parameterization of the dynamics of the nonlinear system
under control.

5.1 Adaptive Control

The two widely used adaptive control methods are:

• The model reference adaptive control (MRAC) method.
• The self-tuning control (STC) method.

The typical adaptive control method that has been applied
to wheeled mobile robots is theMRAC method [88–91].

For example, in [90, 91] the problem solved is that
of designing an adaptive feedback tracking controller for
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the differential drive WMR which is described by (τR =
right-wheel torque, τL = left-wheel torque):

v̇ = (1/mr)(τR + τL) = (1/m)τa

ω̇ = (2a/Ir)(τR − τL) = (1/I)τb, τα = (τR + τL)/r,

τb = (τR − τL)/r

ẋ = v cosφ, ẏ = v sinφ,

with state vector p = [x, y, φ]T. The tracking control laws,
for τa and τb, are found to be:

τa = m̂v̇d + Kaṽc, τb = Î ω̇d + Kbω̃c

where ṽc = vd − vc, ω̃c = ωd − ωc, vd and ωd are the
desired linear and angular velocity of the WMR, and vc, ωc

are the corresponding reference velocities. The reference
models for vc and ωc are assumed to be linear, namely:
v̇r + βrvvr = 0, ω̇r + βrωωr = 0, βrv > 0, βrω > 0.

Then, selecting a proper candidate Lyapunov function
and choosing the parameter dynamics such that V̇ ≤ 0, the
parameter adaptation laws are found.

In [92] the adaptive control problem is solved using the
input-output linearization for an m-input m-output affine
system. This approach is then followed to solve the same
problem for the differential drive WMR. In [19] the MRAC
problem is solved for an omnidirectional robot using the
original Landau method [93].

5.2 Robust Control

A powerful robust control method for nonlinear systems
is the sliding mode control (SMC) method [75], which
was applied to mobile robots in [94, 95]. This method was
originally applied to a single-input single-output canonical
nonlinear model:

ẋ1 = x2, ẋ2 = x3...ẋn−1 = xn

ẋn = b(x) + a(x)u + d(t)

y = x1

where u(t) is the scalar input, y(t) the scalar output, and
d(t) a scalar disturbance input.

The nonlinear function b(x) is not exactly known but
with some imprecision (error)|
b(x)| which is bounded
from above by a known function of x. The tracking error is
x̃(t) = x(t) − xd(t), where x = [y, ẏ, ÿ, ..., y(n−1)]T and
xd(t) is the desired trajectory xd = [yd, ẏd , ÿd , ..., yn−1

d ]T.
The function a(x) is also known with uncertainty. The
solution is based on a time-varying sliding surface S within
the state space Rn which is defined as:

s(x, t) = 0, s(x, t) = (d/dt + �)n−1x̃(t)

where � is a positive constant that represents the control
signal bandwidth. Under the condition xd(0) = x0, the

trajectory tracking problem x(t) = xd(t) is equivalent to the
problem of remaining on the sliding surface S(t) for all t .

Thus, to assure the trajectory tracking x(t)→xd(t), the
condition s(x, t) = 0 should be maintained, which can be
done if u(t) is selected such that outside the surface S(t) the
following sliding condition holds:

(1/2)ds2/dt ≤ −γ |s|,

where γ is a positive constant. The solution is found by
treating s2(x, t) as a Lyapunov function and assuring that
it remains a Lyapunov function despite the presence of the
disturbance and the model uncertainty.

Let a second-order system,

d2x/dt2 = b(x) + u

where x is the scalar output, u the scalar control input, and
the function b(x) (possibly nonlinear or time-varying) is
approximately known with uncertainty bound ρmax, i.e.:

|b̂ − b| ≤ ρmax

The resulting sliding-mode controller is:

u = û − k sgn (s), û = −b̂ + ẍd − � ˙̃x, k = ρmax + γ

which results in the desired sliding condition:

(1/2)ds2/dt ≤ −γ |s|

In practice, to avoid chattering of the control u, the
signum (sgn) function is replaced by the saturation (sat)
function. The robust control problem was also solved
using the Lyapunov stabilization method [75]. The above
methods were applied to design robust control (sliding-
mode, Lyapunov function-based control) of WMRs in [94,
95]. For example, in the case of the differential drive robot,
we have a two dimensional sliding surface:

sT = [s1, s2]

and so the Lyapunov function should be selected as:

V = (1/2)sTs = (1/2)s21 + (1/2)s22

where ṡ = −Hs − �sgn (s), sgn(s)T = [sgn(s1), sgn(s2)]
and � = diag[λ1, λ2]. The control law that satisfies the
corresponding sliding condition is:

ui = ûi − kisat (si/U)(i = 1, 2)

where U is the thickness of the boundary layer, and ûi are
proper functions determined analogously to the scalar input
case. An alternative solution of the WMR sliding model
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control problem, using polar coordinates to represent the
position and orientation of the WMR, was given in [96].

6Mobile Robot Fuzzy and Neural Control

Fuzzy logic (FL) and neural networks (NN) have found
wide application in the identification, planning, and control
of mobile robots. Fuzzy logic offers a unified approximate
(linguistic) way of drawing conclusions from uncertain data
using uncertain rules. NNs offer the possibility of learning
and training either autonomously (unsupervised learning) or
non-autonomously (supervised learning), or via evaluation
of their performance (reinforcement learning) [97–100].
In many practical cases (including mobile robots) use is
made of combined (hybrid) neurofuzzy systems (NFSs) that
provide better performance. Fuzzy sets were coined by Lofti
Zadeh [97], and constitute an extension of the classical
concept of (crisp) set which has broken the Aristotelian
(true-non true, yes-no) dichotomy.

A fuzzy set A is defined as:

A = {(x, μA(x))|x ∈ X,μA(x) : X → [0, 1]},
where X is the so-called reference superset (or universe of
discourse), and μA(x) is the membership function which
takes values in the full closed interval between 0 and 1 (i.e.,
0 ≤ μA(x) ≤ 1). In the special case where μA(x) takes
only the values 0 and 1, then A reduces to a classical (crisp)
set, e.g., A = {x1, x3, x5} ⊂ X = {x1, x2, x3, x4, x5} or
A = {(x1, 1), (x2, 0), (x3, 1), (x4, 0), (x5, 1)}.

The three fundamental operations of fuzzy sets (inter-
section, union, complement) are defined as extensions of
the respective operations of classical sets. Also, the stan-
dard properties of sets (De Morgan, absorption, asso-
ciativity, distributivity, idempotency) hold here. The fuzzy
inference (or fuzzy reasoning) is an extension of the clas-
sical inference based on the modus ponens and modus
tollens rules. On the basis of these rules Zadeh has formu-
lated the so-called ‘max-min fuzzy composition’ inference
rule:

B = A ◦ R

where ‘o’ denotes the max-min operation, and:

A = {(x, μA(x))|x ∈ X},B = {(y, μB(y))},
R = {(x, y), μR(x, y)|(x, y) ∈ X × Y }
μR(xi, yj ) = min{μA(xi), μB(yj )}(Mamdani rule)

μR(xi, yj ) = μA(xi)μB(yj )(Larsen’s rule)

The general structure of a fuzzy logic controller (FLC)
involves four units: (i) a fuzzy IF-THEN rule base (FRB),
(ii) a fuzzy inference mechanism (FIM), (iii) an input

Fig. 2 General structure of a fuzzy logic controller

fuzzification unit (IFU), and (iv) an output defuzzification
unit (ODU) (Fig. 2).

The two main types of fuzzifier are the singleton fuzzifier
and the bell fuzzifier. The two most popular defuzzification
methods are the center of gravity (COG) method and the
mean of maxima (MM) method.

Neural networks (NNs) are large-scale systems that involve
a large number of nonlinear processors called artificial
neurons, described by a state, a list of weighted inputs from
other neurons, and an equation governing their operation
[99] (Fig. 3a,b).

In Fig. 3a, b, xi, i = 1,. . . ,n are the neuron inputs, b is
a bias constant, wi, i = 1,. . . ,n are the synaptic weights,
� is a summation element, and f(x) = 1/[1 + exp(−βx)]
is the log-sigmoid activation function, with β being a
constant.

The NN weights adjust their values through learning
(minimization of a certain objective function via the
gradient or the Newton-Raphson algorithm, and error back
propagation). The optimal values of the weights are stored
as the strengths of the neurons’ interconnections.

The fuzzy systems and the NNs are suitable for systems or
processes that cannot be modeled with concise and accurate

Fig. 3 a Model of an artificial neuron, b Typical activation function
(log-sigmoid function). Other activation functions are: hard-limit
(threshold), symmetric hard-limit, and tan-sigmoid (tanh). Source:
www.inspirehep.net (/record/1300728/plots)

www.inspirehep.net
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mathematical models (e.g., pattern recognition, machine
vision, control systems, human-based operations, etc.). The
three primary features of NNs are: (i) use of large amounts
of sensory information, (ii) collective processing capability,
and (iii) learning and adaptation capability [99]. The two
NNs that were mostly used in decision and control systems
are the multilayer perceptron (MLP) networks, and the
radial basis functions (RBF) networks that have always one
layer of hidden nodes (Fig. 4a, b). Other NN models include
the recurrent (or dynamic) NNs, the self-organizing maps
(Kohonen NNs), the convolutional NNs, the Hopfield NNs,
and the Boltzmann machine [99].

The typical structure of a fuzzy robot control loop is
shown in Fig. 5 [19].

The general structure of a neurocontrolled robot with
supervised learning is shown in Fig. 6.

Other kinds of neural control involve unsupervised
learning and reinforcement learning. The most general type
of neurocontrol involves two NNs: the first is used as
feed forward controller (FFC) and the second as feedback

Fig. 4 a Multilayer perceptron with two layers of hidden nodes, b
Radial basis function network (φi, i = 1, 2, . . ., mare the radial basis
functions, typically Gaussian functions). Source: Neurosolutions:
What is a neural network?

Fig. 5 Fuzzy robot control loop

controller (FBC) [101]. This scheme is known as feedback
error learning neurocontroller (FELN) (Fig. 7).

Representative references where the fuzzy control
method was applied are [102–109]. In [102, 103] a direct
adaptive fuzzy tracking control scheme is presented, and in
[104] a decentralized fuzzy logic control (FLC) scheme for
multiple WMRs is described. The structure of the adaptive
fuzzy tracking controller of [102, 103] is shown in Fig. 8.

The control system of Fig. 8 involves two loops, namely:
(i) the kinematic tracking loop, and (ii) the dynamic control
loop, where the dynamic controller is replaced by an FLC
which receives crisp values that are fuzzified in the IFU
unit, and gives crisp values for the robot inputs (torques)
after deffuzification in the ODU unit (Fig. 2). The kinematic
controller remains a crisp controller, since it does not
involve any unknown (or potentially unknown) parameter.
All of its variables are known or measured.

In [109] the fuzzy local path tracking controller for a
Dubins car is described. The kinematic model of Dubins
car is found from the standard car-like model by omitting
the equation for the steering angle velocity. The resulting
controller is a multirate controller.

In [110] a fuzzy sliding mode control scheme, applied to
a WMR, is described. The WMR is assumed to move on a
surface g(x, y, z) = 0 along a continuously differentiable
path p(r) = [x(r), y(r), z(r)] of the center of gravity of the
robot with respect to a world coordinate frame. The sliding
mode controller is similar to that described in Section 4.2,
and has a diagonal structure, namely:

uf uzzy = −Kf uzzy(x̃, ˜̇x, �)sgn(s)

Fig. 6 Structure of a robot controlled by a NN with supervised learning
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Fig. 7 General structure of FELN

with the condition:

Kf uzzy(x̃1, ˜̇x1, �) ≤ Kf uzzy(x̃2, ˜̇x2, �)

for |�x̃1+ ˜̇x1| ≤ |�x̃2+ ˜̇x2|. In [110] a reduced complexity
sliding mode fuzzy logic controller (RC-SMFLC) is
presented, which can be described as:

uf uzzy = −Kf uzzy(|s|sgn(s))
where s is the distance from the diagonal. The RC-SMFLC
is applied in parallel with a standard PD controller, as shown
in Fig. 9.

This technique was applied to provide a powerful
solution of the parallel car-parking control problem.

In [111], the fuzzy two-step (back-stepping) procedure
of [102, 103] was applied using an MLP neural network
controller in place of a fuzzy controller.

Finally, in [112] the control of a differential drive
robot is described which uses radial-basis networks for the
estimation task.

7Mobile Robot Vision-Based Control

Vision is a powerful robotic sensor which can be used for
environment measurement without physical contact [113].
Visual robot control or visual servoing is a feedback
control methodology that uses one or more vision sensors
(cameras) to control the motion of the robot. Specifically,
the control inputs for the robot motors are produced by
processing image data (typically, extraction of contours,
features, corners, and other visual primitives). In robotic
manipulators, the purpose of visual control is to control
the pose of the robot’s end-effector relative to a target
object or a set of target features. In mobile robots, the
visual controller’s task is to control the vehicle’s pose

Fig. 9 Structure of hybrid PD-SMFLC control

with respect to some landmarks. Tracking stability can be
assured only if the vision sensing delays are sufficiently
small and/or the dynamic model of the robot has sufficient
accuracy. Over the years many techniques were developed
for compensating this delay of the visual system in robot
control. A rich literature has been oriented to the control
of nonholonomic systems in order to handle various
challenging problems associated with vision-based control.

Vision-based robot controllers (VRCs) depend on
whether the vision system provides set-points as input to the
robot joint controllers or computes directly the joint level
inputs, and whether the error signal is determined in task
space coordinates or directly in terms of image features.

Therefore, VRCs are classified in the following three
categories [113, 114, 116, 117].

• Dynamic look-and-move system: Here the robot joint
controller is eliminated and replaced by a visual servo
controller which directly computes the inputs of the
joints, and stabilizes the robot using only vision signals.
Actually, most implemented VRCs are of the look-
and-move type because internal feedback with a high
sampling rate provides the visual controller with an
accurate axis dynamic model. Also, look-and-move
control separates the kinematics singularities of the
system from the visual controller, and bypasses the low
sampling rates at which the direct visual control can
work.

• Position-based visual robot control (PBVRC): Here,
use is made of features extracted from the image and
used together with a geometric model of the target and
the available camera model to determine the pose of the

Fig. 8 Structure of overall
adaptive fuzzy tracking
controller for differential drive
robot
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target with respect to the camera. Thus, the feedback
loop is closed using the error in the estimated pose
space.

• Image-based visual robot control (IBVRC): Here,
direct computation of the control signals is performed
using the image features. IBVRC reduces the compu-
tational time, does not need image interpretation, and
eliminates the errors of sensors’ modeling and camera
calibration. But its implementation is more difficult due
to the complex nonlinear dynamics of robots.

The PBVRC and IBVRC control schemes have the
structure shown in Fig. 10 [19].

Two fundamental concepts of VRC are (i) the kinematic
transformations, and (ii) the camera visual transformations.
Consider a fixed-base robot manipulator working in 3D
space. The motion of its end-effector is described in world
coordinates x, y, z by a translational velocity v and an
angular velocity ω, where:

v(t) = [vx, vy, vz]T, ω(t) = [ωx, ωy, ωz]T
Let p = [x, y, z]T be a point rigidly attached to end-
effector, then:

ṗ = ω × p + v, (8)

where ω × p is the cross product of ω and p, i.e.:

ω × p = [ωyz − yωz, ωzx − zωx, ωxy − xωy]T (9)

The combined velocity vector r = [vT, ωT]T is known as
velocity screw (or velocity twist) of the robotic and effector.

In compact form (8) and (9) can be written as:

ṗ = J0(p)ṙ, J0(p) = [ I3×3 | S(p) ] (10)

where S(p) is the skew symmetric matrix [114]:

S(p) =
⎡
⎣ 0 z −y

−z 0 x

y −x 0

⎤
⎦ (11)

Fig. 10 a PBVRC loop (up), b IBVRC loop (down)

The platform of a mobile robot is moving with a linear
velocity v(t) = [vx, vy, 0]T and an angular velocity ω(t) =
[0, 0, ω]T(where ω = ωz). Thus, Eq. 9 becomes ω × p =
[−yω, xω, 0]T, and Eq. 8 gives:[

ẋ

ẏ

]
=

[
vx − yω

vy + xω

]
, ż = 0 (z = constant = 0) (12)

Equation 12, combined with φ̇ = ω, gives the overall
equation:⎡
⎣ ẋ

ẏ

φ̇

⎤
⎦ =

⎡
⎣ 1 0 −y

0 1 x

0 0 1

⎤
⎦ ṙ, ṙ =

⎡
⎣ vx

vy

ω

⎤
⎦ (13)

If the WMR involves a steering angle ψ , then the
corresponding equation ψ̇ = ωψ should be added. The
camera visual transformations are typical derived using
the perspective projection model, in which a point p =
[x, y, z]T whose coordinates are expressed with respect to
the camera coordinate frame Ac, projects onto the image
plane point f = [xim, yim]T given by:

f(x, y, z) =
[

xim

yim

]
= lf

z

[
x

y

]
(14)

where lf is the camera’s focal length (Fig. 11).
Differentiating Eq. 14 we get:

ḟ =
[

ẋim

ẏim

]
=Jc(xim, yim, lf )ṗ, Jc =

[
lf /z 0 −xim/z

0 lf /z −yim/z

]

(15)

Now, combining Eqs. 10, 11, 14, and 15 we find:

ḟ = Jc(xim, yim, z, lf )J0 (p)ṙ

= Jim(xim, yim, z, lf )ṙ (16)

where Jim(xim, yim, z, lf ) = Jc(xim, yim, z, lf )J0 (p) is
called the image Jacobian which depends on the distance
z of the end effector (or the target point being imaged, in
general).

The image Jacobian matrix of a unicycle-typeWMRwith
a pinhole on board camera and a target with three feature
points in the camera field of view was derived in [115]
and has the form (16). A position-based visual controller
for path following by nonholonomic robots is described in
[116]. Several image based controllers for mobile robots
are presented in [117–121]. An image-based control scheme

Fig. 11 Geometry of camera lens system
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of mobile robots with catadioptric cameras is presented in
[122]. An online estimation scheme of the image Jacobian
matrix for uncalibrated stereo vision feedback is provided
in [123]. A stable vision-based controller for nonholonomic
WMRs to keep a landmark in the field of view is pro-
vided in [124]. An homography-based mobile robot control
scheme with nonholonomic and field-of-view constraints
is presented in [125]. The above references describe only
a few of the published methods and schemes of mobile
robot visual control. More methods can be found in the
references cited therein, and in books on mobile robots
(e.g., [14, 15, 19]). Two works concerning omnidirec-
tional vision-based mobile robot control are described in
[126, 127].

8Mobile Robot Path andMotion Planning

Robot planning is concerned with the general problem of
figuring out how to move to get from one place to another
place (path planning, motion planning) and how to perform
a desired task (task planning) [128, 129]. Here we will be
concerned with path planning and motion planning.

Path planning of mobile robots is one of the basic
operations needed to implement the navigation of the robot.
These operations are:

• Self-localization.
• Path planning.
• Map-building and map interpretation.

Robot localization provides the answer to the question
‘where am I?’ The path planning operation provides the
answer to the question ‘how should I get to where I am
going?.’ Finally, the map building/interpretation operation
provides the geometric representation of the robot environ-
ment in notations suitable for describing location in the
robot’s reference frame. So far, it seems that there is not
a generic method for mobile robot positioning/localization.
The specific techniques that exist are divided in two
categories:

• Relative localization methods.
• Absolute localization methods.

Relative localization is performed by odometry or inertial
navigation. Absolute localization uses active bacons,
recognition of artificial landmarks, recognition of natural
landmarks, and model matching.

Path planning may be either local or global. Local path
planning is performed while the robot is moving, taking data
from local sensors. In this case, the robot has the ability
to generate a new path in response to the changes of the
environment. Global path planning can be performed only

if the environment (obstacles, etc.) is static and perfectly
known to the robot. In this case, the path planning algorithm
produces a complete path from the start point to the goal
point before the robot starts its motion.

Motion planning is the process of selecting a motion
and the corresponding inputs such that all constraints
(obstacle avoidance, risk avoidance, etc.) are satisfied.
Motion planning can be considered as a set of computations
which provide subgoals or set points for the control of the
robot. These computations and the resulting plans are based
on a suitable model of the robot and the environment in
which it is moved. The process by which the robot executes
(follows) the planned motion is the control process studied
in Sections 4–7.

We recall that the motion of the robot can be described in
three different spaces:

• Task or Cartesian space.
• Joints’ (motors’) space.
• Actuators’ space.

A very broad classification of free (obstacle-avoiding)
path planning involves three categories, which include six
distinct strategies. These are the following:

• Reactive control (‘Wander’ routine, circumnavigation,
potential fields, motor schemas).

• Representational world modeling (certainty grids).
• Combinations of both (vector field histogram).

In many cases, the above techniques do not assure that a path
is found that passed obstacles although it exits, and so they
need a higher level algorithm to assure that the mobile robot
does not end up in the same position over and over again. In
practice, it may be sufficient that the robot detects that it is
‘stuck’ despite the fact that a feasible path way exists, and
calls for help. In indoor applications, a maneuver for avoiding
an obstacle is a good action. Outdoor situations are more
complex, and more advanced perception techniques are
needed (e.g., for distinguishing a small tree from an iron pole).

A research topic that received much attention over the
years is the piano-mover’s problem, which is well known to
most people that tried a couch or big table through a narrow
door. The object has to be tilted and moved around through
the narrow door. One of the first research works on this
problem is described in Latombe [2].

On the basis of the way the information about the robot’s
environment is obtained, most of the path planning methods
can be classified into two categories:

1. Model-based approach
2. Model-free approach

In the first category, all the information about the robot’s
workspace is learned beforehand, and the user specifies the
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geometric models of objects, and a description of them in
terms of these models. In the model-free approach, some of
the information about the robot’s environment is obtained
via sensors (e.g., vision, range, touch sensors). The user has to
specify all the robotic motions needed to accomplish a task.

The obstacles that may exist in a robotic work environ-
ment are distinguished into stationary obstacles and moving
obstacles. Therefore, two types of path finding problems
have to be solved, namely:

• Path planning among stationary obstacles.
• Path planning among moving obstacles.

The path planning methodology for stationary obstacles
is based on the configuration space concept, and is
implemented by the so-called road map planning methods.
The path planning problem for the case of moving obstacles
is decomposed into two subproblems:

• Plan a path to avoid collision with static obstacles.
• Plan the velocity along the path to avoid collision with

moving obstacles.

This combination constitutes the robot motion planning
[130–133].

Configuration q of a robot is an n-tuple of real numbers
that specifies the n parameters required to determine the
position of the robot in physical space. The configuration
space (CS) of the robot is the set of values that its configura-
tion q may take. The subset of CS of configurations that are
not in collision with any obstacles that exist in the robot’s
environment is called the free configuration space CSf ree.
In terms of CS, the path planning problem of a robot is the
problem of finding a path in the free configuration space
CSf ree. Examples of solution of the path planning problem
of robotic manipulators via CSf ree can be found in many
references (e.g., [134]).

Typically, CSf ree path planning methods involve two
operations:

• Collision checking (i.e., check whether a configuration,
or a path between two configurations, lies entirely in
CSf ree).

• Kinematic steering (i.e., find a path between two configu-
rations q0 and qf in CS that satisfies the kinematic
constraints, without taking into account obstacles).

The robot navigation maps that are used to represent the
environment can be a continuous geometric description
or a decomposition-based geometric map or a topological
map. These maps must be converted to discrete maps
appropriate for the path algorithm under implementation.
This conversion (or decomposition) can be done by four
general methodologies, namely [2, 130]:

• Road maps (visibility graphs, Voronoi diagrams).

• Cell decomposition.
• Potential fields.
• Vector field histograms.

Representative works on mobile robot path planning and
navigation using the above methodologies are the following:

• Gasparetto [135]: Solution of 2-D constrained WMR
trajectory planning.

• Hatzivasiliou and Tzafestas [136]: WMR path planning
in structured environment.

• Garcia and Santos [137]: WMR navigation with
complete coverage in unstructured environment.

• Safadi [138]: Local path planning using virtual potential
field.

• Ding, Jiang, Bian and Wang [139]: Local path planning
based on virtual potential field.

• Koren and Borenstein [140]: Potential field methods for
WMR navigation.

• Borenstein [141]: Vector field histogram for fast WMR
obstacle avoidance.

• Wang, Yong and Ang Jr. [142]: Hybrid global path plan-
ning and local WMR navigation in indoor environment.

• Garrido, Moreno, Blanco and Jurewicz [143]: WMR
path planning using Voronoi diagram and fast marching.

• Garrido, Moreno and Blanco [144]: Exploration of a
cluttered environment using Voronoi diagrams.

• Arney [145]: Autonomous WMR path planning by
approximate cell decomposition.

• Katevas, Tzafestas and Pneumatikatos [146]: Approx-
imate cell decomposition with local node refinement
WMR path planning.

• Olunloyo and Ayomoh [147]: WMR navigation using
hybrid virtual force field.

• Katevas, Tzafestas and Matia [148]: Global and local
path strategies for WMR navigation.

• Katevas and Tzafestas [149]: The active kinematic
histogram method for path planning of non-point
nonholonomically constrained mobile robots.

• Zelinski, Jarvis, Byrne and Yuta [150]: Planning paths
of complete coverage of an unstructured environment
by a mobile robot.

• Zelinski and Yuta [151]: Unified approach to WMR
planning, sensing, and navigation.

• Choi, Lee, Baek and Oh [152]: Online complete
coverage WMR path planning.

9Mobile Robot Localization andMapping

Localization and mapping are two of the five basic operations
needed for the navigation of a robot. Very broadly, other
fundamental capabilities and functions of an integrated
robotic system from the task/mission specification to the
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motion control/task execution (besides path planning) are
the following:

• Cognition of the task specification.
• Perception of the environment.
• Control of the robot motion.

The robot must have the ability to perceive the environment
via its sensors in order to create the proper data for finding
its location (localization) and determining how it should go
to its destination in the produced map (path planning). The
desired destination is found by the robot through processing
of the desired task/mission command with the help of the
cognition process. The path is then provided as input to the
robot’s motion controller which drives the actuators such
that the robot follows the commanded path. The general
structure of the interrelations between the above operations
has the form of Fig. 12 [19].

The sensors have inaccuracies/uncertainties and so the
localization based on data provided by them needs to
employ stochastic estimation of the relevant parameters,
variables and states. The three primary estimation methods
used in mobile robot localization and mapping are [153–
155, 168]:

• Kalman estimation (filtering, prediction).
• Bayesian estimation.
• Particle filter (PF).

But other techniques such as fuzzy and neural estimators
(approximators) have also been used [23, 170]. The basic
concept of localization is the dead reckoning (relative
localization) which can be performed by simple WMR
kinematic analysis.

Absolute WMR localization can be performed by:

Fig. 12 Structure of an autonomous mobile robot (interconnection of
cognition/path planning, perception and control)

• Trilateration.
• Triangulation.
• Map matching.

In general, the sensor imperfections can be grouped in:
sensor noise and sensor aliasing categories [156–158].
The sensor noise is primarily caused by the environmental
variations that cannot be captured by the robot. Examples
of this in vision systems are the illumination conditions,
the blooming, and the blurring. In sonar systems, if the
surface accepting the emitted sound is relatively smooth
and angled, much of the signal will be reflected away,
failing to produce a return echo. Another source of noise
in sonar systems is the use of multiple sonar emitters (16–
40 emitters) that are subject to echo interference effects.
The second imperfection of robotic sensors is the aliasing,
that is, the fact that sensor readings are not unique. In
other words, the mapping from the environmental states
to the robot’s perceptual inputs is many-to-one (not one-
to-one). The sensor aliasing implies that (even if no noise
exists) the available amount of information is in most cases
not sufficient to identify the robot’s position from a single
sensor reading. The above issues suggest that in practice
special sensor signal processing/fusion techniques should
be employed to minimize the effect of noise and aliasing,
and thus get an accurate estimate of the robot position
over time.

Relative localization is performed by dead reckoning,
i.e., by the measurement of the movement of a wheeled
mobile robot (WMR) between two locations. This is
done repeatedly as the robot moves and the movement
measurements are added together to form an estimate of
the distance traveled from the starting position. Since the
individual estimates of the local positions are not exact,
the errors are accumulated and the absolute error in the
total movement estimate increases with traveled distance.
The term dead reckoning comes from the sailing days term
‘deduced reckoning’ [156].

For a WMR, the dead reckoning method is called
‘odometry’, and is based on data obtained from incremental
wheel encoders [159].

The basic assumption of odometry is that wheel revolu-
tions can be transformed into linear displacements relative
to the floor. This assumption is rarely ideally valid because
of wheel slippage and other causes. The errors in odometric
measurement are distinguished in:

• Systematic errors (e.g., due to unequal wheel diameters,
misalignment of wheels, actual wheel base is different
than nominal wheel base, finite encoder resolution,
encoder sampling rate).

• Non-systematic errors (e.g., uneven floors, slippery
floors, over-acceleration, nonpoint contact with the
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floor, skidding/fast turning, internal and external
forces).

Systematic errors are cumulative and occur principally in
indoor environment. Nonsystematic errors are dominating
in outdoor environments.

The problem of placing a WMR at an unknown location
in an unknown environment, while the WMR is incre-
mentally building a consistent map of this environment, is
known as SLAM (simultaneous localization and mapping).
The SLAM problem was first studied in [171] by Durrant-
Whyte who established a statistical basis for describing rela-
tionships between landmarks and manipulating geometric
uncertainty.

To solve the SLAM problem one needs to use a total
(joint) state which incorporates the WMR’s pose (posi-
tion/orientation) and every landmark position. This joint
state should be estimated and updated following each land-
mark observation. For the environment observation/sensing
there is available a whole gamma of sensors (sonars, cam-
eras, laser range finders, etc.) [157, 158]. The estimation
of the joint state can be performed by an extended Kalman
filter (EKF), or a Bayesian estimator (BE), or a particle
filter/estimator (PF). EKF is an extension of the Kalman
filter that covers nonlinear stochastic models. Bayesian esti-
mators describe the WMR motion and feature observations
directly using the underlying probability density functions
and Bayes updating law. The PF (also called sequential
Monte Carlo estimator) is based on simulation [171]. An
outline of the above methods is provided in [19].

Representative references devoted to the mobile robot
localization and mapping problem are:

• Beke and Gurvis [160]: Mobile robot localization using
landmarks.

• Hu and Gu [161]: Robot landmark-based localization.
• Andersen and Concalves [162]: Vision-based mobile

robot localization using triangulation.
• Castellanos and Tardos [163]: Multisensor fusion for

mobile robot localization and map building.
• Guivant and Nebot [164]: Optimal simultaneous

localization and mapping.
• Rekleitis, Dudek and Milios [165]: Probabilistic coop-

erative localization and mapping.
• Bailey and Durrant-Whyte [166]: Simultaneous local-

ization and mapping (SLAM).
• Rekleitis, Dudek and Millios [167]: Multirobot collabo-

ration for robust exploration.
• Crisan and Doucet [168]: Convergence of particle

filtering methods.
• Rituerto, Puig and Guerrero [169]: Mobile robot

SLAM with omnidirectional camera.
• Rigatos and Tzafestas [170]: Fuzzy modeling and

multi-sensor fusion via extended Kalman filtering

• Kim and Chung [171]: SLAM with omnidirectional
stereo vision sensor.

10 Intelligent Control and Software
Architectures for Mobile Robots

Systemic (intelligent control) architectures are used to
integrate controllers and high-level functional units for
achieving overall intelligent performance of mobile robots.
Autonomous mobile robots should be extremely self-reliant
to operate in complex, partially unknown environments via
control systems assuring in real time that the robot will
perform correctly its tasks despite the above constraints. In
addition, the software architectures have to face the high
degree of heterogeneity among the subsystems involved,
and deal with the strict operational requirements posed by
the real-time interactions with the robot’s environment.

The achievement of autonomous behavior is assured
by using techniques of intelligent control (IC) which
started with the development of generic intelligent control
architectures (ICAs). The principal ICAs are the following:

• Hierarchical ICA (Saridis) [172, 173]
• Multiresolutional/nested ICA (Meystel) [174, 175].
• Reference model ICA (Albus) [176, 177].
• Behavior-based ICAs, namely: subsumption ICA

(Brooks) [178, 179], and motor schemas ICA (Arkin)
[180, 181].

• Task ICA (Simmons) [182–184].

These architectures were expanded, enriched, or combined
over the years in several ways [185]. Most of the software
systems and integrated hardware-software systems devel-
oped for intelligent mobile robot control follow, in one or
the other way, one of these generic architectures or suitable
combinations of them.

• The hierarchical intelligent control architecture has
three main levels, namely (Fig. 13):

1. Organization level which implements the higher-
level functions (e.g., learning, decision making).

Fig. 13 Saridis’ hierarchical ICA
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2. Coordination level which consists of several
coordinators.

3. Execution level which involves the actuators, the
hardware controllers, and the sensing devices,
and executes the action programs issued by the
coordination level.

Saridis has developed a complete analytic theory for this
architecture, formulating and exploiting the Principle of
Increasing Precision with Decreasing Intelligence (PIPDI)
using the information entropy concept [186].

• The Multiresolutional Intelligent Control Architecture
(MICA) was developed by Meystel and first applied to
intelligent mobile robots. It follows the commonsense
model Planner-Navigator-Pilot-Execution Controller.
The Planner delivers a rough plan. The Navigator
computes a more precise trajectory of the motion to
be executed. The Pilot develops online tracking open-
loop control. Finally, the Execution Controller executes
plans and compensations computed by the planner, the
navigator, and the pilot. This scheme is implemented
in the form of the so-called multiresolution 6-
box. Each level contains perception (P), knowledge
representation, interpretation and processing (K), and
planning and control (P/C) operations.

• The Reference model architecture (RMA) was devel-
oped and expanded by Albus and colleagues, and is
suitable for modular expansion. Its control structure
involves the following:

1. Task decomposition.
2. World modeling.
3. Sensory processing.
4. Value judgment.

The various control elements are clustered into computational
nodes arranged in hierarchical layers, each one of which
has a particular function and a specific timing behavior. The
main design issues addressed by RMA are: (i) real-time task
and software execution, (ii) smart interface/communication,
(iii) information/knowledge base management, and (iv)
optimal allocation of resources.

• The Behavior-Based Control Architectures (BBCA) are
based on the concept of agent and can be implemented
using knowledge-based systems, neural, fuzzy or neuro-
fuzzy structures. The two most common behavior-based
architectures are the ‘subsumption’ architecture devel-
oped by Brooks, and the ‘motor schema’ architecture
developed by Arkin. The subsumption architecture fol-
lows the decomposition of the behavior paradigm and
was first employed in the autonomous robot Shakey.
Complex actions subsume simple behaviors (Fig. 14).
The reactions are organized in a hierarchy of levels where
each level corresponds to a set of possible behaviors.

Fig. 14 The subsumption architecture

• The motor schemas architecture (MSA) was more
strongly motivated by biological sciences and uses
the theory of schemas originated by Kant. Schemas
represent a means by which understanding is able to
categorize sensory perception in the process of realizing
knowledge of experience. The three representative
definitions of the schema concept are [7]:

1. A pattern of action or a pattern for action.
2. An adaptive controller (based on an identification

procedure).
3. A perceptual entity that corresponds to a mental

entity.

The capabilities of schema-based analysis and design of
behavior-base systems are:

1. It can explain motor behaviors in terms of the
concurrent control of several different activities.

2. It can store both how to react and how to realize this
reaction.

3. It can be used as a distributed model of computation.

• The task control architecture (TCA) is a high-
level robot operating system with an integrated
set of commonly needed mechanisms to support
distributed communications, task decomposition,
resource management, execution monitoring, and
error recovery. A system based on TCA involves
a set of specific modules and a general purpose
reusable control module. The modules communi-
cate with each other and with the central control by
passing messages. The TCA possesses many fea-
tures of the blackboard (BB) architectures [187],
but differs from them because (although it main-
tains control information centrally), the actual data
need to solve problems in distributed way among
the system’s processes.

The control software architecture of a semiautonomous/
autonomous mobile robot must meet the following desirable
requirements (characteristics) [188, 189].

• Robot hardware abstraction/portability.
• Extendibility/scalability (capability to add new hardware

modules and new software components to the system).
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• Reusability (e.g., software reuse of components, struc-
ture, framework, and software patterns).

• Repeatability (which means that running the same
program on the same input gives the same result).

• Run-time overhead (which is specified by memory and
CPU requirements, frequency and end-to-end latency)

The control system of a semiautonomous/autonomous
intelligent robot is required to possess the following general
features [38].

• Reactivity to the environment.
• Robustness against imperfect inputs and unexpected

events or sudden failures.
• Multiple sensor integration to compensate the limited

accuracy, reliability and applicability of individual sensors.
• Modularity (i.e., the system modules must be able to be

separately and incrementally designed, implemented,
debugged, and maintained).

• Expandability (i.e., the ability to build the system
incrementally).

• Adaptability (ability to adapt to rapid and unpredictable
changes of the world state).

In practice, to keep the overall system complexity at a
reasonable level, specific compromises are made such as:

• Reduction of the autonomy level and allocation of more
difficult tasks or decisions to a human operator.

• Reduction of the environment complexity by changing
the environment so as to make it more robot friendly
(e.g., by introducing landmarks for navigation, etc.).

Very broadly, the majority of mobile robot architectures
found in the literature can be classified according to the
following three aspects [38].

• The way their modules are interconnected (hierarchical
vs. centralized architectures) (Fig. 15a).

• The way their modules and the environment communi-
cate (reactive vs. deliberative control) (Fig. 15b).

• The function of the modules (functional vs. behavior
systems).

Three ways, of merging deliberative and reactive behavior
were suggested by Arkin, and are shown in Fig. 16 [7]:

• Hierarchical integration of planning and reaction.
• Planning to guide reaction (i.e., allowing planning to

choose and set parameters for the reactive control).
• Coupled planning and reacting (each of these two

concurrent actions guides the other).

One of the first robotic control schemes that were
designed using the hybrid deliberative (hierarchical) and
reactive (schema based) architecture is the autonomous
robot architecture (AuRA) developed by Arkin.

Fig. 15 a Hierarchical vs. centralized systems, b Reactive vs.
deliberative (planning) systems

Two important software architectures are: (i) the Jde
(component-oriented) architecture which uses schemas
combined in dynamic hierarchies to unfold the global
behavior [190], and (ii) the layered mobile robot control
architecture which involves four hierarchical layers [191].

Three representative research prototypes of integrated
mobile robots are: (i) the SENARIO robotic wheel chair
[192], (ii) the KAMRO (Karlsruhe Autonomous Intelligent
Mobile Robot) [193], and (iii) the Munich ROMAN intel-
ligent mobile manipulator [194]. The SENARIO mobile
robot uses a ‘virtually’ centralized hierarchical control
architecture, and has two alternative operating modes, viz.,
(i) semi-autonomous mode, and (ii) fully autonomous mode.
The KAMRO robot uses a natural language (NL) human-
robot interface and performs the following functions: (i)
task specification and representation, (ii) execution rep-
resentation, (iii) explanation of error recovery, and (iv)
description and updating of the environment representation.

Fig. 16 a Hierarchical hybrid deliberative-reactive structure, b
Planning to guide reaction systems, c Coupled planning and reacting
scheme
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The Munich mobile manipulator ROMAN involves a task
planner and coordinator, and a multi-modal robot interface
for natural voice/speech based dialog between the human
user and the robot, and the vision-based system localization
and navigation.

11 Conclusions

Autonomous mobile robots (AMRs) need to be able
to move purposefully and without human help in real-
world environments (i.e., environments that have not been
specifically engineered for the robot). Currently, there is
still a gap between the available methodology/technology
and the new application and market demands which
require fully autonomous robots. This gap continuously
motivates researchers and practitioners in robotics to
develop novel methods and techniques which overcome
the large uncertainties that are inherent in the real world
environments, by incorporating all necessary details and
temporary features, and facing unknown changes of spatial
relations between objects or sensory imprecisions and
inaccuracies. The outcome of this continuous effort is
exhibited by the large amount of published results, over
the years, many of which have substantially contributed
toward the development and construction of AMRs with
higher-level autonomy and social interaction capabilities
[195]. The present paper has attempted to provide a global
spherical overview of a large number of publications in
the field, focusing particularly in the area of control and
navigation methodologies. Comprehensible descriptions of
the methodologies can be found in the cited books, special
issues, and papers. Some further references in the field that
deal with mobile robot modeling, exponential stabilization,
path planning, path following, trajectory tracking, and
navigation problems are [196–212].
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