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Abstract
This paper presents a hybrid route-path planning model for an Autonomous Underwater Vehicle’s task assignment and
management while the AUV is operating through the variable littoral waters. Several prioritized tasks distributed in a
large scale terrain is defined first; then, considering the limitations over the mission time, vehicle’s battery, uncertainty
and variability of the underlying operating field, appropriate mission timing and energy management is undertaken. The
proposed objective is fulfilled by incorporating a route-planner that is in charge of prioritizing the list of available tasks
according to available battery and a path-planer that acts in a smaller scale to provide vehicle’s safe deployment against
environmental sudden changes. The synchronous process of the task assign-route and path planning is simulated using a
specific composition of Differential Evolution and Firefly Optimization (DEFO) Algorithms. The simulation results indicate
that the proposed hybrid model offers efficient performance in terms of completion of maximum number of assigned tasks
while perfectly expending the minimum energy, provided by using the favorable current flow, and controlling the associated
mission time. The Monte-Carlo test is also performed for further analysis. The corresponding results show the significant
robustness of the model against uncertainties of the operating field and variations of mission conditions.

Keywords Autonomous underwater vehicle · Path planning · Autonomous mission · Task allocation · Mission timing ·
Mission management
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ℵi Task index
ρi Priority of task i
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ξi Risk percentage associated with task i

δi Absolute time required for completion of task i

P Vertices of the network that corresponds to
waypoints

E Edges of the network
m Number of waypoints in the network
k Number of edges in the network
pi

x,y,z Position of arbitrary waypoint i in 3-D space

eij An arbitrary edge that connects pi
x,y,z to p

j
x,y,z

wij The weight assigned to eij

dij Distance between position of pi
x,y,z and p

j
x,y,z

tij Time required for traversing edge eij

� Obstacle
�p Obstacle’s position
�r Obstacle’s radius
�Ur Obstacle’s uncertainty rate
VC The current velocity vector
uc X component of the current vector
vc Y component of the current vector
S Two dimensional x-y space
So The center of the vortex in the current map
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� The radius of the vortex in the current map
� The strength of the vortex in the current map
�3−D Symbol of the three dimensional terrain
η The AUV state on NED frame {n}
[X,Y, Z] Vehicles North, x, East, y, Depth, z, position

along the path ℘

φ The Euler angle of roll
θ The Euler angle of pitch
ψ The Euler angle of yaw
υ Vehicle’s water referenced velocity in the body

frame {b}
u The surge component of the velocity υ

v The sway component of the velocity υ

w The heave component of the velocity υ

℘ The potential trajectory generated by the local
path planner

ϑ Control point along the path ℘

n Number of control points along an arbitrary path ℘

L℘ Length of the candidate path ℘

T℘ The local path flight time
Texp The expected time for passing an edge
℘CPU computational time for generating a local path
� An arbitrary route including sequences of tasks

and waypoints
T� The route traveled time
Tτ The total available time for the mission
Tcompute Computation time for checking re-routing

criterion and its process
C℘ The cost of local path generated by path planner
Cℵ The cost of tasks completion
C� The total cost of route including C℘ and Cℵ

1 Introduction

Autonomous Underwater Vehicles (AUVs) have been
discovered as the most cost-effective and expedient
technology in carrying out the underwater missions
over the past and coming years. They are largely
employed for various purposes such as scientific underwater
explorations [1], inspection and surveys [2], sampling and
monitoring coastal areas [3], offshore installations and
mining industries [4], etc. However, most of the available
AUVs operate with a pre-programmed mission scenario
while all parameters for entire mission should be defined
in advance and operator’s interaction is necessary issue. For
any of scientific, surveillance, mine or military applications
of the AUV, a sequence of tasks is predefined and fed to
vehicle in the series of commands format (mission scenario)
that limits the mission to executing a list of pre-programmed
instructions and completing a predefined sequences of tasks.
Hence, an advanced level of autonomy is an essential
prerequisite to trade-off within importance of tasks and

problem restrictions while adapting the terrain changes
during the operation, in which having a robust motion
planning strategy and accurate task allocation scheme are
substantial requirements in this regard. Motion planning and
vehicle task allocation on different frameworks have been
comprehensively investigated over the past two decades.
Various deterministic and heuristic strategies have been
suggested for unmanned vehicles’ path/trajectory planning
such as D* [5], A* [6, 7], Fast Marching (FM) algorithm [8],
and FM* [9]. Cui et al., (2016) proposed an adaptive Mutual
information-based path planning algorithm for multi-AUV
operations [10]. This approach used multidimensional
RRT* to estimate the scalar field sampling over a region
of interest where the estimated sampling positions get
improved by maximizing the mutual information between
the observations and scalar field model [10]. The well-
known direct method of optimal control theory, called
inverse dynamics in the virtual domain (IDVD) method,
was employed to develop and test a real-time trajectory
generator for realization on board of an AUV [11].
Vehicle routing and task scheduling problem also has
been vastly studied in recent years and many strategies
have been suggested such as graph matching algorithm
[12], Tabu search algorithm [13], partitioning method [14],
simulated annealing [15], and branch and cut algorithm
[16]. Assuming that the tasks for a specific mission
are distributed in different areas of a waypoint cluttered
graph-like terrain, there should be a compromise among
prioritizing the tasks according to available battery/time
in a way that vehicle is guided toward the destination
waypoint, which is combination of a discrete and a
continuous optimization problem at the same time. Hence,
the vehicle task allocation-routing is categorized as a
Non-deterministic Polynomial-time (NP) hard problem
due to its combinatorial nature, which is analogous to
both Knapsack and Traveler Salesman Problems (TSP).
The time efficient path planning is also an NP-Hard
problem often solved by optimization algorithms. The
computational burden is overshadowed by increment of
the problem search space (e.g complexity of the graph
topology or terrain vastness), which is an intricate issue
and should be taken into consideration. The deterministic
and heuristic methods are computationally time consuming
that has a detrimental effect on real-time performance of
the motion planning problem; hence, these algorithms are
not suitable for real-time applications. Bio-inspired meta-
heuristic optimization algorithms are diverse nature inspired
algorithms and are known as new revolution in solving
complex and hard problems. These algorithms are the
fastest approach presented for solving NP-hard complexity
of motion planning problems and are capable of producing
near optimal solutions [17], which is appropriate for the
purpose of this study.
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1.1 Meta-heuristic Optimization Algorithm:
The State of the Art in Motion Planning and Task
Assignment

Meta-heuristics are cost based non-deterministic optimiza-
tion algorithms that mimic the nature to efficiently solve
the complex problems. Former methods to solve motion
planning problems (discussed above) require considerable
computational efforts and tend to fail when the problem size
grows. A vast literature exists on evolutionary or swarm
based optimization algorithms for solving both vehicle’s
optimum path planning, routing and task scheduling prob-
lems. Despite meta-heuristics do not necessarily produce
pure optimal solutions, but they are computationally fast and
efficient and especially appropriate for the real-time appli-
cations [18, 19]. The Particle Swarm Optimization (PSO)
[18, 20] and Quantum-based PSO (QPSO) [21] are two
swarm-based optimization methods applied successfully on
AUV path planning problem. An offline three-dimensional
path planner based on a non-dominated sorting genetic algo-
rithm (NSGA-II) is proposed for waypoint guidance of
an AUV [22]. A Differential Evolution (DE) based path
planner is applied to an AUV path planning in a severe
underwater environment [23]. In the scope of routing-task-
assigning also, a time-optimal conflict free route planning
relying on an adaptive Genetic Algorithm (GA) is proposed
by Kwok et al. [12] that could facilitate the AUV to oper-
ate in a large-scale sea terrain with a few waypoints. An
evolution based AUV route planner has been developed by
MahmoudZadeh et al. [24] in which the vehicle’s operation
is considered in a large scale static network of waypoints
and two GA and PSO algorithms have been applied to solve
the graph complexity of the routing problem. Subsequently,
their proposed method was extended to more complex
environment encountering a semi-dynamic operation net-
work and efficiency of two other evolutionary algorithms
of Biogeography-based Optimization (BBO) and PSO were
tested and compared on vehicle’s dynamic task assignment
and routing [25]. Certainly, having a more efficient opti-
mization approach for solving vehicle routing and path plan-
ning problems to achieve faster CPU time and competitive
performance is still an open area for research. Additional
to importance of the employed algorithm, another difficulty
of large scale operations is challenges associated with the
behavior of a dynamic uncertain terrain that cause a pre-
planned trajectory becomes inefficient or even invalid over
time. On the other hand, the path planning strategies are
not provided for handling vehicle’s task assignment, specifi-
cally in cases that several tasks are distributed in a waypoint
cluttered graph-like terrain where vehicle is required to
carry out a specific sequence of prioritized tasks. Thus, a
routing strategy is required to handle graph search con-
straints and carrying out the task assignment. With respect

to above discussion, existing approaches mainly are able
to cover only a part of this problem either task assign-
ment together with time management or path planning with
safety considerations. To address both algorithmic and tech-
nical problems associated with large and small scale motion
planning, this study constructs a combinatorial DEFO
framework including a higher level task-allocate-routing
strategy along with a small scale evolution based path
planner.

1.2 Research Contribution

The subject area is one that is of importance, high-level
mission planning of AUVs in the field is still far from
automated, drawing on judgment of experienced human
operators. Steps to reduce the reliance on expert operators
would contribute to scalability of AUV operations and
also improve reliability and repeatability of operations.
The main contribution of this paper is joining two
disparate prospective of vehicle’s autonomy in high level
task organizing and low level motion planning in a
real-time manner. The system is advantageous due to
having a cooperative and concordant manner in which
adopting diverse algorithms by these modules do not
detriment the real-time performance of the system. The
total motion of AUV for a mission is described a thread
of trajectory from the start waypoint to the goal waypoint
by passing through all the necessary prioritized waypoints.
The High level is capable of finding a time efficient
route and appropriate arrangement of tasks to ensure the
AUV has a plenteous journey and efficient timing. The
path planner, in this context, is responsible to provide
a safe and energy efficient maneuver for the vehicle.
The proceeding research is a completion of previous
work [26–28] that takes a full consideration of details in
task management and generalizes the applicability of the
motion planners by realistic modeling of various underwater
situations, which have not been fully addressed in previous
papers.

All the paths between two sequential waypoints are
modeled as continuous curves, which are parameterized by
groups of several points using B-Spline algorithm. Thus, a
mission can be modeled as a group of points (a sequence
waypoints and sets of B-Spline control points). By taking all
the points and associated conditions into account, creating
and modifying a mission can be performed by defining
and changing in the sequence and set of the points. This
definition of mission makes it easy to be implemented
using some computational optimization algorithm. This
characteristic of the proposed idea is advantage to onboard
software development in which suitability of the selected
algorithms depends on the complexity and size of the
problem.
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In addition to the advantage of the proposed idea, this
research takes the advantages of a specific composition
Differential Evolution and Firefly Optimization Algorithms
(DEFO) to fulfill the objectives of this research toward
solving the stated problems associated with previous
approaches, where DE is employed for the waypoint
sequence generation and mission time management, and
Firefly optimization algorithm applied for path generation
between waypoints. The rest of layers are glue functions
between these two layers. The DE is well-suited for dealing
with complexity of task prioritization problem due to its
discrete nature [23, 29, 38]. On the other hand, the Firefly
algorithm is advantaged to use an automatic subdivision
approach that makes it specifically suitable and flexible in
dealing with continuous problems (e.g. path planning) and
multi-objective nonlinear problems [33–35]. Moreover, its
control parameters can be tuned iteratively that increases
convergence rate of the algorithm. To the best of the
authors’ knowledge, although many attempts have been
carried out in the scope of vehicle routing-task allocation
and trajectory/path planning for unmanned ground, aerial,
surface and underwater vehicles, there is currently no
particular research emphasized comprehensively in the
scope of both motion planning and task scheduling approach
in a systematic fashion, specifically the scope of underwater
vehicles. Static current map and static uncertain obstacles
along with real map data are taken into account for
promoting the proposed path planner in handling real-
world underwater situations. The path planner operates
concurrently and back feed the environmental condition
to higher level ask-allocate-route planner. A number of
different approaches are tested in simulation and the
stability and real-time applicability of the proposed method
is shown.

The paper is structured in following sections. The
mathematical modeling of the underwater operation ter-
rain is provided by Section 2. Section 3 discusses
about path planning problem taking kinodynamic of
the AUV into account. Task allocation and routing is
demonstrated and validated in Section 4. The discus-
sion on validation of adaptive hierarchal model is pro-
vided by Section 5, and the Section 6 concludes the
paper.

2Mathematical Representation
of theWaypoint Cluttered Ocean Terrain

For any of scientific, mine or military applications
of the AUV, a sequence of tasks such as seabed
habitat mapping, water sampling, mine detections, pipeline
inspection, building subsea pipelines, seafloor mapping,
payload delivery, surveillance, etc., is predefined and

characterized in advance. The task sequence in this research
is initialized with 15 different tasks and characterized as
follows:

ℵ={ℵ1, ..., ℵ15} , ∀ℵi , ∃ρi, ξi , δi ⇒
ρi ∼ U(1, 10);
ξi ∼ U(0, 100);
δi ∼ U(20, 200);

(1)

All parameters are denoted in “Nomenclature” table. The
U(a, b) represents a uniform distribution bounded to (a, b)

interval. Tasks for a specific mission are distributed in
different areas of the operating field, in which placement of
the tasks can be mapped and presented in a graph format
where beginning and ending location of a task appointed
with waypoints. Existence of a prior information about
the terrain, location of starting and ending of each task
(waypoints), and position of the global start/destination
advances the AUV to accurately map the environment
for the purpose of task-assign-routing and accurate path
planning. Therefore, the terrain is mapped with an
undirected weighted network denoted by G = (P , E),
where P is the set of vertices in the graph that corresponds
to waypoints and E denotes the edges of the graph in
which some of the edges are assigned with a specific task
(presented by Eq. 2).

G= (P, E) ⇒ |P |=k
|E|=m

; P(G) :{p1 , ..., pk
} ;

E(G) : {e1 , ..., em} ; ⇒ eij =
(
pi, pj

)

(2)

The graph is promoted to be connected and the connections,
which are assigned with a task, are weighted with a value
more than one. The connection’s weight is calculated based
on attributes of the corresponding task (given by Eqs. 1 and
3).

∀eij ∃ wij , dij , tij

wij =
{

ρij

ξij
if eij ∧ ℵl

1 otherwise
(3)

dij =
√(

p
j
x − pi

x

)2 +
(
p

j
y − pi

y

)2 +
(
p

j
z − pi

z

)2

tij = dij

/
|υ| + δij

For modeling a realistic marine environment, a three dimen-
sional terrain �3D:{10 km2(x − y), 100 m(z)} is considered
using Vincent gulf map (located in south Australia). The
map is clustered to water zone (allowed for deployment) and
coastal/uncertain areas presented by Fig. 1. The clustered
map is transformed to matrix format, in which the water-
covered areas on the map filled with value of 1 and the
coastal/ uncertain areas assigned with a value between [0,
0.3). The waypoints (vertices of the network) are initialized
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in eligible sections for operation (water covered area) as
follows:

∀pi ∈ P ⇒ pi
x,y ∼ U(0, 10000)
pi

z ∼ U(0, 100)
⇒ pi

x,y,z ∈ {Map = 1}
(4)

here, {Map=1} denotes the water covered area. In Fig. 1,
the subsections of coastal area, uncertain risky area, and
water covered area are presented with black, gray and
white colors, respectively. The area of 10km2 is used for
task assign-routing approach and a sub-area of 3.5km2

(presented by red square in Fig. 1) is selected for testing the
performance of the local path planner. Additional to offline
map, terrain is randomly covered by uncertain obstacles,
in which their coordinates can be measured by the sonar
sensors with a specific uncertainty modeled with a Gaussian
distributions and presented in a circular format radiating
out from the center of the object. Each obstacle � is
characterized by its position bounded to position of pa and
pb waypoints (�p ∼ N (0, σ 2

p) ∈[pa
x,y,z, pb

x,y,z]), radius

�r ∼ N (0, σ 2
r ) and uncertainty �Ur ∼ N�pσ0�r),

where the value of �r in each iteration t is independent of
its previous value.

On the other hand, current is an important parameter
that can affect vehicle’s motion along the generated
trajectory. The water current map can be captured from
remote observations provided by satellite or from numerical
estimation models. Different type of predictive ocean
current models have been constructed previously [29, 30].
In this research, information of static 2D turbulent current
has been employed, as the deep ocean current fields do
not change immediately. The current dynamics is estimated
and modeled using superposition of multiple Lamb vortices
and 2-D Navier-Stokes equation [31]. The physical model
employed by the AUV to diagnose the current velocity field
is mathematically described by:

VC =(uc, vc)⇒

⎧
⎪⎪⎨

⎪⎪⎩

uc(�S)=−� y−y0

2π(�S−�SO)2

[
1 − e

−(�S−�SO)2

�2

]

vc(�S)=� x−x0

2π(�S−�SO)2

[
1 − e

−(�S−�SO)2

�2

]

(5)

where, S = (x, y) represents a 2-D space, S◦ denotes the
center of the vortex, � is the radius of the vortex, and � is
the strength of the vortex (tourbillon). Based on the tuning
parameters such as the center, radius, and strength of the
vortex (tourbillon) and rough knowledge of littoral water
behavior, the equation can represent an acceptable current
dynamic behavior.

Fig. 1 The original and clustered map of the Vincent gulf and graph
representation of the operation network covered by waypoints
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3 Structure of the FO-Based Time-Optimal
Path Planner

The path planning is an NP-hard optimization problem in
which the main goal is to minimize the path length, avoid
crossing collision borders, and coping current variations
over the time. Adverse current can push the vehicle to
an undesired direction and lead extra battery consumption,
while a desirable current can motivate its motion and
cause save to energy consumption. AUV’s dynamics and
kinematic are described using a set of ordinary differential
equations given by Eqs. 6 and 5 [32]. Figure 2 shows
the vehicle’s state variables of body frame {b} and NED
(North-East-Depth) {n}-frame that provides its motion with
six degree of freedom. The potential trajectory ℘i in this
research is generated based on B-Spline curves captured
from a set of control points ϑ :{ϑ1

x,y,z,. . . ,ϑ
i
x,y,z,. . . ,ϑ

n
x,y,z},

defined by Eq. 6.

η : (X, Y, Z, φ, θ, ψ); υ : (u, v, w, p, q, r) (6)

⎡

⎣
Ẋ

Ẏ

Ż

⎤

⎦ = [
n
bR
]
[

u
v
w

]

; [
n
bR
] =

[
cosψ cos θ − sinψ cosψ sin θ
sinψ cos θ cosψ sinψ sin θ

− sin θ 0 cos θ

]

(7)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X =
n∑

i=1
ϑx(i)Bi,K

Y =
n∑

i=1
ϑy(i)Bi,K

Z =
n∑

i=1
ϑz(i)Bi,K

(8)

here, the η is state of the vehicle in {n}-frame; X,Y, Z give
vehicle’s position along the generated path, and ϕ, θ, ψ are
the Euler angles of roll, pitch, and yaw, respectively. The
υ is AUV’s velocity in the {b} -frame; u,v, w are AUV’s
directional velocities of surge, sway and heave; and p, q, r

are the AUV’s rotational velocities in the x − y − z axis.
The [nbR] is a rotation matrix that transforms the body

Body- Fixed 
Coordinate

Sway
Pitch

Heave
Yaw

Surge
Roll

Earth- Fixed 
Coordinate

Fig. 2 Vehicle’s coordinates in NED and Body frame accordingly

frame {b} into the NED frame {n}. The Bi,K is the curve’s
blending functions, and K adjusts smoothness of the curve.
Water currents continually affect the vehicle’s motion, so
the vehicle’s angular velocity components along the path
curve ℘ is calculated considering water current correlation:

θ = tan−1
(
−∣∣ϑz(i+1)−ϑz(i)

∣∣
/√(

ϑx(i+1)−ϑx(i)

)2+(ϑy(i+1)−ϑy(i)

)2 2

)

ψ = tan−1
(∣∣ϑy(i+1)−ϑy(i)

∣∣ /∣∣ϑx(i+1)−ϑx(i)

∣∣ )

(9)

{
uc = |VC | cos θc cosψc

vc = |VC | cos θc sinψc
⇒

u = |υ| cos θ cosψ + |VC | cos θc cosψc

v = |υ| cos θ sinψ + |VC | cos θc sinψc

w = |υ| sin θ

(10)

℘ = [X, Y, Z, ψ, θ, u, v, w (11)

Control points should be located in respective search
region constraint to predefined upper and lower bounds of
ϑi ∈[Uϑ, Lϑ ] in Cartesian coordinates, where the Lϑ is the
lower bound that corresponds to location of the start point
(Lϑ ≡ pa

x,y,z) and Uϑ is the upper bound that corresponds
to location of the target point (Uϑ ≡ pb

x,y,z).

3.0.1 FO Algorithm on Path Planning Approach

To generate trajectory by B-Spline curves, the FO algorithm
is adapted to accurately locate the control points (ϑ)

of a candidate curve (℘) in the solution space between
the predefined upper bound (Ui

ϑ) and lower bound (Li
ϑ).

Appropriate adjustment of control points play a substantial
role in determining the optimal path. A firefly in this
context corresponds to a candidate solution (path) involving
a distinct number of control points. FO is another swarm-
intelligence-based meta-heuristic algorithm inspired from
the flashing patterns of fireflies, in which the fireflies
attracted to each other based on their brightness [33, 34].
As the distance of fireflies increases their brightness gets
dimmed. The less bright firefly approaches to the brighter
one. The firefly’s brightness is determined through the
perspective of the objective function. Attraction of each
firefly is proportional to its brightness intensity received by
adjacent fireflies and their distance L. The attraction factor
β, their distance L and movement of a firefly i toward the
brighter firefly j is calculated by

Lij = ∥∥χj − χi

∥∥ =
√

d∑

q=1

(
xi,q − xj,q

)2

ß = ß0e−εL2

χt+1
i = χt

i + ß0e
−εL2

ij (χ t
j − χt

i ) + αtς
t
i

αt = α0κ
t , κ ∈ (0, 1)

(12)
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where, xi,q is the q th component of the firefly χi coordinate
in ddimensions; β0 is the attraction value at L = 0, αt is
the randomization parameter that control the randomness
of the movement and can be tuned iteratively. The α0 is the
initial randomness scaling value and κ is a damping factor.
The ζ t

i is a random vector generated by a Gaussian distri-
bution at timet . There should be a proper balance between
engaged parameters, because if the β0 approaches to zero,
the movement turns to a simple random walk, while ε = 0
turns it to a variant of particle swarm optimization [33]. The
pseudocode of FO process on path planning approach is
provided by Fig. 3. The candidate path solutions are coded
by fireflies and tend to be optimized iteratively toward
the best solution in the search space according to given
optimization criterion.

The FO algorithm is advantaged uses an automatic
subdivision approach that makes it more efficient com-
paring to other optimization algorithms. Such an auto-
matic subdivision nature increases convergence rate of
the algorithm, motivates fireflies to find all optima iter-
atively and simultaneously, which makes the FO specif-
ically suitable and flexible in dealing with continuous
problems, highly nonlinear problems, and multi-objective
problems [35]. The control parameters in FO can be tuned
iteratively that is another reason for its fast increases
convergence.

FO Based Path Planner 
Initialization phase: 

Initialize population of fireflies χi (i =1,2,…,n) with the control 

points ϑi

Define light absorption coefficients ε
Initialize the attraction coefficient β0

Set the damping factor of κ
Set the mutation coefficient 

Initialize the randomness scaling factor of α0

Set the parameter of randomization αt

Set number of population nPop and maximum iteration MaxIter
For t =1:MaxIter

For i =1:nPop 
   Reconstruct a path according to χi

Evaluate the path 

Update light intensity of χi

For j =1:i
    Reconstruct a path according to χj

Evaluate the path 

Update light intensity of χj

If (βj > βi), 
     Move firefly i towards j

end 
end

end
  Rank the fireflies and find the current best 

end
Output result 

Fig. 3 Pseudocode of FO mechanism on path planning approach

3.1 Path Optimization Criterion

The AUV is considered to have constant thrust power;
therefore, the battery usage for a path is a constant function
of the distance traveled. Performance of the generated
trajectory is evaluated based on overall collision avoidance
capability and length of the path. The resultant path
should be safe and feasible. The environmental constraints
are associated with the depth limitation for vehicles
deployment, forbidden zones of map or intersecting any
obstacle, and coping current flow that may causes drift
between desired and actual deployment of the vehicle.
The water current causes drift between desired and actual
deployment of the vehicle. AUV’s surge-sway velocities
and its yaw-pitch orientation should be constrained to umax ,
[vmin, vmax], θmax , and [ψmin, ψmax] in all states along the
path. The path cost is formulated as follows:

∀℘i
x,y,z →L℘ =

|℘|∑

i=pa
x,y,z

√
(Xi+1(t)−Xi(t))

2+(Yi+1(t)−Yi (t))
2+(Zi+1(t)−Zi(t))

2

(13)

∇∑
M,�

=

⎧
⎪⎨

⎪⎩

1 ℘x.y.z(t) = Coast : Map(x, y) = 1
1 ℘x.y.z(t) ∩ ⋃

N�

�(�p, �r, �Ur)

0 Otherwise

∇℘ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εzmin × min (0; Z(t) − Zmin)

εzmax × max (0; Z(t) − Zmax)

εu × max (0; u(t) − umax)

εv × max (0; |v(t)| − vmax)

εθ × max (0; θ(t) − θmax)

εψ × max
(
0; ∣∣ψ̇(t)

∣∣− ψmax
)

ε∑
M,�

× ∇∑
M,�

C℘ = L℘ +
n∑

i=1
Qif

(∇℘

)

(14)

here, the Qif (∇℘) is a weighted violation function that
respects the AUV kinodynamic and collision constraints
including depth violation (Z) to prevent the path from
deviating outside the vertical operating borders, surge
(u), sway (v), yaw (ψ), pitch (θ) violations, and the
collision violation (∇∑

M,�) specified to prevent the path
from collision danger. The εzmin, εzmax , εu, εv, εθ , εψ , and
ε∑M,� respectively denote the impact of each constraint
violation in calculation of total path cost C℘ .

3.2 Evaluation of the FO-based Local Path Planner

To evaluate the performance of the local path planner in this
research, real map data, uncertain no-flying zones, uncertain
static obstacles, and static water current map are considered
to cover different possibilities of the real world situations.
The vehicle moves with constant water-referenced velocity
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υ. As regards, current velocity is proportional to the cube
root of the thrust, similarly, the AUV considered to have
constant thrust power, and therefore, the battery usage
for a path is a constant multiple of the distance traveled.
Thus, the goal of the path planner is to take the shortest
battery efficient trajectory between two waypoints, in which
the trajectory avoids colliding forbidden zones, handles
undesired current flows and take use of desirable current to
save more battery. Assumptions play important role for the
controller.

in coping the current disturbance and to accurately
drive the AUV along the planned trajectory. The vehicle
control and guidance strategies along with full dynamics
of the system has been investigated previously [36, 37].
Current research takes the advantages of the previous
investigations to implement the path generation module.
The B-spline paths’ curvature is obtainable by the vehicle’s
radial acceleration and angular velocity constraints. The FO
parameters are configured as follows: number of B-Spline
control points is set on 5. The Fireflies population is set on
100, the initial attraction coefficient β0 is set on 2, and light
absorption coefficient ε is assigned with 1. The damping
factor of κ is assigned with κ ∈ [0.95, 0.97]. The scaling
variations is defined based on initial randomness scaling
factor of α0. The parameter of randomization is set on 0.4.

Figure 4 represents the path behavior in different
situations mentioned above where the complexity of the
operating window increase from Fig. 4a-c. The current field
computed from a random distribution of 12 Lamb vortices
in 100×100 grid; hence, each pixel in Fig. 4a,b contains
a current arrow and corresponds to area of 35 m2. The
position of start and target points presented by, red and green
squares, respectively. In Fig. 4 a set of pareto-optimum
paths are generated in accordance with terrain situation in
which the best generated path is proposed by thicker line
and the sub optimum trajectories are presented by thinner
lines Fig. 4a shows the paths behavior to current flow.
Afterward, the terrain modeled to be more complex and
the path efficiency of collision avoidance is investigated
encountering static current information and uncertain static
obstacles (no-flying zones) in which their uncertainty grows
by time in a circular format (given in Fig. 4b). The Fig.
4c investigates the accuracy of the generated paths in
recognizing forbidden coastal areas on the map while three
different target points from the same starting point are
considered for better representation of path behavior in
dealing with water vortexes. A k-means clustering is applied
to clarify water covered and coastal areas. Considering the
path deformation it is noteworthy to hint the efficiency
of the proposed method in adapting current flows whether
in avoiding undesirable turbulent or driving the compliant
current arrows; more specifically, optimum path and also
its alternatives are accurately adapt with current arrows and

Fig. 4 a Path adaption to current arrows in a static current map; b Path
behavior in avoiding colliding uncertain forbidden zones and obstacles
in presence of current flow; c Paths behavior in recognizing forbidden
coastal areas and adapting current flows
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Fig. 5 Average variations of
path population cost over 100
iterations

avoid colliding forbidden edges that is a critical concern in
safe deployment.

On the other hand, the vehicular constraints and
boundary conditions on AUV actuators and state also are
taken into account for realistic modeling of the AUV
operation. As discussed earlier the violation function for the
path planners is defined as a combination of the vehicle’s
depth, surge, sway, theta, yaw and collision violations.
According to Eq. 11, the boundaries for given constraints
are defined as follows: the zmin = 0(m); zmax = 100(m);
umax = 2.7(m/s); vmin = -0.5(m/s); vmax = 0.5(m/s);
θmax = 20 (deg); ψmin = -17 (deg) and ψmax = 17 (deg).
Total violation and cost variations of the path population
over 100 iterations are presented by Figs. 6 and 5,
respectively. As shown by Fig. 5, the generated trajectory
performs a great fitness encountering all constraints. The
cost variations shows that algorithm experiences a moderate
convergence by passing iterations as the cost variation range
decreases in each iteration. This means algorithm accurately
converges to the optimum solution with minimum cost. It is
further noted from Fig. 6, the proposed algorithm accurately
satisfies the proposed constraints as the variations of total
violation for path population is diminishing iteratively,
which means algorithm successfully manages the path
toward eliminating all defined violation factors.

The shortcomings with the path planner appears when
the vehicle is required to operate in a large scale terrain,
as it should compute a large amount of data repeatedly
and estimate dynamicity of the terrain adaptively. Moreover,

path planner only deals with vehicles guidance from one
point to another and do not deal with mission scenario
or task assignment considerations. To address the mission
scenario and tasks priority assignment and also to handle
the shortcomings of the local path planning, the graph route
planner operates in a higher level to give a general overview
of the terrain and cut off the operating area to beneficial
zones for vehicles deployment in the feature of the global
route including a sequence of tasks.

4Mathematical Representation
of the Routing Problem

In a terrain that covered by several waypoints, the vehicle
is requested to furnish maximum number of highest priority
tasks with minimum risk percentage in the total available
time. With respect to graph-like terrain modeled in Section
2, the route planner tends to find the best fitted route to
the total available time, involving the best sequence of
waypoints in which the total collected weight by the route
is maximized, which means the edges that containing the
highest priority tasks are selected and ordered in a manner
to guide the vehicle toward its final destination. On the
other hand, on-time termination of the mission should be
guaranteed which means the route travel time should not
exceed the total available time that is started to counting
inversely from the beginning of the mission. Hence, the
problem is a restricted multi-objective optimization problem

Fig. 6 Average variations of
Depth, Surge, Sway, Theta, Yaw,
and collision violation
corresponding to generated path
population over 100 iterations
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very similar to combination of the TSP and Knapsack
problem. In the preceding discussion, the mathematical
representation of the route planning problem for AUV in
�3D terrain is describes as:

�k =
(
pSx, ..., pi , ..., pDx, y, z

)
(15)

∀
(
pix, y, z, pj x, y, z

)
∃ wij , dij , tij ⇒

{
wij >1 if ∃ ℵij

wij =1 f ∃! ℵij

Here, the � denotes a route that is started from node ps

and ended at pD , in which any edge between two arbitrary
points of (pi, pj ) involves a weight (wij ) that represents
the value of the selected edge (its corresponding distance
(dij ) may assigned with a task ℵ or not). To address the
mentioned above requirements, the route time T� should
approach the total timeT and the captured weight by the
route should be maximized as formulated by Eq. 16 and

T� =
n∑

i=0
j �=i

seij×teij =
n∑

i=0
j �=i

seij×
(
dij

/
|υ|+δℵij

)
, seij ∈{0, 1}

(16)

max

⎛

⎜
⎝

n∑

i=0
j �=i

seij × wij

⎞

⎟
⎠&

min (|T� − Tτ |) |
s.t
max(T�) < Tτ

(17)

where, seij is the selection variable that gets 1 for the
selected edges and 0 for the rest. The planned route should
be applicable and logically feasible according to feasibility
criteria’s given below.

– The route must be commenced and ended with index of
the specified start and destination nodes.

– The route must exclude the non-existent edges in the
graph.

– The multiple appearance of a node in a route makes it
inefficient by wasting time on repeating a task.

– The route must pass an edge maximum for once, hence
the visited edges should be eliminated.

To produce a feasible route a priority vector and the graph
adjacency matrix is employed. This process is carried out
in first step of the DE-based routing approach (initialization
phase).

4.1 Differential Evolution on Constraint
Optimization Problem of Task Assign-Route
Planning

The Differential Evolution (DE) algorithm [38] is an
improved version of genetic algorithm that uses similar
operators of selection, mutation, and crossover. The DE
constructs better solutions and faster optimization due to
use of real coding of floating point numbers in presenting

problem parameters. The algorithm has a simple structure
and mostly relies on differential mutation operation and
non-uniform crossover as a search mechanism. Then applies
selection operator to converge the solutions toward the
desirable regions in the search space. The offspring’s
produced by crossover or mutation operators are inherited
in unequal proportions from the previous solution vectors.
In an optimization problem a cost function is required to be
minimized. The process of the DE algorithm is clarified in
the following subsections.

i Initialization: In first step, the initial population of the
solution vectors χi, (i =1,. . . ,nPop) is initialized using
a randomly generated uniform probability vector and
graph adjacency matrix in order to keep the solutions
feasible and restricted to valid search space (respecting
to routing feasibility criteria’s defined above). For
this purpose, nodes are selected and added to the
potential route sequence based on their corresponding
value in priority vector and adjacency matrix. To
prevent repeated visit to a node in a route, the
corresponding priority value of the selected node gets
a big negative value; then, the adjacency matrix gets
updated by eliminating the visited edges. In fact, using
the adjacency matrix at this stage prevents appearance
of non-existent edges in the graph. For more detail
refer to [24]. In a case that the route is terminated with
a non-destination node, the index of the last node in
the sequence gets replaced by index of the destination
node. Feasibility of the solutions is checked iteratively.
Applying the evolution operators improves the solution
space iteratively.

ii Mutation: The effectual modification of the mutation
scheme is the main idea behind impressive performance
of the DE algorithm, in which a weighted difference
vector between two population members to a third one
is added to mutation process that is called donor. Three
different individuals of χr1,G, χr2,G and χr3,G are
selected randomly from the same generation G, which
one of this triplet is randomly selected as the donor. So,
the mutant solution vector is produced by

χi,G

{
i = 1, ..., nPop

G = 1, ..., Gmax

χ̇i,G = χr3,G + Fs(χr1,G − χr2,G)

r1, r2, r3 ∈ {1, ..., nPop},
r1 �= r2 �= r2 �= i, Fs ∈ [0, 1+]

(18)

where, nPop is the number of routes (solutions) population
in DE, Gmax is the maximum number of iterations
(generations). The Fs is a scaling factor that controls the
amplification of the difference vector (χr1,G − χr2,G).
Giving higher value to Fs promotes the exploration
capability of the algorithm. The proper donor accelerates
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convergence rate. In this approach, the donor is determined
randomly with uniform distribution as follows:

donor =
3∑

i=1

⎛

⎝λi

/
3∑

j=1
λj

⎞

⎠χri,G, (19)

where, λj ∈ [0,1] is a uniformly distributed value. The
mutant individual χ̇i,G and parent individual χi,G are then
shifted to the crossover (Recombination) operation.

iii Crossover: The parent vector to this operator is a
mixture of individual χi,G from the initial population
and the mutant individual χ̇i,G. The produced offspring
χ̈i,G from the crossover is described by

{
χi,G =(x1,i,G, ..., xn,i,G)
χ̇i,G =(ẋ1,i,G, ..., ẋn,i,G)
χ̈i,G =(ẍ1,i,G, ..., ẍn,i,G)

⇒ ẍj,i,G =
{

ẋj,i,G randj ≤ rC ∨ j =k
xj,i,G randj ≤ rC ∧ j �=k

j =1, ..., n; n ∈ [1, nPop]
(20)

where, k ∈ {1,. . . , nPop} is a random index chosen once for
all population nPop. The second DE control parameter is the
crossover ratio rC ∈ [0,1] that is set by user.

iv Evaluation and Selection: The offspring produced
by the crossover and mutation operations is evaluated
according feasibility criteria, then the feasible solutions
turn to cost evaluation and infeasible solutions returned
back to the corresponding mutation or crossover
operation. The cost function is defined in the next
part (route optimization criterion). The best fitted
solutions produced by evolution operators are selected
and transferred to the next generation (G+1).

χ̇i,G+1 =
{

χ̇i,G C�(χ̇i,G) ≤ C�(χi,G)

χi,G C�(χ̇i,G) > C�(χi,G)
;

χ̈i,G+1 =
{

χ̈i,G C�(χ̈i,G) ≤ C�(χi,G)

χi,G C�(χ̈i,G) > C�(χi,G)
(21)

The performance of the offspring and parents are
compared for each operator according to route cost function
of C� and the worst individuals eliminated from the popu-
lation. The process of DE is presented through the Fig. 7.

In Fig. 7, the difference between two individuals {1,2} is
added to a third individual {3}. The mutant individual {4} is
sent to the crossover operator. The most fitted candidate
from initial individuals {1,2,3}, mutated individual {4} and
shuffled individual {5} is selected as proposal individual
to the next generation. DE parameters for routing-task
assignment problem is configured as follows: the population
size is set on 100, lower and upper bound of scaling factor
is set on 0.2 and 0.8, respectively, and the crossover ratio is
set on rC = 0.2.

Fig. 7 Producing new generation by DE

4.2 Route Evaluation Criterion

As mentioned earlier the local path planner operates in
context of the graph route planner; hence, the path cost of
C℘ has a direct impact on total cost of the global route
because of its proportional relation to the traveled distance
between pairs of waypoints (dij ∝ L℘). On the other hand,
the main goal is to maximize the weight of the selected
edges in the graph, which means selecting the best sequence
of highest priority tasks in a limited time. Therefore, the
route cost of C� gets penalty when the T� for a particular
route exceeds the Tτ . Traversing the L℘ may take more time
than what expected due to dynamic unexpected changes
in the environment. The wasted time is compensated by
carrying out a proper re-routing process. After visiting
each waypoint in the global route, the re-planning criteria
should be investigated (given in the next section). Hence; a
computation cost encountered any time that re-planning is
required. Thus, the route cost in the proceeding research is
defined as follows:

Cℵ =
n∑

i=0
j �=i

seij ×
(

ξℵ,eij

ρℵ,eij

)

, seij ∈ {0, 1} (22)

C� =�1

∣∣∣∣∣∣

n∑

i=0
j �=i

seij ×
(

C℘ij

|υ| +δℵ,℘ij

)
−Tτ

∣∣∣∣∣∣
+�2Cℵ+

r∑

1
Tcompute

s.t .
∀� ⇒ max (T�)<Tτ

(23)

where �1 and �2 are two positive coefficients determine
amount of participation of each factor in determination of
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the route cost, Tcompute is the time spent for checking the
re-routing criteria (given below), and r is repetition of the
re-planning procedure in a mission.

4.3 Re-routing Criterion

Trade-off between managing the mission available time (Tτ )

and mission objectives should be adaptively carried out by
the graph route planner. The T℘ is calculated at the end
of the trajectory according to Eq. 18 and gets compared to
expected time Texp for traversing the corresponding distance
of dij , in which the Texp ≡ tij is determined from the T�
given by Eq. 16. If the T℘ exceeds the Texp, it means the
local path planner spent extra time for coping any probable
raised difficulty (e.g. collision avoidance or copping current
disturbance). Obviously, a part of the available time Tτ is
taken for this purpose and initial global route is turned
to be invalid to the remained time; thus, re-routing would
be necessary in this condition. For re-routing process the
visited edges in previous route gets eliminated from the
graph adjacency matrix (so the graph complexity is reduced
and search space shrinks); the Tτ gets updated; and the
existing waypoint is considered as new start point for both
path/route planners. The, the route planner is recalled to
generate new route according to graph and time updates.
This process continues iteratively until the AUV reaches to
the final destination (success) or it runs out of time/battery
(failure). The proposed DEFO model proceeds as the
flowchart in Fig. 8 declares.

∀℘
ij
x,y,z ⇒ T℘ =

∣∣L℘

∣∣

|υ| + δℵ,eij
+ ℘CPU (24)

Where, δℵ,eij is the completion time of task assigned edge
eij and ℘CPU is the path computation time.

5 Performance Evaluation of the Adaptive
Hierarchal DEFOModel

The graph route planner should be capable of generating a
time efficient route with best sequence of tasks to ensure
the AUV has a beneficial operation and reaches to the
destination on-time as it’s an obligatory requirement for
vehicles safety. A beneficial operation is a mission that
covers maximum possible number of tasks in a manner
that total obtained weight by a route and its travel time is
maximized but not exceed the time threshold. Along with an
efficient route planning, the path planner in a smaller scale
should be fast enough to rapidly react to prompt changes of
the environment and generate an alternative trajectory that
safely guides the vehicle through the specified waypoints
in the optimum. Hence, the performance and stability of

the model in satisfying the metrics of “obtained weight”,
“number of completed tasks”, “cost of the route/path
planners” and “total violation of the model” is investigated
and analyzed in a quantitative manner through 50 Monte
Carlo simulation runs and presented by Fig. 9.

All mentioned performance indicators are investigated
through 50 simulation of Monte Carlo. The Monte Carlo
simulation performed in this section, is treated as a
solid indicator in the state-of-the-art addressing to what
extent the DEFO model can cope complexity (uncertainty)
of the underlying mission scenarios. The Monte Carlo
trials are initialized with realistic initial conditions that
are analogous to real underwater mission scenarios. For
all Monte Carlo runs, the quantity of waypoint is set
to be changed with a uniform distribution between 30
to 50 nodes and the network topology also transforms
randomly with a Gaussian distribution on the problem
search space. The time threshold is set on 7.2 × 103(sec).
A fixed set of 15 tasks, which characterized with risk
percentage, priority value, and completion time, is specified
and randomly assigned to some of the edges of the
graph. The terrain is modeled as a realistic underwater
environment, in which static ocean current map, real map
data, and randomly generated uncertain static obstacles are
considered in all experiments. Each experiment represents a
mission.

Analysis of the result, captured from the Monte Caro
simulations, indicates model’s consistency and robustness
against problem’s space deformation (model complexity
analysis). According to results presented in Fig. 9, the cost
variation for both planners shows the stability of the model
in producing optimal solutions as the cost variation range
stands in a specific interval for all experiments (mission).
The path planner gets the violation if the generated path
cross the collision edges, its depth drawn outside of the
vertical operating borders or when the vehicles surge, sway,
yaw and pitch parameters egress the defined boundaries;
and the route planner gets violation if the route time T�
exceeds the total available time for the mission Tτ . Both
path and route planners get recalled for several times in a
particular mission. Figure 9 shows that the model accurately
satisfies all defined constraints as the violation value is
considerably approached to zero in all 50 executions that is
neglectable.

Another important performance indicator for such a
combinatorial model is proper coordination of the higher
and lower level motion planners in the system. To provide
a precise concordance between two planners and real-
time implementation of the model some other performance
indexes should be highlighted additional to those which
addressed above. Thus, one critical factor for both planners
is having a short computational time to provide a concurrent
synchronization. Fast operation of each planner keeps any
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of them from dropping behind the process of the other
one, since appearance of such a delay damages concurrency
of the entire system. Another significant performance
metric that influences the synchronism of whole system
is compatibility of the value of local path time (T℘) and
the expected time (Texp) in multiple operation of the local
path planner. Therefore, the values of T℘ and Texp should
be close to each other as it is critical for recognizing

the requisition for re-routing. The models behavior in
satisfying these two performance metrics also investigated
in a quantitative feature indicated by Fig. 10.

It is inferable from simulation result in Fig. 10 that
variations of the CPU time for both Path/Route planners is
drawn in a very narrow boundary in range of seconds in
all executions that confirms real-time performance of this
model in cooperating the changes of the environment and

Fig. 8 Flowchart of the proposed DEFO model including adaptive re-routing process
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operation network. Considering the second plot in Fig. 10, it
is clear that the model accurately preserves the conformity
and correlation between T℘ (presented by blue compact box
plot) and Texp (presented by yellow transparent box plot)
as their average variations for all executions are lied in
similar range and very close to each other. This confirms
efficient synchronization of the higher and lower level
motion planners. Moreover, by considering the cost and
violation variations in Fig. 9 and the computational time
(CPU time) in Fig. 10, one can realize that the DEFO
model is capable of finding feasible solutions with a fast
convergence rate stemming from violations in order of 10−4

and CPU time in order of 100 second, respectively.
The best possible performance for the proposed model

is completion of the mission with a minimum positive
remaining time, which means the vehicle took maximum
use of available time and terminated its mission before
runs out of battery; thus, the most effective performance
indicator for this model is its accuracy in mission time
management. The result of simulation for 50 experiments is
presented by Fig. 11.

As declared by Fig. 11, the remained time got a
very small positive value in all missions that means
no failure is occurred in this simulation, which is a
remarkable achievement for having a confident and reliable
mission as the failure is not acceptable for AUVs due to
expensive maintenance in sever underwater environment.
The time constraint is presented by green line in Fig. 11.
Obviously, the route time is maximized by minimizing
the remaining time, which represents that how much of
total available is used for completing different tasks in
a single mission. Analyzing the variation of the route
time and the remained time confirms supreme performance
of the proposed novel model in mission reliability and
excellent time management. For better understanding
of the whole process, one experiment including three
re-routing and 11 local path planning is shown by
Fig. 12.

Given a candidate initial route in a sequence of way-
points (edges assigned by tasks) along with environment
information, the local path planner provides a trajectory to
safely guide the vehicle through the waypoints in presence

Fig. 9 Statistical analysis of the model in terms of mission productivity according to total obtained weight and average number of completed tasks
in a mission; cost and violation variation for both route/path planners in 50 Monte Carlo simulations
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Fig. 10 Real-time performance of the model, and compatibility of the value of T℘ (presented by blue compact box plot) and Texp (presented by
yellow transparent box plot) in multiple operation of the local route planner through the 50 Monte Carlo simulation runs

of ocean current and uncertain obstacles. In whole process,
the remained time that initialized with the value equal to
Tτ , is counted inversely. Indeed, the remained time is the
total available time that gets reduced by time. The local
path planner incorporates any dynamic changes of the ter-
rain while the vehicle is deploying between two waypoints;
where in some cases its process may longer that cause the
path drop behind the expected time for passing the corre-
sponding distance; as occurred in passing the second edge
in Fig. 12. In such a case remained time gets updated by
reducing the wasted time and the route planner is recalled
to rearrange the sequences of tasks according to updated
remained time, presented by the yellow thick line in Fig.
12. As presented in Fig. 12, number of 11 paths gener-
ated during 3 re-routing process in a single mission, where
the discarded routes presented by dashed white lines. This

synchronous process is frequently repeated until the AUV
reach the destination that means mission success.

The most important objective of this research is to
validate performance of this model in efficient time
management and guarantying on-time termination of the
mission before vehicle runs out of time/battery as it is an
important concern for mission success, which is analyzed
and evaluated for 50 mission simulations in Fig. 11.

It is also noteworthy to mention from analysis of the
Monte Carlo simulations in Figs. 9 and 10, the variation
ranges of performance metrics of total obtained weight,
completed tasks, CPU time, total cost and violation is
almost in a same range for all experiments that shows
the stability and robustness of the model in dealing with
environmental changes and random deformation of the
graph topology.

Fig. 11 Statistical analysis of the model’s performance in terms of mission time management and satisfying time constraint in 50 missions
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Fig. 12 Process of route-path planning replanning and re-arrangement of order of edges (tasks) in a single mission in area of 10 km2

6 Conclusion

This paper presented a hybrid strategy of task assign-route
planning and path planning based on differential evolution
and firefly optimization algorithms (called DEFO model) to
maximize productivity of a single vehicle in a single mission
within a limited time interval. Two higher/lower level
motion planners are the cores of the proposed hybrid model

where the route generator is responsible for prioritizing
and managing the maximum number of tasks and the latter
module generates an optimal-collision free path to govern
the vehicles toward the goal of interest. For performance
evaluation, the AUV operation was simulated in a three-
dimension large terrain (almost 10 km2 × 100m), where
static current map data along with uncertainty of the
operation field is taken into account. The simulation results
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showed that the proposed model is efficient for increasing
vehicle’s autonomy of decision making in prioritizing tasks
and mission time management. Providing this certain level
of autonomymakes the vehicle and particularly path planner
capable of using the favorable current flow for energy
management, as well. Through the Monte Carlo trials it
was inferred that the computational performance of the
offered hybrid model is outstanding and works in a level
of real-time performance. There was also a significant
robustness with the model in terms of the terrain’s
variability and configuration changes of the allocated tasks.
Future research will pay attention to detached modular
architecture in which each layer of the architecture provides
a specific level of autonomy for the vehicle. The planners
also have potential of getting upgraded adding more
assumptions about real underwater environment and testing
other algorithms to achieve better accuracy and real-time
performance.

This study is a part of the “Autonomous Underwater
Mission and Exploration Project” conducting at the Center
for Maritime Engineering, Control and Imaging, Flinders
University, Australia. As the performance validation of the
DEFO model has been completed successfully in this paper,
as a future work, the DEFO model will be implemented
on-board the under developing Flinders AUVs [11, 21] for
experimental evaluation and further investigations.
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