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Abstract
A collision-free trajectory generation and tracking method capable of re-planning unmanned aerial vehicle (UAV)
trajectories can increase flight safety and decrease the possibility of mission failures. In this paper, a Markov decision
process (MDP) based algorithm combined with backtracking method is presented to create a safe trajectory in the case of
hostile environments. Subsequently, a differential flatness method is adopted to smooth the profile of the rerouted trajectory
for satisfying the UAV physical constraints. Lastly, a flight controller based on passivity-based control (PBC) is designed
to maintain UAV’s stability and trajectory tracking performance. Simulation results demonstrate that the UAV with the
proposed strategy is capable of avoiding obstacles in a hostile environment.

Keywords Collision-free · Differential flatness · Markov decision process (MDP) · Passivity-based control (PBC) ·
Unmanned aerial vehicle (UAV)

1 Introduction

Unmanned aerial vehicle (UAV), capable of operating
autonomously, is a kind of powered flight vehicle without a
crew on board [1–3]. Compared with manned aircraft, UAV
has vast advantages including lower cost, fewer required
personnel, and less support needs. The above-mentioned
merits make UAV be of great potential in both civilian and
military applications.

However, UAVs have pushed the use of airspace to its
limit, manifesting in mid-air collision problem. To guaran-
tee a safe flight and also to integrate UAVs into the National
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Airspace System, UAVs must possess the capability of sens-
ing and avoiding potential obstacles properly [4]. Therefore,
recent research has strengthened the importance of provid-
ing an efficient collision-free strategy merging UAVs into
the sky.

Normally, a sense and avoid (S&A) system is composed
of sensing hardware, decision mechanism, trajectory plan,
and flight controller [5], respectively. The sensing hard-
ware such as an inertial navigation system and airborne
sensors can gather the information of UAV and intruder. Air-
borne sensors can be generally grouped into two categories:
cooperative sensors (e.g., Traffic Alert and Collision Avoid-
ance System, Automatic Dependent Surveillance Broad-
cast) [5] and non-cooperative sensors (e.g., airborne sensor,
acoustic system, electro-optical system) [6]. According to
the information transmitted from the sensing hardware,
the decision mechanism predicts the distance between the
UAV and intruder for a period of time by advancing the
UAV state into future. If the predicted magnitude of the
miss distance is smaller than the safety separation, a colli-
sion will take place with high possibility between aircraft
[7]. Then the mechanism makes the decision to re-plan a
safe trajectory. Consequently, the trajectory planner should
generate a collision-free trajectory under the constraints
of UAV dynamics and fuel economics. In view of UAV
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aerodynamics, the flight controller needs to adjust actuators
accomplishing avoidance maneuvers [8].

The existing methods can be basically divided into
five categories: artificial potential field (APF), numerical
optimization approaches (NOAs), artificial heuristic appro-
aches (AHAs), graph search approaches (GSAs), and
Markov decision process (MDP), respectively.

The APF is originally proposed in [9] to evade collisions
in real-time. Within this context, moving obstacles and
forbidden regions are modeled by repulsive potential, while
the destination is regarded as attractive potential. As a
consequence, the UAV moves as a particle reacting to
the potential field [10]. A local planner based on APF is
developed in [11], by which paths going through narrow
areas of free space can be found to guarantee flight safety.
However, local minimum may be induced due to the
superposition potential effect including the goal potential
and obstacles potential. Specifically, when attractive force
and repulsive force reach a balance, the UAV will trap in a
state instead of the goal.

Nonlinear programming method [12], Pontryagin’s min-
imum principle [13], and mixed integer linear programming
[14] can be thought as NOAs. With respect to NOAs, UAV
trajectory generation is regarded as a numerical optimiza-
tion problem, taking UAV aerodynamics constraints and
cost function into account. By combining direct collocation
with nonlinear programming, a UAV trajectory is produced
through approximating the system states with piecewise
polynomials [12]. By solving a nonlinear optimal control
problem with path constraints [13], a UAV trajectory for
avoiding the forbidden region is created correspondingly.
The major drawback of NOAs lies in that the computa-
tion complexity increases substantially as the amount of
aerodynamic constraints increasing.

Genetic algorithm [15, 16], particle swarm optimization
(PSO) [17–19], artificial bee colony optimization [20], and
biogeography-based optimization [21] are seen as AHAs.
Such methods receive considerable attention owing to the
convenience and flexibility in planning UAV trajectory.
Given a three-dimensional (3D) environment, a collision-
free flight trajectory is calculated using modified genetic
algorithm and B-spline curves in [15]. PSO is a population-
based stochastic search method suitable for trajectory
optimization [17]. Depending on the behavior of bird
flocks while searching for food, this method is efficient
to determine trajectory safety for a UAV [18]. Generally,
AHAs is quite advantageous in finding the global optimal
solution with great numerical accuracy. However, it is
sensitive to parameters and possibly falls into local optima
which cannot guarantee the further convergence as the
calculation range increases.

GSAs include Voronoi diagram [22, 23], visibility graph
[24], and probabilistic roadmap method (PRM) [25, 26],
respectively. With employment of GSAs, the free configu-
ration space (flight environment) is formulated as a network
diagram. Path planning problem is thereby recast into gen-
erating a safe trajectory in the network diagram. PRM is the
most typical algorithm which takes random samples from
the configuration space and checks their reasonability. A
new motion planning is presented by constructing a proba-
bilistic roadmap in a static environment [25]. Despite that
it is convenient for GSA to formulate obstacles and tar-
gets in a network diagram, the algorithm’s convergence rate
slows down remarkably in the case of large-scale planning
scenarios.

The underlying idea of MDP is to provide a mathematical
framework for decision making in discrete time stochastic
control process. The optimization problem is resolved by
dividing the entire problem into smaller sub-problems
until a simple case is reached [27]. The goal of MDP in
path planning to find an optimal policy is formulated as
deriving the maximal accumulation reward by choosing
corresponding actions [28]. Based on the negotiations
between different UAVs in a team with the general goal
[29], an optimal path of avoiding intruders is generated
through MDP. By formulating the collision avoidance
problem as an MDP, the problem solving logic is allowed
to generate in regard to several specified performance
metrics [30]. In order to execute the mission of UAV team
persistent search and make decision under uncertainty [31],
a decentralized learning framework is developed by virtue
of MDP. A new development of collision avoidance strategy
based on MDP [32] is presented to ensure the UAV avoid
multiple intruders autonomously. A variety of features,
including UAV physical constraints, collision avoidance,
and wind disturbance, can be incorporated into the
framework, which demonstrates the power and flexibility
of MDP.

Several levels of success have been achieved in trajectory
planning, the UAV based on the aforementioned strategies
can avoid static or moving obstacles in a relative simple
environment. Current research focus is to navigate UAV in
an unknown cluttered environment with moving obstacles.
As for part of the conventional methods, the collision
avoidance problems are resolved through regarding the
moving obstacles as static collision area: 1) discrete the
time into single moment; 2) by assuming the velocities of
the moving obstacles and UAV are constant, the collision
area can be predicted; and 3) design a new trajectory
to evade the predicted static collision area. However, the
velocity of moving intruder may change in real time which
degrades the collision avoidance performance. Additionally,
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many kinds of path planning strategies may result in
failure of collision avoidance due to local minimum. Lastly,
the dynamic constraints of UAV should be maintained
within the safety bounds when planning the collision-free
trajectory.

This study aims at proposing a collision-free scheme for
a UAV, where the aerodynamics constraints, target tracking,
local minimum, and path following are explicitly taken into
account. An evolutionary strategy is developed on the basis
of our previous work [32], and the unique property consist
of three aspects:

1. In our previous work, the collision avoidance for
moving obstacles is completed by predicting the col-
lision position and then avoiding the static posi-
tion which restricts the collision avoidance flexibility.
This paper expands on existing MDP by introduc-
ing time into coordinate space that allows to show
the location of the obstacles in a time-space frame-
work. Within the proposed scheme, the UAV can keep
away from the moving obstacles in a hostile envi-
ronment which demonstrates the robustness of the
strategy.

2. Local minimum is a severe problem when utilizing
MDP to plan trajectory and not resolved in previous
works. Considering that local minimum problem may
lead to the task failure, backtracking method is inte-
grated with MDP to guarantee a safe flight. Moreover,
owing to the developed time-space framework, the UAV
is capable of performing tasks of target tracking with
the aid of mounted sensors.

3. The physical constraints including maximal roll angle
and yaw rate should subject to performance criteria.
Hence, a differential flatness approach is employed to
avoid aggressive maneuvers and refine the profile of the
collision-free trajectory produced by MDP. Moreover,
a flight controller using the passivity-based control
(PBC) technique is applied to control aileron and
rudder deflections. In consequence, the flight trajectory
can be followed and avoidance maneuvers can be
achieved.

The remainder of this paper is organized as follows.
Section 2 includes the problem statement, UAV lateral
model, and objectives of this paper. The algorithm of
collision prediction and avoidance is presented in Section 3,
where the MDP, policy iteration, and differential flatness
method are incorporated. Aircraft controller based on PBC
technique is designed in Section 4 to stabilize both roll
and yaw motions. In Section 5, simulations are conducted
to evaluate the proposed algorithm. Finally, the concluding
remarks are given in Section 6.

Nomenclature

V Flight velocity
δa Deflections of the aileron
δr Deflections of the rudder
ϒ̃ Tracking errors
ϒa Actual angles
ϒr Reference angles
θ̇min Allowable minimum pitch rate
θ̇max Allowable maximum pitch rate
θ Pitch angle
ψ Yaw angle
ψ̇max Maximum yaw angle rate
Φ Roll angle
φmax Maximum roll angle
L Lift force
W Gravitational force
g Gravity acceleration
ny Normal overload

2 UAVModel and Problem Statement

2.1 Problem Description

In this paper, a trajectory planning strategy is developed to
navigate a UAV from a start point to destination without
collision. As shown in Fig. 1, the flight environment is
divided into multiple grids. As the UAV is assumed to fly
in a horizontal plane, the environment is two dimensional.
Therefore, the key point of the research is to find a feasible
trajectory �l to navigate the UAV bypassing obstacle and
arriving at the destination.

Fig. 1 Illustration of the design problem
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2.2 UAV Kinematics Model and Dynamic Model

Generally, the flight velocities relative to the earth
coordinate system can be determined as:

⎧
⎪⎨

⎪⎩

dx
dt

= V cos θ cos ψ

dy
dt

= V cos θ sin ψ,

dz
dt

= V sin θ

(1)

where x, y, and z represent the mass position of UAV
with respect to the earth coordinate system, respectively
[33]. θ, ψ , and φ indicate the pitch angle, yaw angle, and
roll angle, which can be referred to Nomenclature table
as well. In this study, the collision avoidance problem
for a UAV is solved by making a turning maneuver in
Cartesian plane (x, y), thus θ = 0. This study focuses
on the coordinated turn since it is more efficient for the
aileron and the rudder working together to change the
aircraft direction. As opposed to bank turn, an advantage of
coordinated turn is that the adverse yaw motion resulting
from aileron deflections and the induced drag can be
counteracted. Besides, the sideslip angle and side force
are zero in a coordinated turn. As illustrated in Fig. 2,
the relationship of the three attitude angles is described
as:

dψ

dt
= gny sin φ

V cos θ
. (2)

When the UAV makes a coordinated turn with constant
velocity, ny can be thereby written as:

ny = 1

cos φ
. (3)

Consequently, Eq. 2 can be expressed as:

dψ

dt
= g tan φ

V
. (4)

In order to design the flight controller and follow the
collision-free path, the aircraft dynamics should be mod-
eled apart from the kinematics model. With respect to the
coordinated turn, there exist both roll and yaw. Hence, the
rotational dynamics is represented as:

{
Ixφ̈ + ∂F

∂φ̇
= Mφ,δa δa + Mφ,δr δr

Izψ̈ + ∂F

∂ψ̇
= Mψ,δa δa + Mψ,δr δr

, (5)

where I =
[

Ix 0
0 Iz

]

denotes the aircraft inertial relative

to the vehicle-carried frame. The deflection amplitudes are
bounded by:

{ −25◦ < δa < 25◦
−30◦ < δr < 30◦ . (6)

M =
[

Mφ,δa Mφ,δr

Mψ,δa Mψ,δr

]

is the input matrix and F(φ,ψ) is

the Rayleigh dissipation function due to aerodynamic forces
of the UAV [8]. Furthermore, the partial differential of the
Rayleigh dissipation function ( ∂F

∂φ̇
, ∂F

∂ψ̇
) and the products of

input matrix with deflections such as Mφ,δa δa are relevant
to drag, lift, and side force. The details of such variables are
provided in Appendix A.

2.3 Objectives

To achieve the goal of navigating a UAV to evade intruders,
the following steps must be completed.

1. Predict the relative distance between the UAV and the
intruder for a period of time, thus determining the
possibility of collision;

2. Re-plan a feasible collision-free trajectory based on
MDP and differential flatness method to evade the
intruders; and

3. Design the flight controller to follow the collision-free
trajectory.

Fig. 2 Illustration of a
coordinated turn
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Fig. 3 Illustration of collision
prediction and avoidance
strategy

3 Collision Prediction and Avoidance
Strategy

An assumption is made before presenting the design strategy.

Assumption 1 The states of the entire environment are
observable, which is essential for MDP [28].

A collision avoidance problem is formulated as an MDP
based on Assumption 1. As shown in Fig. 3, the design
procedure of the proposed strategy can be divided into three
portions.

1. With the information of velocity and position from
sensing hardware, the minimum relative distance
between the UAV and intruders can be calculated, based
on which whether a collision will take place or not can
be determined.

2. If a collision is determined, a collision-free trajectory
needs to be planned by the proposed improved MDP,
where backtracking method is utilized for addressing
local minimum problem.

3. With the consideration of UAV physical constraints, a
differential flatness method is exploited to guarantee the
yaw angle and roll angle within the allowable ranges,
contributing to a feasible flight.

3.1 Collision Prediction

As depicted in Fig. 4, a UAV is flying to the destination from
the current position while another aircraft heads toward
the currently designed trajectory of UAV. When these two
aircrafts approach, whether a collision will take place or not
can be decided by calculating the minimum distance. If the
predicted minimum distance exceeds the safety separation,
then a collision will occur with high possibility.

The predicted minimum distance vector �dm about the
intruder with respect to UAV can be defined as:

�dm = V̂r ×
( �d × V̂r

)
, (7)

where �d and V̂r are the relative distance vector and the unit
relative velocity vector of intruder with respect to the UAV
�Vr , respectively. V̂r and �Vr can be expressed as:

V̂r = �Vr
∥
∥
∥ �Vr

∥
∥
∥

. (8)

�Vr = �V2 − �V1, (9)

where �V1 and �V2 are the velocities of UAV and intruder,
respectively. When the following condition can be satisfied,
a collision will occur:
∣
∣
∣
−→
dm

∣
∣
∣ ≤ rsafe, (10)

where rsafe indicates the safety separation.

Fig. 4 The calculation of the minimum distance between the UAV and
intruder
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3.2 MDP-Based Collision Avoidance Strategy

The optimal trajectory is formed using an MDP-based
approach. MDP is well suited to the problem due to its
power and flexibility to directly incorporate obstacles and
UAV physical constraints into its framework. The trajectory
generation strategy is detailed in the following three
subsections.

3.2.1 The Structure of MDP

The collision avoidance system aims to build a transparent
learning frame from interaction between actions and
environment to achieve an optimal policy. A finite MDP is
composed of four components, including state S, rewards
Ra

ss′ , action set A (s) , s ∈ S, and transition probabilities
P a

ss′ , respectively. As can be seen in Fig. 5, the state S

refers to a list of squared grids which are marked with a
number sequence from 1 to 25. Moreover, the numbers in
bracket indicate the immediate rewards. It should be noted
that the destination and obstacle are assigned with +� and
−�, respectively (� � 0). The other grids are assigned
with −0.1 to denote the cost stepping into another grid.
It should be noted that the destination can be replaced
with a moving target. Owing to the developed time-space
configuration, the flexibility of MDP is improved to achieve
specific missions including target tracking.

Figure 6 highlights the basic UAV actions which are
designed to be eight movements, a= 1, 2, . . . , 8. The entire
360◦ is equally separated by these actions and all angles
between two adjacent actions are 45◦. The UAV moves
toward the front grid with 0.9 probability in the horizontal
plane when it selects a random action, at the same time the
movement may lead to the UAV stepping into both sideward
grids with lower probability.

Fig. 5 The specific selections of the UAV basic actions

Fig. 6 The scenario of basic action and transition probability

The UAV selects action at repetitively at each of a
sequence of discrete time steps t = 0, 1, 2, . . . then
the UAV enters into the next possible state st+1 with
transition probability P a

ss′ . Given the state s and action a,
the transition probability corresponding to the next state s ′
can be represented as:

P a
ss′ = Pr

(
st+1 = s′|st = s, at = a

)
. (11)

The environment responds to this action and presents
developmental state st+1 to the UAV, meanwhile the UAV
receives immediate reward rt+1 from the environment.
Similarly, given the state st and action at , together with the
next state s′, the reward is represented as:

Ra
ss′ = E

{
rt+1|st = s, at = a, st+1 = s′} . (12)

The destination or target position is assigned with the only
positive immediate reward, +� which is also named as
absorbing state. MDP implements a link (policy π ) at a
sequence of discrete time steps from the current state s to
the next possible state s′. Therefore, the generation of UAV
collision-free trajectory is transformed into searching for the
optimal policy π∗ and selecting the optimal action set.

3.2.2 Policy Iteration

The generation process of optimal policy is named as
policy iteration. The optimal policy π∗ can be achieved
by searching for the maximum expected reward V ∗ (s).
The state value function Qπ (s, a, t) and value function
V π (s, t) are introduced as significant tools:

Qπ (s, a, t) = Eπ {R|st = s, at = a}
= Eπ

{∑∞
k=0

λkrt+k+1|st = s, at = a
}

, (13)

V π (s, t) = Eπ {R|st = s}
= Eπ

{∑∞
k=0

λkrt+k+1|st = s
}

. (14)

where λ = 0.6 is the discount factor to indicate the influence
of future reward on current value. Eπ denotes the excepted
value under policy π . Qπ (s, a, t) represents the expected
reward when the UAV takes action a in state s according
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to policy π . For every Qπ (s, a, t) in same state and same
time, there exists eight values because of eight actions a =
1, 2, . . . , 8. The value function V π (s, t) is the maximum of
the eight values:

V π (s, t) = maxQπ (s, a, t) (15)

The initial approximation V0 is chosen arbitrarily (generally
0). The successive approximation can be obtained by
iteration solution method:

Vk+1 (s, t) = Eπ {rt+1 + γVk (st+1, t + 1) |st = s}
=

∑

a
π (s, a)

∑

s′P
a
ss′

[
Ra

ss′ + γVk

(
s′, t+1

)]
.

(16)

For each sεS, in order to produce successive approximation
Vk+1 from Vk , the new value is obtained through the old
value of the successor state s′ and then replace the old value
of state s. Iteration solution method evaluates the expected
rewards along the one-step transition until Vk+1 (s, t) =
Vk (s, t). Vk = V π is assured since the Bellman equation
guarantees the equality in this case [28]. Equation 16
indicates that the sequence {Vk} can converge to V π as
k→ ∞.

After the determination of the value function V π for a
policy π , a problem should be resolved that whether another
action a �= π (s) can be chosen to improve the policy π .
The solution of selecting another action a �= π (s) and
obtaining a better policy π ′ is called policy improvement.
If inequality (17) holds, then there exists a policy π ′ better
than the current one π . Similarly, inequality (18) can be
obtained:

Qπ
(
s, π ′ (s) , t

) ≥ V π (s, t) , (17)

V π ′
(s, t) ≥ V π (s, t) . (18)

With reference to inequality (18), the value function V π ′
can

be calculated as:

V π (s, t) ≤ Qπ
(
s, π ′ (s) , t

)

= Eπ ′
{
rt+1+γV π (st+1) |st =s

}

≤ Eπ ′
{
rt+1+γQπ

(
st+1, π

′ (st+1)
) |st =s

}

= Eπ ′
{
rt+1+γEπ ′

(
rt+2+γV π (st+2)

) |st =s
}

. . .

≤ Eπ ′
{
rt+1+γ rt+2+γ 2rt+3+γ 3rt+4. . .|st =s

}

= V π ′
(s, t) . (19)

With reference to the greedy policy, the better policy π ′ is
produced to replace the policy π as:

π ′ (s, t) = argmaxaQ
π (s, a, t)

= argmaxaE
{
rt+1+γV π (st+1, t) |st =s, at =a

}

= argmaxa

∑

s′P
a
ss′

[
Ra

ss′ +γV π(s′, t)
]

. (20)

Generally, the greedy policy is considered to evaluate a
change at all states with allowable actions, thus selecting the
optimal actions for all states and extracting the improved
policy. Once a better policy π ′ is yielded through policy
improvement, the value function V π ′

(s, t) can be calculated
and again be used to yield an even better policy π ′′. This me-
thod is named policy iteration, which can be described as:

π0
PE−→ V π0 PI−→ π1

PE−→ V π1 PI−→ π2 . . .
P I−→ π∗ PE−→ V ∗.

(21)

In the iterative flow path, PE and PI represent policy
evaluation and policy improvement, respectively. Typically,
an optimal policy π∗ for all states can be derived by
policy iteration. For more details about MDP, please refer to
Appendix B.

3.3 The Combination of Optimal Policy with Initial
Position

In practice, the derived optimal policy π∗ is a number
sequence, while each grid in the environment is attached
with a number. Notice that the number sequence indicates
the optimal movements in each grid of the environment.
In other words, the optimal actions can be obtained by
combining the optimal policy with current position.

As indicated in Fig. 7a, a UAV is searching for an optimal
trajectory toward the destination in the left bottom of a
simplified grid environment. Therefore, the UAV firstly has
to decide which action is the optimal choice in the current
grid. In order to clearly present the policy iteration process
with the actual action selection, the potential actions of
the UAV in initial position are shown in Fig. 7d–f as the
convergence of iterative policy. There are eight allowable
actions in the current position. The potential actions are
associated with the state value function of Qπ (s, a, t), the
maximum value can be approximated according to greedy
policy. By this way, the optimal action is determined after
convergence. After a sequence of policy iteration to all grids
in the environment, the optimal actions can be derived as in
Fig. 7b. Finally, the trajectory of the UAV toward destination
is generated as shown in Fig. 7c.

Remark 1 Through modeling decision-making process, the
MDP addresses the optimization problem with dynamic
programming. With the aid of the greedy policy to state
value function Qπ (s, a, t) and value function V π (s, t),
the maximal state value function Qπ∗

(s, a, t) and optimal
policy π∗ can be obtained after convergence of iterative
policy evaluation.

Remark 2 The optimal policy π∗ refers to the optimal
action set in all grids of the environment as shown in
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Fig. 7 The process of UAV
searching for optimal actions
toward the destination

(a)                (b)                   (c) 

 (d)                 (e)                  (f) 

Fig. 7b. After determining all optimal actions in the grid
environment, the trajectory is actually composed of a
sequence of actions from initial position to destination, as
depicted in Fig. 7c.

Remark 3 It should be noted that every actions and states
are assigned with sequential time. Specifically, the next
UAV action is decided by the policy of next moment, a =
π(s, t). Consequently, there are two features in this work:
1) the target or destination reacts like an attractive potential
which navigates the UAV for adjusting direction to approach
them and 2) the UAV can respond to the unpredicted
movement of obstacle significantly which increases the
collision avoidance performance. The introduction of time
factor sets this study apart from general MDP.

Remark 4 While the MDP is adopted to generate a
trajectory, the UAV may trap into a local minimum and
terminate there without achieving the final goal. In order to
address this issue, the backtracking algorithm is employed.
The basic idea behind this method is to check whether
the derived policy satisfies specific conditions before the
determination of the next step. The conditions include: 1)
the adjacent actions at1 and at2 satisfy |a1 − a2| ≤ 1 and
2) the action will not incur collision. If not, another policy
must be derived from the rest of potential solutions. The
backtracking algorithm treats the local minimum problem
through recursive search. The main procedure is provided in
Appendix C.

Remark 5 With respect to MDP-based methods, the infor-
mation of current environment states should be available. In

this sense, MDP is named as fully observable Markov deci-
sion making process. If the environment states cannot be
directly or fully observed, a partially observable MDP can
be adopted to address the problem [34].

3.4 Integrating the UAV Constraints
into the Trajectory

As stated previously, a collision-free trajectory for the
UAV can be derived through the improved MDP method.
However, the derived trajectory may not be feasible if the
aerodynamic constraints are not considered explicitly. It is
of paramount importance to drive the UAV flying from
one position to another without exceeding the allowable
aerodynamic range. In this study, the differential flatness
method is adopted to achieve this goal.

For nonlinear dynamic systems, if there exist flat system
outputs F ∈ Rm with ability to express the system state
variables and control input variables, the systems must be
flat. Commonly, a dynamic system can be expressed as:
{

ẋ = f (x, u)

y = h (x)
, (22)

where x ∈ Rn and u ∈ Rm represent system states and
control inputs, respectively. The sufficient condition for a
flatness system [35] can be defined as:

F = g
(
x, u, u̇, ü, . . . , un

)
, (23)

where F represents the system outputs. Consequently, the
above equation can be translated into:
{

x = xf (F, Ḟ,F̈ , . . . , F n)

u = uf (F, Ḟ,F̈ , . . . , F n)
. (24)
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Equation 24 indicates the state variables x ∈ Rn and control
inputs u ∈ Rm can be expressed with flat outputs, F ∈
Rm. Furthermore, xf and uf link the flat outputs and their
derivates to the system input and state variables. This system
is flat with flat outputs F1 = x, F2 = y, and F3 = φ. In this
study, the coordinated turn is closely associated with rolling
motion. The maximal roll angle φmax is considered as a
dynamic constraint which is resolved through differential
flatness method. According to Eq. 4, the parameterization
of roll angle can be derived as:

φ(t) = atan
υψ̇(t)

g
. (25)

To determine the time corresponding to the maximal roll
angle, it is necessary to calculate the extreme of the roll angle.
In terms of Eq. 25, the time derivative of the roll angle is:

φ̇(t) = υψ̈(t)

g

g2

g2 + υ2ψ̇2
. (26)

Then the calculation of the maximal roll angle turns to
calculate the first and second derivatives of the yaw angle.
The reference trajectory is designed as:

Fi (t) = [
1 − (1 + ωnt) e−ωnt

]
Ri + R0

i ; i = 1, 2, 3, (27)

where ωn, Ri , and R0
i indicate the natural frequency, the

amplitude of flat outputs, and the initial value of flat outputs,
respectively. Therefore, the first and second derivatives of
the yaw angle are:

ψ̇ (t) = ω2
ntR3e

−ωnt , (28)

ψ̈ (t) = ω2
nR3e

−ωnt [1 − ωnt]. (29)

Besides, the relationship between the settling time ts and
natural frequency ωn can be derived from Eq. 27. The
settling time is designed to be the time when output signal
enters and remains the final value within 5% error band. In
view of the first-order control system, the relationship can
be represented as:

(1 + ωnt) e−ωnt = 0.05. (30)

Based on the solution of the above equation, the approxima-
tion of natural frequency is:

ωn ≈ 5.83

ts
. (31)

In terms of Eqs. 28, 29, and 31, the derivate of the roll angle
can be written as:

φ̇ (t) = υψ̈ (t)

g

g2

g2 + υ2ψ̇2

=
[

1 − 5.83t

ts

]
5.832R3υ

gt2
s

e
− 5.83t

ts

× g2

g2 + υ2 5.834t2R2
3

t4
s

e
−2 5.83t

ts

. (32)

It is obvious that the extreme value of the roll angle φext can
be determined at the time t = ts

5.83 :

φext = atan

(
5.83υR3e

−1

gts

)

. (33)

By comparing all the values of the roll angle including
its beginning, end and extreme values, the maximum
is the extreme value. Consequently, to guarantee that
the maximum roll angle within the allowable range, the
following condition must be satisfied:

|φext | ≤ φmax . (34)

ts ≥ 5.83υR3e
−1

gtan(φmax)
. (35)

In accordance with Eq. 35, the condition for settling time

is ts ≥ 5.83υR3e
−1

gtan(φmax)
which satisfies the constraints about roll

angle.
Since settling time ts is already determined, it is of

importance to design the reference trajectories Fi, i =
1, 2, 3. In this study, the Bessel curve is adopted to smooth
the profile of the trajectory based on the settling time. A
general Bessel function of degree n is:

Fi = ant
n + an−1t

n−1 + · · · + a1t
1 + a0, i = 1, 2, (36)

where ai (i = 0, 1, 2, . . .) are constant coefficients which
can be calculated by the initial and the final conditions. The
trajectory is smoother as the increase of n, meanwhile the
computation load for trajectory planning becomes heavier.
After overall consideration, the Bessel function is designed
as degree of 4 in this study:

Fi = a4t
4 + a3t

3 + a2t
2 + a1t

1 + a0, (i = 1, 2). (37)

The main goal of flatness is to drive the UAV from the initial
position (x (t0) , y (t0)) to final position (x (ts) , y (ts))

without violating dynamic constraints. The initial position
and final position are already generated based on the
improved MDP, meanwhile, the initial constant t0 and the
final constant ts can be easily obtained:

Fi (to) = a4t
4
0 + a3t

3
0 + a2t

2
0 + a1t

1
0 + a0, (i = 1, 2), (38)

Fi (ts) = a4t
4
s + a3t

3
s + a2t

2
s + a1t

1
s + a0, (i = 1, 2). (39)

Based on the initial conditions and the final conditions, the
coefficients ai

j can be calculated.

4 Path Following Controller Design

After the flatness of reference trajectory, it is necessary to
design a lateral controller to track roll and yaw commands
for achieving the lateral movement stabilization. Therefore,
a controller based on PBC is designed to cope with the
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Fig. 8 The structure of the
lateral controller

coordinated turn and automatically follow the reference
trajectory. The structure of the lateral controller is illustrated
as in Fig. 8. One objective of this controller is to eliminate
the roll and yaw tracking error.

In this study, the generalized coordinate of lateral
dynamics is simplified as ϒ = [φ,ψ]T and the input is
described as u = [δa, δr ]T . The focus of the controller is
to eliminate the tracking errors of roll and yaw angles, ϒ̃

between ϒa and ϒr which can be expressed as:

ϒ̃ = ϒa − ϒr . (40)

Based on the tracking errors, an error function � is defined
as:

� = I
¨̃
ϒ + k1

˙̃
ϒ + k2ϒ̃ . (41)

where k1 and k2 are positive definite matrices. Therefore, an
object of the work is to make �→ 0. The control input is
designed as follows:

u = M−1
[

I ϔr + ∂F

∂ϒ̇
− k1

˙̃
ϒ − k2ϒ̃

]

. (42)

Substituting Eq. 42 into Eq. 5 achieves:

I ϔ + ∂F

∂ϒ̇
= Mu

= I ϔr + ∂F

∂ϒ̇
− k1

˙̃
ϒ − k2ϒ̃ . (43)

Table 1 Parameters of path planning

Parameter Value

UAV cruising velocity (m/s) 30

Maximum roll angle (◦) −30, 30

Moving obstacle velocity (m/s) 30

Moving target velocity (m/s) 6

Basic action-state cost −10−10

Cost for targets or destination 20

Cost for obstacles −20

Maximum aileron deflection (◦) −25, 25

Maximum rudder deflection (◦) −30, 30

Minimum safety distance (m) 50

Time interval (s) 1

On the basis of Eq. 43, another solution can be derived as:

I ϔ+ ∂F

∂ϒ̇
−

(

I ϔr + ∂F

∂ϒ̇
−k1

˙̃
ϒ−k2ϒ̃

)

= I
¨̃
ϒ+k1

˙̃
ϒ+k2ϒ̃

= 0, (44)

� = I
¨̃
ϒ + k1

˙̃
ϒ + k2ϒ̃ = 0. (45)

Besides, a stored energy function based on the energy
balance is established as:

H
(
ϒ̃,

˙̃
ϒ

)
= 1

2
ϒ̃T k2ϒ̃ + 1

2
˙̃
ϒT I

˙̃
ϒ . (46)

In order to make the error function � converged, the derivate
of the stored energy function must be not positive. The

derivate of storage function H
(
ϒ̃,

˙̃
ϒ

)
is:

Ḣ
(
ϒ̃,

˙̃
ϒ

)
= k2ϒ̃

˙̃
ϒ + I

˙̃
ϒ

¨̃
ϒ . (47)

By substituting Eq. 45 into Eq. 47, a solution can be
obtained as:

Ḣ
(
ϒ̃,

˙̃
ϒ

)
= (k2ϒ̃ + I

¨̃
ϒ)

˙̃
ϒ = −k1

˙̃
ϒ2 ≤ 0. (48)

Remark 6 The tracking error is modeled with an error

function � which creates a map � → ˙̃
ϒ with the stored

energy function, H
(
ϒ̃,

˙̃
ϒ

)
. By resorting to the energy

function, the controller is utilized to test the energy state

of the whole system. The energy function, H
(
ϒ̃,

˙̃
ϒ

)
, is

positive definite while Ḣ
(
ϒ̃,

˙̃
ϒ

)
is negative semi-definite.

Consequently, the error function � will converge to and
the control system maintains global asymptotic stability in

the equilibrium point ˙̃
ϒ = 0 according to the Lyapunov

theorem.

Table 2 Initial conditions of the UAV

Simulation Case 1 Case 2 Case 3

Initial position (m) (60,300) (30,30) (30,750)

Target position (m) (2340,300) changeable (1450,750)

Initial speed (m/s) 30 30 30

Heading angle (◦) 0 45 0
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Fig. 9 UAV collision avoidance
in static environment

Remark 7 The system’s energy function is modified based
on PBC technique and Lyapunov theorem, which aims to
completing collision avoidance maneuvers. By maintaining
the energy balance of the system, the lateral controller is
employed to accomplish two objectives: 1) follow the roll
and yaw reference trajectory and 2) provide roll and yaw
stabilization.

5 Simulation and Result Assessment

5.1 Simulation Scenarios

The developed strategy is tested in MATLAB R2015 on the
computer configured with a 2.8 GHz Intel Core I7 processor
with 8 GB RAM. Relevant parameters of three simulations
are listed in Tables 1 and 2. In order to adequately
demonstrate the collision avoidance ability in the UAV,
the simulation studies involve both moving intruder and
forbidden regions. The forbidden regions are represented
with rectangles. If the UAV continues flying without
appropriate collision avoidance maneuvers, the collision

will take place. Case 1 illustrates the static obstacles
avoidance performance of UAV with the proposed strategy.
The collision free trajectory generation and target tracking
ability are demonstrated in Case 2. In order to further
illustrate the ability of the proposed algorithm to avoid
both static and moving obstacles in a cluttered environment,
another simulation test is shown in Case 3. A band-limited
white noise which mimics the sensor noise is injected into
measurement channels.

5.2 Simulation Results and Performance Assessment

5.2.1 Collision Avoidance Tests and Analysis

As indicated in Fig. 9, the collision avoidance simulation
scenario is implemented in a static grid environment. The
flying horizontal plane is defined as XY plane. Each grid is
a 30 m × 30 m square, and the UAV can fly to a neighboring
grid from the current position at every time interval. On
the basis of [36], the time interval is defined as 1 s. As
for Case 1, the computation time for every decision step is
less than 1 s demonstrating that the defined time interval is

Fig. 10 UAV collision
avoidance and target tracking
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Fig. 11 The collision avoidance
and target tracking performance
analysis

compliant with the time required for the simulation to run.
Note that the computation cost will increase exponentially
as the planning space grows which makes MDP based
algorithm not suitable for path planning in a sufficiently
large space [37]. As shown in Fig. 10, the UAV approaches
the target through achieving larger reward. Due to the
negative basic action-state cost, the UAV attempts to fly
closer to the target with fewer actions. However, a moving
intruder is predicted to arrive at the neighboring area of
the UAV. Moreover, several forbidden regions are existed in
the surroundings. Consequently, a collision-free trajectory
is re-planned to avoid the moving obstacle and to prevent
from negative reward by virtue of MDP-based strategy. The
same strategy is applied to deal with the forbidden areas.
Finally, the UAV changes its direction before colliding with
intruder and static obstacles, arriving at the same horizontal
line to continue tracking the moving target. The black line
represents the trajectory with basic actions which exceeds
the constraints about roll angle and yaw rate in practice.
Thus the differential flatness method is adopted to resolve
this problem and the red line is the desired trajectory. The

subplot is the comparison of the trajectories before and after
flatness.

As can be observed from Fig. 11, the UAV approaches
the moving intruder before the 13th second and then the
distance between them increases. The minimum distance
in the 13th second is 60 m, which implies the colli-
sion avoidance between the UAV and moving intruder is
completed. Figure 11 also highlights that the UAV gets
closer to the moving target and their distance decrea-
ses continually, which confirms the feasibility of UAV for
tracking moving target. In conclusion, the proposed col-
lision avoidance strategy is suitable for UAVs to track mov-
ing target while avoid obstacles in complex environment.

Considering that the flight environment in practice
may be hostile, the problem needs to be resolved for a
safe flight. In order to demonstrate the robustness of the
proposed strategy adequately, a complicated environment is
introduced in Fig. 12. In Case 3, A UAV is flying toward
destination along the initial trajectory while many static
obstacles are in the way. Those blocks inducing collision
will be associated with negative immediate reward. After the

Fig. 12 Trajectories generation
in a hostile environment
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Fig. 13 Path planning with and
without backtracking method

UAV passed several blocks along the red trajectory, another
moving obstacle, an aircraft, is flying toward the UAV and
may collide with the UAV. Obviously, the UAV changes
the flight direction (red arrow) and bypass the moving
obstacle in due course. Consequently, the UAV with the
proposed algorithm can avoid multiple obstacles following
the designed trajectory safely in a hostile environment.

In an attempt to overcome the limitation of local
minimum, a backtracking method is integrated with MDP.
The comparative result is presented in Fig. 13, where two
trajectories are generated with and without backtracking
method to avoid forbidden region. It can be seen that unlike
the latter method, the UAV with the first scenario arrives
at the destination safely while the latter cannot avoid the

obstacle and move back and forth around the obstacle. It
exemplifies that the backtracking method can be used to
resolve the local minimum problem in MDP-based strategy.

5.2.2 Path Following Result and Performance Assessment

The path following performance to target tracking test is
demonstrated in this section. As can be seen in Fig. 14,
the adopted controllers guarantee that the roll and yaw
angles track the reference signals. The tracking errors for
yaw angle and roll angle are within ±3◦, which illustrate
that the controller designed in this study is capable of
satisfying the limit of performance criterion. From Fig. 15,
the control inputs, which consist of aileron deflection and

Fig. 14 UAV outputs in
response to reference roll and
yaw angles

(a)                                                       (b) 

(c)                                                       (d) 
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Fig. 15 Aileron and rudder
deflection angles of the UAV

(a)      (b) 

rudder deflection, are within the allowable range of UAV
dynamic constraints, which attribute to the differential
flatness.

6 Conclusion

The large-scale development of UAV in both civilian and
military domains has inspired the need to design high-
efficiency collision-free strategies. In order to guarantee the
flight safety, a MDP-based method is proposed to navigate
the UAV and re-plan the path in the case of collision
prediction and detection. Three cases involving collision
avoidance in static, dynamic environment, and target
tracking are performed to illustrate the effectiveness of the
proposed MDP-based strategy. Moreover, target tracking
is another kind of superiority which has great application
potential. The uniqueness of the developed strategy
includes: 1) based on the time-space configuration, the UAV
with the proposed MDP-based strategy will keep away from
the obstacles; 2) local minimum can be avoided by adding
backtracking method into the MDP-based strategy, while
the UAV will respond to target tracking mission; and 3)
a flatness-based trajectory planning method and a lateral
controller for trajectory tracking are appropriately utilized
to improve the applicability of the developed algorithm.
Due to the target tracking ability, the proposed method can
be adopted to specific applications including surveillance
and reconnaissance. The integration of lateral controller
and differential flatness method can further expand the
application of the proposed method especially in a cluttered
environment.

However, the algorithm is applied currently in a
horizontal plane instead of a three-dimensional space.
Besides, the environment state information has to be fully
observed due to the requirement of MDP. These two factors
need to be explicitly considered in the future work.
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Appendix A

Based on the condition that slide angle β = 0 and pitch
angle θ = 0, the partial differential of the Rayleigh
dissipation function ( ∂F

∂φ̇
, ∂F

∂ϕ̇
) are as follows:

∂F

∂φ̇
= −1051.05 cos (ϕ)

(
6.6(−11φ̇+5ϕ̇ cos (φ)

)
sin (φ) /V )V 2

+1051.05 cos (φ) sin (ϕ) (−0.4461 − 92.4424ϕ̇ sin (φ) /V

+0.11(1.0656+24.6016

(
ϕ̇ sin (φ))

V
+0.143V 2

)

−1051.05(sin (φ) sin (ϕ))
(
6.6

(
1.7φ̇−11.5ϕ cos (φ)

)
/V

)
V 2

∂F

∂ϕ̇
= −1051.05 cos (ϕ)

(
6.6(−11φ̇ + 5ϕ̇ cos (φ)

)
/V )V 2

−1051.05 sin (φ) (−0.4461 − 92.4424ϕ̇ sin (φ) cos (θ) /V

+0.11(1.0656 + 24.6016

(
ϕ̇ sin (φ))

V
+ 0.143V 2

)

−1051.05 cos (φ)

(
6.6 (−11.5ϕ̇ cos (φ))

V

)

V 2

Input matrix M =
[

Mφ,δa Mφ,δr

Mϕ,δa Mϕ,δr

]

which are due to drag,

lift and side force can be expressed as follows:

Mφ,δa = −630.63V 2 cos (ϕ)

Mφ,δr = 231.231V 2 cos (ϕ) − 634.413V 2 sin (φ) sin (ϕ)

Mϕ,δa = 0

Mϕ,δr = −634.413V 2 cos (φ)

Appendix B

A. Procedure of Policy Iteration
1. Initialization

V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S
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2. Policy Evaluation
Repeat

ϑ ←− 0

For each s ∈ S:

v ← V (s)

V (s) ←
∑

s′
P a

ss′
[
Ra

ss′ + γV (s′)
]

ϑ ←− max (ϑ, |v − V (s)|)

until ϑ < θ (a small positive number)
3. Policy Improvement
Policy stable ← true
For each s ∈ S:

b ← π(s)

π(s) ← arg maxa

∑

s′
P a

ss′
[
Ra

ss′ + γV (s′)
]

If b �= π (s), then Policy stable ← false
If policy stable, then stop; else, go to 2.

Appendix C

Fig. 16 The integration of backtracking method with MDP
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