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Abstract
For the shortcomings of biologically inspired neural network algorithm in the path planning of robots, such as high
computational complexity, long path planning time etc Glasius Bio-inspired Neural Network (GBNN) algorithm is
proposed to improve the algorithm, and applied to the complete coverage path planning of autonomous underwater vehicle
(AUV). Firstly, the grid map is constructed by discretizing the two-dimensional underwater environment. Secondly, the
corresponding dynamic neural network is built on the grid map. Finally, complete coverage path of AUV is planned based
on the GBNN strategy and the path of AUV at the edge of obstacles is optimized by some typical path templates. The
simulation results show that the AUV can completely cover the entire workspace and immediately escape from deadlocks
without any waiting. Meanwhile, the efficiency of complete coverage path planning is high with short path planning time
and low overlapping coverage rate by using the algorithm proposed in this paper.

Keywords Autonomous underwater vehicle (AUV) · Complete coverage path planning · GBNN algorithm · Neural network

1 Introduction

Comparedwith remotely operated vehicle (ROV), autonomous
underwater vehicle’s intelligence is higher, with broader
range of underwater activities, and can go deep into the
underwater space where the general submersible cannot
reach to perform the specified tasks in the complex ocean
environment [1]. At present, the complete coverage detect-
ing underwater areas, searching and rescuing in the deep
sea are the main tasks of the autonomous underwater
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vehicle (AUV), and the AUV must have the ability of com-
plete coverage path planning when performs these tasks,
therefore, the complete coverage path planning algorithm
of the AUV is a hotspot and essential issue in the AUV
researches. Generally, complete coverage path planning of
the AUV can be described as follows: the AUV which starts
from the initial point, sails along the shortest possible path
or uses the shortest possible time to go through the entire
underwater workspace except obstacles, which requires
the AUV to avoid all the obstacles safely, and the overlap-
ping paths should be as short as possible [2–4]. To date,
the complete coverage path planning algorithm has been
extensively studied, e.g., random-covering algorithm [5, 6],
cellular decomposition algorithm [7–9] and neural network
algorithm [10–15], etc.

Gage [5] proposed a random-covering algorithm, where
the robot moves straight along a direction based on random
movement strategy. At every fixed time or encountering an
obstacle, the robot will backward rotate a random angle, and
then continue to move along a straight line. This method
does not need too many sensors and is quite simple, but it
is inefficient and has high overlapping path rate. Otherwise,
due to the reason that the strategy of path planning is too
simple, the robot usually cannot escape from deadlocks
in the complex terrain. Thus, this method is difficult to
guarantee that the entire workspace can be covered [6].
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Latombe [7] proposed the trapezoidal cellular decom-
position algorithm, which can solve the low coverage rate
of the random-covering algorithm. In this method, the work-
space is decomposed into several non-overlapping trape-
zoidal cells according to the obstacle locations. The robot
visits each cell based on back-and-forth motions, then moves
to another cell by adjacency graphs until the entire workspace
is covered. The method can guarantee the robot covers the
entire region, but there are redundant movements between
cells, so the high overlapping rate and low efficiency of path
planning are caused. For this deficiency, Choset [8] pro-
posed the boustrophedon cellular decomposition algorithm,
which reduces the number of cells, thus the redundant paths
between cells are decreased and the overlapping rate is low-
ered. However, the algorithms of [7] and [8] all require the
prior knowledge of the workspace. For this, Acar [9] gave
a sensor-based coverage method by improving the bous-
trophedon cellular decomposition algorithm, which ensures
that the coverage tasks don’t need any prior knowledge.

With the rapid development of artificial intelligence, it
has been widely used in the path planning of the robot [10],
e.g., artificial neural network algorithm [11, 12], ant colony
algorithm [16, 17] and genetic algorithm [18, 19], etc.
Among them, the artificial neural network algorithm gets
more attention due to its high intelligence. However, most of
the artificial neural network algorithms have shortcomings,
such as long learning time and learning delay, thus, the real-
time performance of path planning is difficult to be guaran-
teed. Therefore, a non-learning, adaptive biologically inspi-
red neural network algorithm is proposed by Yang, and
applied to the complete coverage path planning of the
mobile robot [13, 14]. In this method, the two-dimensional
grid map cells correspond to the neurons of neural network
one-to-one, and the robot path is autonomously planned by
the dynamic activity landscape of the neural network and the
previous robot location. The method determines the external
inputs of neurons through the state of two-dimensional grid
map and directly calculates the neural activities without any
learning procedures, and the robot can automatically avoid
obstacles and escape deadlocks. On this basis, Yan [15] com-
bines biologically inspired neural network algorithm with the
D S information fusion algorithm, not only builds a dyna-
mic underwater environment map, but also solves the AUV
complete coverage path planning in unknown environment.

Although the complete coverage path planning based
on biologically inspired neural network algorithm has the
advantages of non-learning, self-adaption, there are short-
comings such as the high algorithm complexity and the
complicated calculation. When the robot is stuck in dead-
lock, it has to wait at its current location for a long time
until the neural activity value of the deadlock is smaller than its
neighboring locations, so that it can escape from the dead-
lock [13]. Thus, the efficiency of path planning is lower.

Aiming at above issues, inspired by two-layer feed
forward neural network algorithm in [20], Glasius Bio-
inspired Neural Network algorithm (GBNN) is proposed
by improving the method of calculating neural activity in
this paper, and applied to complete coverage path panning
of the AUV. The proposed algorithm uses the difference
equation to calculate the neural activity. Compared with
the differential equation in [13], the calculation is simpler,
and the real-time performance is better and also without
any learning procedures. The AUV can quickly plan a
collision-free complete coverage path and the path planning
is efficient.

This paper is organized as follows. In Section 2, the
complete coverage path planning method based on GBNN
algorithm is presented. In Section 3, the simulation
experiments for various situations are given. Finally and the
conclusion is given in Section 4.

2 Complete Coverage path Planning
of the AUV Based on GBNN Algorithm

In this section, the method of complete coverage path plan-
ning of the AUV based on GBNN algorithm is proposed.
Firstly, the two-dimensional grid map is constructed by dis-
cretizing the underwater workspace of the AUV, and then a
neural network corresponding to the grid map is built. Sec-
ondly, according to the state of the grid map, the neural
network activity is updated constantly by GBNN algorithm.
Finally, complete coverage path of the AUV is planned
through the path planning strategy. In addition, when the
AUV sails near some obstacles, its avoiding obstacles path
is optimized by some typical path optimization templates.

2.1 Building Grid Map and Neural Network

In this paper, the grid map is built by discretizing the
underwater environment, where the workplace of the AUV
is decomposed into cells with the same size and shape. And
each cell has two states: obstacle or free, as shown in Fig. 1a,
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Fig. 1 The model of two-dimensional underwater environment. a The
two-dimensional grid map. b The two-dimensional neural network

J Intell Robot Syst (2019) 94:237–249238



the black cells are obstacles, the white cells are free. Then,
a two-dimensional neural network is built on the grid map,
and each cell of the grid map corresponds to each neuron of
the neural network, e.g., the ith cell of Fig. 1a corresponds
to ith neuron of Fig. 1b. In Fig. 1b, the receptive field of
the ith neuron is represented by a circle with a radius of R,

and each neuron has lateral connections only to neighboring
neurons within its receptive filed.

2.2 GBNN Algorithm

GBNN algorithm is a discrete-time Hopfield-type neural
network, whose dynamic model is described as

xi(t + 1) = g

⎛
⎝

M∑
j=1

Wij [xj (t)]+ + Ii

⎞
⎠ (1)

where the transfer function is chosen as

g(x) =
⎧⎨
⎩

−1, x < 0
βx, 0 ≤ x < 1, β > 0
1, x ≥ 1

(2)

where xi(t + 1) is the neural activity of the ith neuron at
t + 1; xj (t) is the neural activity of the j th neuron at t ,
and the j th neuron is laterally connected with ith neuron.
Otherwise, [xj (t)]+ = max[xj (t), 0], it represents that only
the positive neural activities can influence other neurons
and propagate globally, but the negative neural activities
can’t propagate outward and only have local effect; Mis
the number of neural connections of the ith neuron to its
neighboring neurons within the receptive filed R; Wij is the
connection weight between the ith neuron and j th neuron
and is defined as

Wij =
{

e−α|i−j |2, 0 < |i − j | ≤ R

0, |i − j | > R
(3)

where |i − j | is the Euclidean distance between ith neuron
and j th neuron, α and R are all positive constants, and R is
the radius of the receptive field shown in Fig. 1b, in general,
R = 2 for the two-dimensional neural network, which
means each neuron has only lateral connections to its eight
neighboring neurons within receptive field. In addition, the
connection weight is a scalar and is symmetric, i.e., Wij =
Wji . Ii is the external input of the ith neuron, which is given
as

Ii =
⎧⎨
⎩

+E, if it is an uncovered area
−E, if it is an obstacle area
0, if it is an covered area

(4)

where E is the external excitatory input and−E is the external
inhibitory input. To guarantee that the neural activities of
uncovered areas are maximum while the neural activities of

obstacles areas are minimum, the external input E must be
greater than the sum of excitatory inputs from the lateral

neural connections, which means E>>
M∑

j=1
Wij [xj (t)]+, in

general, E>>1,
M∑

j=1
Wij [xj (t)]+ ∈ [0, 1).

The neural activity is bounded in the finite interval
[−1, 1] by Eq. 2, which guarantees that the neural network
is stable. Combining with Eqs. 1 and 2, if the ith neuron is
uncovered, its external inputs include the external excitatory
input: Ii = +E and the sum of excitatory inputs

from the lateral neural connections:
M∑

j=1
Wij [xj (t)]+, and

M∑
j=1

Wij [xj (t)]+ + E>>1, therefore, the neural activity of

the uncovered neuron is 1; If the ith neuron is obstacle,
its external input is made of the external inhibitory input:
Ii = −E and the sum of excitatory inputs from the lateral

neural connections:
M∑

j=1
Wij [xj (t)]+, and

M∑
j=1

Wij [xj (t)]+−
E < 0, which guarantees that the neural activity of the
obstacle area is -1; If the ith neuron is covered, its external
input: Ii = 0and the excitatory inputs only from the sum of
excitatory inputs from the lateral neural connections, due to

the
M∑

j=1
Wij [xj (t)]+ ∈ [0, 1), the neural activity of covered

area is β
M∑

j=1
Wij [xj (t)]+ ∈ [0, 1), generally, 0 < β ≤

1. In conclusion, the neural activity dynamically changes
according to the varying environment. The positive neural
activity can propagate to the entire workspace through
lateral connections among neurons, thus the uncovered
areas can globally attract the AUV to visit. However, the
negative neural activity can’t propagate outward and only
stays locally, so that the obstacle areas have only local effect
to push the AUV away to avoid collisions. For the covered
areas, the external excitation inputs of the corresponding
neurons all become to be zeros, and they cannot attract
the AUV to visit. Their excitatory inputs are only from the
sum of incentive value transmitted from the side connection
neurons. With the uncovered areas are gradually covered,
the covered areas’ excitatory inputs also become smaller
and smaller, therefore, their neural activities will constantly
decay to zero.

2.3 Strategy of complete coverage path selecting

Due to the limitation of power, when the AUV performs
coverage tasks, it should sail the shortest path with the least
revisited areas and make turns of sailing direction as fewer
as possible to avoid consuming excessive energy. Thus, the
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previous AUV sailing direction must be taken into account
in the complete coverage path planning. And, for a given
current AUV location Pc, the next AUV location Pn is
defined as [13]:

Pn ⇐ xpn = max{xk + cyk, k = 1, 2, ..., m} (5)

where c is a positive constant; xk is neural activity of
the kth neuron, which is calculated by Eq. 1; m is the
number of neighboring neurons of the Pcth neuron; ykis a
monotonically increasing function of the difference between
the current and next AUV sailing directions and given as

yk = 1 − �ϕk

π
(6)

�ϕk = |ϕk − ϕc| = |a tan 2(ypk
− ypc , xpk

− xpc)

−a tan 2(ypc − ypp , xpc − xpp)| (7)

where �ϕk is the turning angle between the current
sailing direction and the next sailing direction; (xpp , ypp),
(xpc , ypc ) and (xpk

, ypk
) represent the previous location Pp

coordinate, the current location Pc coordinate and the next
possible location Pk coordinate, respectively.

As shown in Fig. 2, when the AUV sails straight, �ϕk =
0, while the AUV sails backward, �ϕk = π , thus, �ϕk ∈
[0, π ], yk ∈ [0, 1]. When the AUV reaches the next location
from the current location, the next location becomes a new
current location. Then the AUV will continue to select
the new next location by Eq. 5 until the whole objective
workspace is covered. If the selected next location is the
same as the current location, the AUV will still stay the
current location. In a word, the AUV can plan a complete

Fig. 2 The sailing direction of AUV

coverage path according to the dynamic neural activity and
the current position through Eq. 5.

2.4 The Optimization of the Complete Coverage
Path at the Edge of Obstacles

It is generally known that the underwater environment is
very complex and there are many obstacles with arbitrary
shapes. When the AUV encounters obstacles, its paths
of avoiding obstacles planned by Eq. 5 may be cluttered
and overlapped. Aiming this problem, on the basis of the
complete coverage path optimization templates of cleaning
robot in [21], and thinking that the AUV’s sailing trend
is from top to bottom, left to right, five kinds of the path
templates are given in Fig. 3 to optimize the paths of the
AUV at the edge of obstacles [15]. Therefore, during the
AUV sailing, if the AUV finds obstacles around it, it will
judge if the current position is matching some kind of path
optimization template. If not matching, the AUV will still
plan the path with obstacles avoidance by Eq. 5; if matching,
the AUV will plan the avoiding obstacles path through the
corresponding template of Fig. 3 to reduce the overlapping
paths as far as possible.

As shown in Fig. 3, Pp, Pc is the previous AUV location,
current location, respectively. Choosing Pc as the center, its
eight neighboring cells are numbered clockwise from the
bottom-left corner. In Fig. 3a, when the AUV sails upward,
if the obstacles are above the AUV and the right cell 6 is
uncovered, the cell 6 will be chosen as the next location,
after the AUV reaches cell 6, if the cell 7 is uncovered,
then it will be covered; In Fig. 3b, when the AUV sails
downward, if the obstacles are below the AUV and right
cell 6 is uncovered, the cell 6 will be covered firstly, then,
if the cell 5 is uncovered, it will be chosen as the next AUV
location; In Fig. 3c, when the AUV sails upward, if the
obstacles are in the bottom-left and left cell 2 is uncovered,
the cell 2 will be covered firstly; In Fig. 3d, when the AUV
sails downward, if the obstacles are in the top-left and left
cell 2 is uncovered, the cell 2 will be covered firstly; In
Fig. 3e, when AUV sails from right to left, if the obstacles
are in the bottom-right and the below cell 8 is uncovered,
the cell 8 will be covered firstly by the AUV.

3 Simulation Studies

The simulation environment is 120× 120 m2 two-
dimensional underwater workspace, which is represented by
a discretized grid map. The size of each cell is 4 m × 4 m,
and the size of the grid map is 30× 30 cells, thus the neural
network has 30×30 topologically organized neurons, where
all the neural activities are initialized to zero. In addition,
the AUV is simplified as a particle and its shape and size
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1 Pp 7

3 Pp 5
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Fig. 3 The five kinds of path optimization template at the edge of obstacles. a The obstacles are above the AUV. b The obstacles are below the
AUV. c The obstacles are in the bottom-left of the AUV. d The obstacles are in the top-left of the AUV. e The obstacles are in the bottom-right of
the AUV

are not considered. And, the GBNN algorithm parameters
are set as β = 0.7, α = 2; E = 100 for the external
input; R = 2 for the radius of the receptive field; and
c = 0.5 for the strategy of path planning. The simulation
results of complete coverage path of the AUV in the static
and dynamic environment are implemented by MATLAB.

3.1 Complete Coverage Path Planning of the AUV
in the Static Underwater Environment

In this section, the complete coverage path planning of the
AUV in the static environment is presented. In the static
environment, the obstacles are considered as still without
any moving. The initial simulation environment is shown
in Fig. 4. In Fig. 4a, there are multiple irregular obstacles
in the grid map, the AUV begins to perform the complete
coverage task from S (1,30). Figure 4b is the neural activity
landscape of the neural network corresponding to this grid
map. With the large external inhibitory inputs (−E), the

neural activities of obstacles keep as -1 and only have local
effect, thus the obstacle areas just locally push the AUV
away to avoid collision. With the large external excitatory
inputs (+E), the neural activities of uncovered areas are
1. For the proposed algorithm, an external excitation signal
is introduced for all corresponding neurons that need to be
covered, and the external excitation inputs will always exist
as long as the area is not covered by AUV. Therefore, the
neuronal activity value can be always in peak condition and
propagate outward, thus the uncovered areas always attract
the AUV to visit. For the covered areas, their external inputs
are zero and the excitatory inputs just from the lateral neural
connection, thus the neural activities begin to decay to
zero gradually. This mechanism can guarantee the complete
coverage path planning in the underwater environment.

During the AUV sailing, the neural activity landscape
of neural network updates dynamically with the varying
grid map, the AUV plans the complete coverage path by
the strategy of path planning in Eq. 5 and the optimization
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Fig. 4 The initial static underwater workspace of the AUV. a The grid map of the AUV underwater workspace. b The neural activity landscape of
neural network corresponding to the grid map
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templates of avoiding obstacles path in Fig. 3. As shown
in Fig. 5a, when the AUV arrives at location (11,21), it
stuck in the deadlock, where all the neighboring locations
are either obstacles or covered areas. For the neuron (11,21),
its external input all becomes to be zero, and the excitatory
inputs are just from the side neural connections. And then
the neural activity decays. Meanwhile, with the neural
activity propagation among neurons, the positive neural
activities from uncovered areas have propagated to the
neuron (11,21) and the surrounding neighboring neurons.
And for the neurons, the more they close to the uncovered
areas, the more they can get excitatory inputs, thus the
neural activities of neighboring locations (except obstacles)
are all larger than the activity at (11,21). Therefore, the
AUV can immediately plan a conventional point-to-point
path like in [22] to escape from the deadlock without any
waiting or staying. In order to further prove that the AUV
can immediately get out of deadlocks in GBNN algorithm,
take deadlock (11,21) for example, the neural activities of
neighboring locations when the AUV stuck in the deadlock
(11,21) is shown in Table 1.

In Table 1, when the AUV stuck in deadlock (11,21),
the neural activity at (11,21) decays from 1 to 8.7620e-
13. Meanwhile, with the positive neural activities from
the uncovered areas, it is observed that all the neural
activity values of neighboring locations at point (11,21)
(except the obstacle area with the value −1) have been
larger than deadlock neural activity value 8.7620e-13. And
the neighboring locations are closer to the uncovered
areas, their neural activities are larger. Thus, the AUV
can immediately escape from the deadlock and pass some
covered areas to the nearest uncovered location (4,28)
according to the largest neural activity value marked with
red underline in Table 1, then continues to perform the
coverage task. The path of escaping from deadlock (11,21)
is shown in Fig. 5b. Later, when the AUV arrives at
location (16,30), (26,23), (30,30) and (28,14) are all stuck in
deadlock, in the same way, it also can immediately escape
from deadlocks without any staying and quickly sail to the
nearest uncovered area. The specific results are shown in
Fig. 5c – f.

As shown in Fig. 6, the AUV accomplishes the coverage
task when arrives at the point F(28,6). By Eq. 5, the AUV
plans the complete coverage path through the dynamic
activity landscape of the neural network and the previous
AUV position, so as to make fewer turnings. In addition,
at the edge of some obstacles, the paths of the AUV with
obstacle avoidance are optimized to reduce overlapped and
cluttered paths by the path optimization templates of Fig. 3.
For example, when the AUV sails from location (1,21) to
(1,20), there are obstacles below it and the right location is
uncovered, then the AUV turns right to (2,21) by the path
optimization template in Fig. 3b, afterwards, it turns up to

(2,22). Similarly, when the AUV arrives at location (4,24)
from (4,23), through the template in Fig. 3a, the AUV firstly
turns right to (5,24) and then turns down to (5,23). When
the AUV sails from location (15,17) to (15,16), it turns left
to cover (14,16) by the template of Fig. 3d. When the AUV
arrives at (30,28) from (30,27), it then turns left to location
(29,28) by the path template in Fig. 3c. When the AUV sails
right location (28,28) to left (27,28), then it turns down to
(27,27) by the template of Fig. 3e. From the above analysis,
through the complete coverage path planning method based
on GBNN algorithm, in the static environment, the AUV not
only can automatically plan a reasonable path with obstacles
avoidance until the entire workspace is completely covered,
but also can immediately escape from deadlocks, and the
efficiency of path planning is high.

3.2 Complete Coverage Path Planning of the AUV in
the Dynamic Underwater Environment

In this paper, the dynamic underwater environment is
defined as an environment with some dynamic obstacles.
In this section, the simulation results of complete coverage
path planning of the AUV in the dynamic environment
with suddenly appearing obstacles and suddenly moving
obstacles are given.

As shown in Fig. 7a, there are multiple obstacles with
different shapes and sizes. Among them, obstacle 5 is a
dynamic obstacle which occupies the assigned areas in
the initial time, and the AUV cannot visit. Figure 7b is
the corresponding neural activity landscape. The neural
activities of the uncovered areas are 1, the neural activities
of the obstacles are −1, and the neural activities at the
covered areas decay from 1 to 0 constantly. The AUV
starts to completely cover the workspace from S (1,1), as
the same as the path planning in the static environment,
the AUV plans complete coverage path through Eq. 5
and path optimization templates. However, when the AUV
arrives at location (14,8), a rectangular obstacle 8 suddenly
appears in front of the AUV. As shown in Fig. 7d, the
neural activities of the areas with the suddenly placed
obstacle 8 immediately become -1 from 1 with the large
external inhibitory. And, then the AUV can rapidly plan the
reasonable path of avoiding obstacles to nearest uncovered
areas according to the change of the neural activities (see
Fig. 7c).

In Fig. 7e, when the AUV arrives at F (30,1), it finishes
the coverage tasks, but at the same time, dynamic obstacle
5 suddenly moves to the bottom-left of the current position.
The corresponding areas of the grid map update as new
uncovered areas and new obstacle areas, respectively. Thus,
the neural activities at the previous obstacle 5 location
become 1 and the neural activities of the current position
become −1 at once, which are shown in Fig. 7f. Since
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Fig. 5 The paths of the AUV
escaping from the each
deadlock. a The AUV stuck in
deadlock (11,21). b The AUV
escapes from deadlock (11,21).
c The AUV escapes from
deadlock (16,30). d The AUV
escapes from deadlock (26,23).
e The AUV escapes from
deadlock (30,30).f The AUV
escapes from deadlock (28,14)
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Table 1 The neural activities of neighboring locations when the AUV stuck in the deadlock (11,21) in GBNN algorithm

y 

x

(x , y)
Neural 

Activity
20 21 22 23 24 25 26 27 28

1 −1 3.9109e-08 2.7221e-07 1.7957e-06 1.1179e-05 6.3014e-05 2.9762e-04 0.0010 0.0023
2 −1 7.0322e-08 5.1936e-07 3.7667e-06 2.7906e-05 1.8904e-04 0.0012 0.0059 0.0169
3 −1 7.2772e-08 5.4842e-07 4.1857e-06 3.3544e-05 2.8933e-04 0.0027 0.0258 0.1258
4 −1 4.2281e-08 2.7238e-07 1.5799e-06 7.1648e-06 −1 −1 −1 1
5 −1 1.5880e-08 8.1678e-08 3.2887e-07 7.3841e-07 −1 −1 −1 1
6 −1 4.3824e-09 1.7900e-08 5.1812e-08 8.0032e-08 −1 −1 −1 1
7 −1 9.8071e-10 3.2825e-09 7.4524e-09 9.0664e-09 −1 −1 −1 1
8 −1 1.9097e-10 5.4540e-10 1.0331e-09 1.0644e-09 −1 −1 −1 1
9 −1 3.3881e-11 8.5478e-11 1.4108e-10 1.2941e-10 −1 −1 −1 1
10 −1 5.6356e-12 1.2911e-11 1.9161e-11 1.6107e-11 −1 −1 −1 1
11 −1 8.7620e-13 1.8661e-12 2.5548e-12 2.0136e-12 −1 −1 −1 1
12 −1 −1 −1 −1 −1 −1 −1 −1 −1

the positive neural activities can propagate to the entire
workspace and the uncovered areas can globally attract the
AUV, then the AUV sets out again from (30,1) to visit the
new uncovered areas. As shown in Fig. 7g and h, when the
AUV reaches (16,24), the whole workspace is completely
covered without any omission. Therefore, through GBNN
algorithm, the AUV not only can plan a reasonable path
of avoiding obstacles for suddenly appearing obstacles, but
also can completely cover the new uncovered areas caused
by suddenly moving obstacle.

3.3 Comparison with the biologically inspired neural
network algorithm

To further test the priority of GBNN algorithm proposed in
this paper, the complete coverage path planning of the AUV

based on biologically inspired neural network algorithm
(with the abbreviation BNN algorithm in the following
Tables for convenience) in [13] is given in Fig. 8 (the
algorithm parameters are set as A = 20, μ = 0.7, B =
D = 1, R = 2, E = 100). Then, the performance of
the two algorithms is compared from the coverage rate, the
overlapping coverage rate, the time of the AUV planning
path, etc.

As shown in Fig. 8, the AUV also sets out from S
(1,30), and plans a collision-free complete coverage path
by Eq. 5 and the optimization templates of Fig. 3 until
it reaches the final location F (28,6). And, the AUV will
stuck in deadlocks when it arrives at location (11,21),
(16,30), (26,23), (30,30) and (28,14). Compared with Fig. 6,
the paths of escaping from deadlocks are more cluttered.
In addition, in the biologically inspired neural network
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Fig. 6 The complete coverage path of the AUV in the static underwater workspace based on GBNN algorithm
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Fig. 7 The complete coverage
paths of the AUV in the
dynamic environment.a The
initial underwater simulation
environment. b The initial
neural activity landscape of the
neural network. c The
rectangular obstacle 8 suddenly
appears in front of the AUV. d
The neural activity landscape
when a rectangular obstacle 8
suddenly appears. e The
dynamic obstacle 5 suddenly
moves to the bottom-left of the
current position. f The neural
activity landscape when obstacle
5 suddenly moves to the bottom-
left. g The AUV completes the
supplementary coverage of the
new uncovered areas and the
whole workspace is covered. h
The neural activity landscape of
the neural network when the
whole workspace is covered
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Fig. 8 The complete coverage path of the AUV based on biologically inspired neural network algorithm

algorithm, when the AUV stuck in the deadlock, the
excitatory inputs of the deadlock are also just from the
lateral neural connections, although the positive neural
activities from uncovered areas are propagating to the entire
workspace. Since the neural activities have a slow passive
descending process under the passive decay term, thus the
neural activity of the deadlock is larger than all the activities
of neighboring locations in a longer time. According to
Eq. 5, the AUV will always choose the current deadlock
location as the next position, which means the AUV will
stay in the deadlock multiple step times. And the AUV will
begin to escape from the deadlock by sailing the point-
to-point path until the neural activities at the deadlock
are smaller than neighboring locations [13]. Therefore, the
AUV needs a long time to escape from deadlocks. Similarly,
take deadlock (11,21) for example. The neural activity

values of neighboring locations when the AUV stuck in the
deadlock (11,21) with biologically inspired neural network
algorithm are shown in Table 2. When the AUV stuck in
deadlock (11,21), the neural activity at (11,21) is 0.1145
which is larger than the neighboring locations. Thus the
AUV has to stay in the deadlock (11,21) multiple step
times where the activity value at (11,21) will decay at each
step time, and escapes from (11,21) until its activity value
is smaller than the neighboring locations. The number of
overlapping steps of the AUV staying in deadlocks is given
in Table 3.

As shown in Table 3, in GBNN algorithm, the AUV
has no any staying and no any overlapping steps at each
deadlock. However, in biologically inspired neural network
algorithm, the AUV not only revisits deadlocks multiple
times, but also stuck in new deadlocks again during escaping

Table 2 The neural activities of neighboring neurons when the AUV stuck in the deadlock (11,21) in biologically inspired neural network algorithm

y

x

(x , y)

Neural 
Activity

20 21 22 23 24 25 26 27 28

1 −08333 3.9335e-9 4.3298e-8 4.7293e-7 4.9243e-6 4.4246e-5 1.6683e-4 3.9649e-4 6.8233e-4
2 −08333 3.3638e-9 3.5198e-8 3.8816e-7 4.4696e-6 5.2722e-5 6.7783e-4 0.0023 0.0044
3 −0.8333 4.3780e-9 2.8235e-8 2.8145e-7 3.2458e-6 4.8932e-5 8.5872e-4 0.0222 0.0508
4 −08333 1.9941e-8 4.4666e-8 1.7221e-7 1.3589e-6 −08333 −08332 −0.8176 0.8356
5 −08333 1.6552e-7 2.7588e-7 3.1538e-7 2.2404e-7 −08333 −0.8333 −0.8120 0.8369
6 −08333 1.5364e-6 2.4539e-6 2.4180e-6 1.4783e-6 −08333 −0.8333 −0.8120 0.8369
7 −08333 1.5183e-5 2.2892e-5 2.0922e-5 1.1995e-5 −08333 −0.8333 −0.8120 0.8369
8 −08333 1.5596e-4 2.1354e-4 1.6926e-4 8.4359e-5 −0.8333 −0.8333 −0.8120 0.8369
9 −08332 0.0016 0.0019 0.0011 4.1612e-4 −0.8333 −0.8333 −0.8120 0.8369
10 −08321 0.0147 0.0132 0.0042 0.0011 −0.8333 −0.8333 −0.8120 0.8369

11 −08317 0.1145 0.0270 0.0061 0.0013 −0.8333 −0.8333 −0.8182 0.8361
12 −08323 −08316 −08319 −08330 −08333 0.8333 −0.8333 −0.8270 −0.8033
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Table 3 The number of overlapping steps of the AUV staying in deadlocks

Algorithm The overlapping steps of the AUV at each deadlock.

(11,21) (10,22) (16,30) (15,30) (14,30) (26,23) (30,30) (28,14) (27,13)

BNN algorithm 8 5 7 16 2 5 42 8 5

GBNN algorithm 0 0 0 0 0 0 0 0 0

Table 4 Comparison of two algorithms in the complete coverage path planning

Algorithm

Indicators
BNN algorithm GBNN algorithm

The coverage rate 100% 100%

The total sailing time of the AUV 2894.92 136.19

The total steps of the AUV 665 565

The overlapping steps of the AUV 164 64

The overlapping coverage rate 24.66% 11.33%

The turning numbers escaping from deadlock paths 35 26
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Fig. 9 Comparison of complete coverage path planning with graphical representation
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from the previous deadlocks, such as at location (10,22),
(15,30), (14,30), etc. And, as can be seen from Fig. 8,
the AUV leaves the dot-like overlapping traces at each
deadlock, but this phenomenon doesn’t exist in the path of
GBNN algorithm shown in Fig. 6.

As shown in Table 4, in order to show the efficiency of the
proposed method, the biologically inspired neural network
algorithm is adopted to do comparison in complete coverage
path planning from the following items: (1) The coverage
rate, (2) The total sailing steps/time of the AUV, (3) The
overlapping coverage rate/steps, (4) The turning numbers.

As can be seen in Table 4, both of the two algorithms
can reach 100% coverage rate. However, for biologically
inspired neural network algorithm, due to the reason that
differential equation is computationally complex and the
AUV needs a long time to escape from deadlocks, thus
the total sailing time of the AUV ups to 2894.92s. And
because the AUV stays in the deadlocks for repeated step
times, it needs 665 steps to finish the coverage task,
among them, the number of overlapping steps is 164
steps and the overlapping coverage rate ups to 24.66%.
However, in GBNN algorithm, the difference equation is
computationally simpler and the AUV can immediately
escape from deadlocks without any staying, thus the AUV
just needs 136.19s and 565 steps to completely cover
the same workspace. Therefore, the real-time capability
of path planning is better. And except the 64 overlapping
steps in the path of escaping from deadlocks, there are
no other overlapping steps any more. The overlapping
coverage rate is only 11.33% and less than half of
biologically inspired neural network algorithm. Otherwise,
there are greater differences between the paths of the
AUV escaping from deadlocks in the two algorithms. For
example, in GBNN algorithm, the number of turning in
the paths of escaping from deadlocks is only 26, but the
number of turning is 35 in biologically inspired neural
network algorithm, which is 25.6% more than GBNN
algorithm. In order to make the result more clearly,
comparison with graphical representation is given in Fig. 9.
Therefore, compared with biologically inspired neural
network algorithm, in the proposed method, the AUV can
not only cover the entire objective workspace rapidly, but
also can immediately escape from deadlocks without any
overlapping. Meanwhile, the efficiency of path planning is
improved, the path planning time is effectively shortened
and the overlapping coverage rate is reduced. For the AUV,
it can save more power and perform more tasks.

4 Conclusion

In this paper, GBNN algorithm is proposed and applied to
complete coverage path planning of the AUV. The algorithm

has no learning procedures and is computationally simple.
The AUV plans the complete coverage path through the
dynamic neural activity and the previous AUV location, and
the paths at the edge of some obstacles are optimized by path
optimization templates. The simulation results show that
whether in the static or dynamic underwater environment,
the AUV can not only plan a reasonable path quickly with
obstacles avoidance until the entire workspace is covered,
but also immediately escapes from deadlocks. And the path
planning is efficient with short path planning time and low
overlapping coverage rate. In the future study, the ocean
current will be taken into account in the complete coverage
path planning.
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