
https://doi.org/10.1007/s10846-018-0781-0

Neural Network Based Adaptive Actuator Fault Detection Algorithm
for Robot Manipulators

Chang Nho Cho1 · Ji Tae Hong1 ·Hong Ju Kim1

Received: 22 May 2017 / Accepted: 19 January 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract
In order to improve the reliability of robotic systems, various fault detection and isolation (FDI) algorithms have been
proposed. However, most of these algorithms are model-based and thus, an accurate model of the robot is required although
it is hard to obtain and often time-varying. Acceleration estimation is an additional challenge in dynamic model-based
algorithms as it is hard to measure accurately in practice. In this study, a neural network based fault detection algorithm
that does not require the use of physical robot model and acceleration is proposed. By utilizing neural network, the fault
torque can be estimated, which allows effective fault detection and diagnosis. The feasibility of the proposed fault detection
algorithm is validated through various simulations and experiments.

Keywords Fault detection · Neural network · Residual observer · Robot safety

1 Introduction

Along with the increase in the use of robots in industry
automation, surgery, service and rehabilitation, the reliabil-
ity of robotic systems is becoming more important. Thus,
intensive studies have been done on fault detection and iso-
lation (FDI) algorithms in order to let a robotic system to
detect its faults and perform appropriate reactions. Most of
these algorithms compare the sensor output with the pre-
dicted output from a mathematical model to compute the
mismatch. The mismatch is often called the residual, and
the residual can be used to diagnose the system; if the resid-
ual exceeds the pre-defined threshold, the robot concludes
that there is a fault on the system. However, the residual
generation often requires accurate robot dynamic model and

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10846-018-0781-0) contains
supplementary material, which is available to authorized users.

� Hong Ju Kim
hjkim0429@keri.re.kr

1 Precision Control Research Center, Korea Electrotechnology
Research Institute, 12, Bulmosan-ro, 10beon-gil,
Seongsan-gu, Changwon-si, Korea

acceleration; acceleration is noisy and hard to estimate in
practice and robot dynamic model is often not available and
bounds to change over time.

In order to avoid the use of manipulator acceleration,
observers based on torque filtering [1] and generalized
momenta [2–4] have been proposed. As for the model
uncertainty, several robust observers based on dynamic
threshold [5, 6], sliding mode observer [7] or unknown input
high gain observer [8] approaches have been developed.
On the other hand, as an alternative approach to cope with
the model uncertainty of robotic systems, adaptive control-
based approaches are also introduced, which perform model
identification prior to collision detection to minimize the
model uncertainty of the system [1, 9]. However, while
adaptive control-based solutions allow the controller to
cope with the model uncertainty of the robot manipulators,
these algorithms often require heavy computational load
or manipulator acceleration. As for the robust algorithms,
many of these algorithms are based on the assumption that
the model uncertainties are within the user-defined bounds,
and the algorithm performances are heavily dependent on
these assumptions. Also, for a manipulator with a high
number of DOF, the computation of the robot dynamic
model involves heavy computational load.

Recently, neural network (NN) has been gaining much
attention in robotics research. NN has been successfully

Journal of Intelligent & Robotic Systems (2019) 95:137–147

/ Published online: 01831 January 2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0781-0&domain=pdf
https://doi.org/10.1007/s10846-018-0781-0
mailto:hjkim0429@keri.re.kr


implemented for manipulator motion control [10], force
control [11], model identification [12] and inverse kine-
matics problem [13]. NN’s nonlinear mapping properties
and learning capabilities make NN an attractive solution for
robot manipulator problems [14]. Many studies aimed to
use NN to detect system faults [15–22]. In [15] and [16],
NN based fault detection algorithms are proposed with a
fault accommodation scheme. Other studies used a NN to
compute the residuals in the form of system position and
velocity [17] or acceleration [18] to detect system faults. In
[19], multiple NNs and neural sliding mode based observer
are used to enable fast, reliable fault detection. Also, a
fault detection strategy using a combination of a nonlinear
observer and a NN to predict the system output and detect
faults of a 3 DOF helicopter is proposed [20]. Several stud-
ies further improved the strategy by employing the extended
Kalman filter (EKF) to enable faster fault estimation and
detection [21, 22].

While these NN based fault detection algorithms are
effective, there are several short comings to be addressed.
Many of these algorithms are constructed based on the
assumption that the model uncertainties are bounded. Thus,
the threshold must be set higher than the bound, limiting the
sensitivity of the detection. Other algorithms often assume
that accurate robot model is available, and their performance
heavily depends on the accuracy of the given model.
Also, many algorithms require acceleration information
or the use of multiple NNs, which makes them difficult
to implement in actual practices. Furthermore, most of
these algorithms output residuals as position, velocity or
acceleration. However, to accurately diagnosis a fault, the
estimation of the fault torque is often desired [1, 3]. The
estimation of the fault torque is also helpful for collision
detection, a type of fault on which a robot collides with
its environment or humans. Using the estimated collision
torque, one can set up more meaningful threshold based on
various safety criterions and perform an appropriate reaction
to minimize the damage [2].

In this study, a novel neural network based adaptive
actuator fault detection algorithm for robot manipulators
is proposed. Like the other NN based fault detection
algorithms, the proposed algorithm uses a NN to generate
the residual. However, the network is designed to enable
effective fault detection and diagnosis. The aims of the
proposed collision detection algorithm are: (1) generation
of an acceleration-free residual signal, (2) estimation of
the fault torque through the residual generation, and (3)
replacement of physical robot model with a NN. The
acceleration free residual generation enables the proposed
algorithm to be easily implemented to robotic systems
without any additional sensors or noisy acceleration
information. The estimation of the fault torque through
residual generation allows system to accurately detect and

diagnosis various types of faults. Also, by using a NN, the
proposed fault detection algorithm can adapt to changes and
uncertainties in robot model. Using the proposed algorithm,
a learn-and-detect scheme is established. The performance
of the proposed algorithm is validated through simulations
and experiments.

2Model-Based Residual Generation
Algorithm

FDI schemes usually aim to detect faults in manipulator
sensors and actuators. This study focuses on faults on
manipulator actuators and thus, the residual is generated on
the actuator torque to diagnose the state of the actuators.
The dynamic model of an n-DOF robot manipulator can be
described as [23]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ − τ f (1)

where q ∈ �n is the manipulator joint position vector,
M(q) is the manipulator inertia matrix, C(q, q̇) represents
the manipulator Coriolis and centrifugal matrix, g(q) is the
manipulator gravity vector, τ f is the fault torque and τ is
the actuator torque. Note that the expression for the joint
torque τ requires the dynamic model of the robot and its
acceleration. In order to avoid the use of the manipulator
acceleration, an integrator is employed as shown in Eq. 2.

τ filtered = K

∫
(τ − τ filtered)dt (2)

where τ filtered is the filtered torque and K is the gain.
Equation 2 can be re-written as:

τ filtered = K

s + K
τ (3)

where s is the Laplace variable. From Eq. 3, it can be
seen that the filtered torque τ filtered is the low pass filtered
version of the joint torque τ and the gain K works as the
filter cut-off frequency. The use of an integrator to increase
the robustness of the algorithm against sensor noise and
avoid using acceleration has been employed in other studies
[2, 24].

By substituting Eq. 1 into Eq. 2 and noting Eq. 4 and
Eq. 5, one can obtain Eq. 6, the expression for the filtered
torque τ filtered.

d

dt
(M(q)q̇) = Ṁ(q)q̇ + M(q)q̈ (4)

Ṁ(q) = CT (q, q̇) + C(q, q̇) (5)

τ filtered = K

{∫ (
g(q)−CT (q, q̇)q̇−τ filtered

)
dt+M(q)q̇

}

(6)

J Intell Robot Syst (2019) 95:137–147138



J Intell Robot Syst (2019) 95:137–147

where Eq. 5 is derived from the skew-symmetry of Ṁ(q) −
2C(q, q̇) [23]. Note that the filtered torque τ filtered expressed
in Eq. 6 can be computed without the robot acceleration.
In practice, the given robot dynamic model consists of the
estimated values. Thus, Eq. 6 becomes:

τ filtered = K

{∫ (
ĝ(q)−Ĉ

T
(q, q̇)q̇−τ filtered

)
dt+M̂(q)q̇

}

(7)

where hat is used to denote estimated values. On the other
hand, as the robot joint torque can be estimated from the
actuator current information or directly measured from joint
torque sensors, the actual filtered torque can be computed
from Eq. 2. Thus, the residual can be obtained by:

r = τ filtered − τ̂ filtered (8)

where r is the residual. As Eqs. 2 and 7 do not require the
robot acceleration, the residual can be generated without
the robot acceleration. However, it should be noted that
Eq. 7 requires the computation of robot dynamic model,
which requires heavy computational load. Also, as Eq. 7
consists of the estimated model of the robot, it can be seen
that the model uncertainty leads to the error in the residual
generation. In this study, instead of directly computing the
estimated filtered torque τ̂ filtered using given uncertain robot
model, NN will be used to mimic Eq. 6. Through the use
of NN, the computation of the robot dynamic model can
be avoided, and residual generation without physical robot
model can be realized.

3 Neural Network Based Collision Detection
Observer

3.1 Neural Network Setup

In this study, 3-layer NN with nonlinear hidden layer and
linear output layer is used. NN consists of an input layer, a
hidden layer and an output layer. As the goal of NN is to
estimate the filtered torque τ filtered, the NN training signal
v is defined as:

v = τ filtered − τ̂ filtered, NN (9)

where τ̂ filtered, NN is the filtered torque estimated by NN.
As for the NN activation function, the hyperbolic tangent
function is used:

f (x) = 2

(
1

1 + ex

)
− 1 (10)

and

f ′(x) = 1 − f 2(x)

2
(11)

To mimic Eq. 6, the inputs for NN are chosen as the same
as the inputs for Eq. 6: actual joint angles, actual joint
velocities and previous value of τfiltered. The output of NN
can be described as:

τ̂filtered, NN, k=
⎡
⎣ nh∑

j=1

ω2
jk

⎛
⎝2

⎛
⎝ 1

1+exp
(
−

(∑ni

i=1 ω1
ij xi + b1j

))
⎞
⎠−1

⎞
⎠
⎤
⎦+b2k

(12)

where τ̂filtered, NN, k, ω1
ij , ω2

jk , b1j , b2k , xi , ni and nh are the
estimated filtered torque of k-th joint, first layer weight,
second layer weight, bias of j -th hidden neuron, bias of k-
th output neuron, i-th input of input vector X, a number of
inputs and a number of hidden layer neurons, respectively,
where k = 1 . . . n. Thus, the residual can now be defined as:

r = τ filtered − τ̂ filtered, NN (13)

3.2 Backpropagation Algorithm

The weights and biases of NN network are updated in real
time through the use of backpropagation algorithm. The
algorithm is listed below [10]:

�ω1
ij (t) = η

1

2

(
1 −

(
s1j

)2)
xi

[
no∑

k=1

vkω
2
jk

]
+α�ω1

ij (t−1)

(14)

�ω2
jk(t) = ηvks

1
j + α�ω2

jk(t − 1) (15)

�b1i (t) = η
1

2

(
1 −

(
s1j

)2)[
no∑

k=1

vkω
2
jk

]
+ α�b1j (t − 1)

(16)

�b2k(t) = ηvk + α�b2k(t − 1) (17)

s1j = 2

⎛
⎝ 1

1 + exp
(
−

(∑ni

i=1 ω1
ij xi + b1j

))
⎞
⎠ − 1 (18)

τ̂f iltered,NN,k =
nh∑

j=1

s1j ω2
jk + b2k (19)

where η and α are the learning rate and the momentum
coefficient, respectively. The momentum term is used to
avoid local minima while updating the NN weights and
biases [14].

3.3 Fault Detection Algorithmwith Neural Network

The proposed FDI algorithm uses a NN to estimate the
filtered torque τ̂ filtered, NN. Once trained, NN would yield

139



a reasonable estimate of the filtered torque. Also, from
the sensor data, the actual filtered torque, τ filtered, can
be calculated. Thus, the residual, which is the difference
between the estimated filtered torque and the actual filtered
torque, would be small. However, upon a fault, a fault torque
will be added to the actual filtered torque. The estimated
filtered torque, on the other hand, would not include the
fault torque. Thus, the estimated filtered torque would
deviates from the actual filtered torque, which leads to the
rise in the residual.

The proposed FDI scheme is illustrated in Fig. 1. As
can be seen from the figure, at every control period,
the estimated filtered torque and actual filtered torque
are obtained from NN network and sensor data, and the
residual is computed. If the residual is below the pre-defined
threshold, the controller concludes that there is no fault.
Then, the NN weights and biases are updated, and the robot
manipulator is controlled to carry out its tasks. However, if
the residual exceeds the threshold, the manipulator enters
the fault reaction mode, on which it performs appropriate
reactions to handle the given fault.

However, an issue with using a NN is that a short
period of time is required to train the network. This delay
is needed upon start up, and whenever the manipulator
dynamics change; when the manipulator pick up an object,
for example. Thus, a simple window function is proposed.

Yes

Compute (Eq.(12))NNfiltered,τ̂

Compute (Eq.(2))filteredτ

Compute residual
(Eq.(13))

> threshold?

Fault reaction

Update NN
(Eq.(14~19))

Manipulator control

Start

No

Fault clear?

Yes

No

r

Payload change? Window function
Yes

No

Fig. 1 Block diagram of proposed FDI algorithm

Upon start up or known payload change, the proposed fault
detection scheme is enabled when the residual is within the
threshold for the pre-defined time twindow (Fig. 2).

It should be noted that during the fault reaction state, the
update of NN is halted. NN is trained to estimate the normal
manipulator behavior; it is thus not desirable for NN to learn
from the fault torque. Once the controller decides that the
collision is clear, it will resume updating NN.

4 Simulations

4.1 Simulation Setup

The performance of the proposed algorithm is demonstrated
through Matlab simulations. A 2-DOF manipulator is
considered, which is to follow a rectangle path in the
workspace. The DH (Denavit-Hartenberg) notations of the
simulated 2-DOF manipulator are listed in Table 1. Each
link is assumed to be a uniform rod, with weight of 5 kg and
3 kg for link 1 and 2, respectively. The simulated robot and
the desired workspace trajectory are shown in Fig. 3. It is
assumed that each joint of the simulate robot is controlled
by a proportional-derivative (PD) controller with gravity
compensation, and a nonlinear friction model is applied
to each joint [25]. To add time-varying dynamics in the
simulation, an object of 2 kg is added at the end of link 2 at

Compute (Eq.(12))NNfiltered,τ̂

Compute (Eq.(2))filteredτ

Compute residual

(Eq.(13))

Start up or

payload change

< threshold?r Reset t

t > twindow?

FDI algorithm

Yes

No

Yes

No
Increment A

Fig. 2 Block diagram of window function

J Intell Robot Syst (2019) 95:137–147140



J Intell Robot Syst (2019) 95:137–147

Table 1 DH notation of simulated 2-DOF manipulator

DH ai (m) αi di θι

Link 1 1 0 0 θ1

Link 2 1 0 0 θ2

point C. In the simulation, it is assume that the manipulator
expects a change in the manipulator dynamics upon the
object grasping, and the collision detection scheme is halted
until the window function is satisfied. The corresponding
joint trajectory and velocity tracking error for joint 1 and 2
are depicted in Fig. 4a and b, respectively.

The target rectangle is 0.5 m × 0.8 m (Point A∼D in
Fig. 3), and the maximum velocity for joint 1 and 2 are 20◦/s
and 17◦/s, respectively, which corresponds to the maximum
workspace velocity of 0.37 m/s. To show that the proposed
fault detection algorithm can estimate the fault torque, three
types of fault which are widely used for fault detection
studies are simulated [1, 3, 9, 21, 22]: step (bias), ramp and
total actuator fault. A total actuator fault is a fault that the
right hand side of Eq. 1 becomes zero [3]. As for the step
and ramp faults, a step torque of 15 Nm and a ramp torque
with slope of 900 Nm/s are applied to joint 1 whereas a 35
Nm step torque and a 700 Nm/s ramp torque are given to the
second joint.

The simulation is conducted with the sampling period
of 1 ms, and the learning rate of NN is set to be 0.005
while 0.9 is used for the momentum coefficient. NN consists
of 6 input neurons, 10 hidden layer neurons and 2 output
neurons. The inputs of NN are: joint 1 actual angle, joint 1
actual velocity, joint 1 previous τ filtered, joint 2 actual angle,
joint 2 actual velocity and joint 2 previous τyfiltered. As for
the low pass filter gain, 95 is used. To simulate the noise
in joint torque reading, a random noise signal of ± 1 Nm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

-0.5

0

0.5

A B

CD

Y
-a
x
is
(m

)

X-axis (m)

Payload added

Fig. 3 Simulated 2-DOF manipulator and desired workspace trajectory

0 2 4 6 8 10 12 14 16
-20

-10

0

10

20

Time (s)

(a)

V
el
o
ci
ty

(d
eg
/s
)

0 2 4 6 8 10 12 14 16
-20

-10

0

10

20

Time (s)

(b)

V
el
o
ci
ty

(d
eg
/s
)

Target velocity Velocity error

Fig. 4 Desired joint trajectory and corresponding velocity error for
2-DOF robot manipulator a joint 1, b joint 2

is added to the joint torque. The learning rate, momentum
coefficient, number of neurons and low pass filter gains are
selected experimentally. The fault detection threshold is set
to 1.5 Nm while 0.3 second is used as the window function
delay time twindow.

4.2 Simulation Results

The simulation results are presented below. The fault toque
and the residual for joint 1 are plotted in Fig. 5a whereas the
results for joint 2 are illustrated in Fig. 5b.

Threshold Residual

(a)

(b)

Applied fault

0 2 4 6 8 10 12 14 16
-100

-50

0

50

Time (s)

T
o
rq
u
e
(N

m
)

0 2 4 6 8 10 12 14 16
-20

0

20

40

Time (s)

T
o
rq
u
e
(N

m
)

Payload

Step fault Total actuator fault

Ramp fault

Payload

Step fault

Total actuator fault

Ramp fault

Fig. 5 Fault detection simulation results a joint 1, b joint 2

141



Threshold ResidualApplied fault

3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4
-10

0

10

20

Time (s)

(a)

T
o
rq
u
e
(N

m
)

9.9 9.95 10 10.05 10.1 10.15 10.2 10.25 10.3 10.35 10.4

0

20

40

Time (s)

(b)

T
o
rq
u
e
(N

m
)

15.4 15.5 15.6 15.7 15.8 15.9 16
-100

-50

0

Time (s)

(c)

T
o
rq
u
e
(N

m
)

Fig. 6 Fault detection simulation results for joint 1 a step fault, b ramp
fault, c total actuator fault

The close up view of the step, ramp and total actuator fault
for joint 1 and 2 are depicted in Figs. 6a, b and c and 7a, b
and c. As can be seen from the results, the residual stayed
below the threshold during normal operations. However,
when a fault occurs, the residual increases abruptly,
enabling the controller to detect the fault. Figure 8 shows
the fault signal, which is 0 during a normal operation and 1
when a fault on either joint is detected. The step, ramp and
total actuator faults are successfully detected. The simulated

Threshold ResidualApplied fault

T
o
rq
u
e
(N

m
)

3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4

0

20

40

Time (s)

(a)

9.9 9.95 10 10.05 10.1 10.15

0

20

40

Time (s)

(b)

T
o
rq
u
e
(N

m
)

15.4 15.5 15.6 15.7 15.8 15.9 16
-10

0

10

Time (s)

(c)

T
o
rq
u
e
(N

m
)

Fig. 7 Fault detection simulation results for joint 2 a step fault, b ramp
fault, c total actuator fault

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

Time (s)

F
au
lt
si
g
n
al

Fig. 8 Fault signal during simulation

faults are given at t = 4s, t = 10s and t = 15.5s, and the
corresponding detection times are t = 4.001s, t = 10.001s
and t = 15.501s; the algorithm detected the faults within 1
sampling period. However, in the actual practice, due to the
sensor delay and noise, it is expected that the detection may
take a few sampling period.

Also, an increase in the residual is observed for both
joints at t = 8s. This is due to the addition of the 2 kg
payload. However, as can be seen from the results, the
residual quickly drops below the threshold as the weights
and gains of the NN are updated to cope with the change in
the manipulator dynamics.

5 Experiments

5.1 Experimental Setup

In order to evaluate the feasibility of the proposed algorithm,
experiments are performed using the system shown in
Fig. 9. A 15 cm link is directly attached to a 400 watt
servo motor (R88M-K40030T-S2, Omron, Japan) to form a
1-DOF system. A PC running Linux with real time kernel
is used as the controller, and EtherCAT communication
is established between a servo drive (R88D-KN04H-ECT,
Omron, Japan) and the PC to exchange the command and
sensor data. The built-in position controller of the servo
drive is used to control the link position. The available
feedbacks from the driver are motor position and torque,
and the velocity is numerically differentiated from the motor
position data. A low pass filter is used to suppress the noise
in the computed velocity data. The control period of the PC
is set to 1 ms while the learning rate, momentum coefficient,
number of hidden layer neurons, threshold and window

J Intell Robot Syst (2019) 95:137–147142



J Intell Robot Syst (2019) 95:137–147

Servo drive

Servo

motor

Link

Fig. 9 Set up for collision detection experiment

function delay time are experimentally set to be 0.016, 0.9,
3, 0.0040 Nm and 1.5 seconds, respectively.

The link is controlled to repeatedly follow the given
trajectory shown in Fig. 10. The velocity and position
tracking errors are also plotted in Fig. 10. During the
operation, a fault must be given to the system, so that the
proposed FDI algorithm can be experimentally tested. For
the experiments, two types of fault are considered: collision
and total actuator fault. A collision is one of the common
faults on which a robot collides with an object or a human,
and it may leads to serious damage or injury. Collisions can
be easily simulated for experiments. On the other hand, the
servo drive used for the experiments follows CiA402 motion
profile [26]. Thus, during a motion, the servo drive is forced
from Operation Enabled state to Switch on Disabled state
to cut off the output torque and cause a total actuator fault.

0 2 4 6 8 10 12
-100

0

100

200

Time (s)

(a)

P
o
si
ti
o
n
(d
eg
)

0 2 4 6 8 10 12
-50

0

50

100

Time (s)

(b)

V
el
o
ci
ty

(d
eg
/s
)

Position/velocity Tracking error

Fig. 10 Target trajectory and tracking performance for 1-DOF system
during experiments a position, b velocity

Once the controller detects a fault, the controller
immediately halts the update of NN. Upon the detection
of a fault, a proper reaction strategy is desired; assuming
the detected fault is a collision, the controller follows a
bang-bang trajectory in the opposite to the fault, where the
direction of the collision is estimated from the sign of the
residual. After that, the servo is to remain stationary for
1 second and move back to the origin, where it resumes
the normal operation with NN update. Once the window
function is satisfied, collision detection is enabled again.
However, for the case of a total actuator fault, the servo
cannot retreat from the collision via bang-bang trajectory.
Thus, if excessive position error is detected after the bang-
bang motion command, the controller assumes that it is
a total actuator fault rather than a collision and stops the
motion generation and displays an error message.

5.2 Experimental Results

During the collision detection experiment, two collisions
are applied to the 1-DOF system, in opposite directions.
Figure 11 shows the residual recorded during the experiment
and Fig. 12 shows the corresponding fault signal. It can
be seen that both collisions are successfully detected. The
residual is below the threshold during the normal operation
and it increases abruptly upon a collision. A big error on the
residual is noted during the collision reaction stage, when
no collision is applied to the link but the residual is much
bigger than the threshold. This is due to the fact the update
of NN has been halted during the collision reaction stage.
Without NN update, the controller cannot guarantee that
the estimated filtered torque from NN resembles the actual
filtered torque. The NN update resumes as the controller
enters the next normal operation stage, and the residual

Threshold Residual

Collision

Collision

Collision

reaction

Normal

operation

Collision

reaction

Normal

op.

Normal

operation

0 2 4 6 8 10 12 14 16 18 20

-0.1

-0.05

0

0.05

0.1

0.15

Time (s)

T
o
rq
u
e
(N

m
)

Fig. 11 Residual during collision detection experiments

143



F
au
lt
si
g
n
al

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Time (s)

Fig. 12 Fault signal during collision detection experiment

quickly drops below the threshold. The close-up views of
the residual at the collisions are depicted in Fig. 13.

Figure 13a shows the actual filtered torque (dashed line)
and the estimated filtered torque (solid line) and Fig. 12b
shows the corresponding residual. Note from Fig. 13a that
upon a collision, which was applied at approximately t =
14.7s, only the actual filtered torque quickly rises. The
residual also rises abruptly, as can be seen in Fig. 13b.
The peak due to the collision in Fig. 13a resembles the

7.08 7.12 7.16
0.055

0.06

0.065

0.07

0.075

7.08 7.12 7.16
-0.01

-0.005

0

0.005

0.01

T
o
rq
u
e
(N

m
)

15.4 15.45 15.5
-0.07

-0.065

-0.06

-0.055

15.4 15.45 15.5
-0.01

-0.005

0

0.005

0.01

T
o
rq
u
e
(N

m
)

Threshold

T
o
rq
u
e
(N

m
)

Time (s)

(a)
Time (s)

(b)

T
o
rq
u
e
(N

m
)

Time (s)

(c)
Time (s)

(d)

ResidualNNf ,

f

Fig. 13 Close-up view of residual and filtered torques upon collisions
a filtered torque and estimated filtered torque for first collision, b
resulting residual for first collision, c filtered torque and estimated
filtered torque for second collision, b resulting residual for second
collision

Normal

op.

Collision

reaction

Normal

operation

Collision

reaction

Normal

operation

0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

Time (s)

P
o
si
ti
o
n
(d
eg
)

Collision

detected

Fig. 14 Position data of 1-DOF system during collision detection
experiment

residual in Fig. 13b. This indicates that the external torque
due to the collision is successfully estimated in the residual.
Figure 13c and d shows the similar results for the collision
applied at t = 15.45s. The second collision is applied in the
opposite direction and thus, the residual rises in the opposite
direction (Fig. 13b and d).

The resulting motion of the 1-DOF is plotted in Fig. 14.
As can be seen from the results, when the collisions were
detected, the link quickly retreats, waits and moves back to
the origin before resume the original motion.

The resulting residual for the total actuator fault
experiment is shown in Fig. 15. The servo drive is forced
into the torque off state (Switch on disabled state of CiA
402) at t = 3s, and the residual quickly rises accordingly.

0 1 2 3 4 5 6 7 8 9
-0.01

0

0.01

0.02

0.03

0.04

0.05

Time (s)

T
o
rq
u
e
(N

m
)

Threshold Residual

Fig. 15 Residual during total actuator fault experiment

J Intell Robot Syst (2019) 95:137–147144



J Intell Robot Syst (2019) 95:137–147

0 1 2 3 4 5 6 7 8 9
-15

-10

-5

0

5

Time (s)

(a)

P
o
si
ti
o
n
er
ro
r
(d
eg
)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

Time (s)

(b)

F
au
lt
si
g
n
al

Fig. 16 Results of 1-DOF system during total actuator fault experiment
a position error, b fault signal

The position tracking error and fault signal is shown
in Fig. 16a and b, respectively. At t = 3s, upon the total
actuator fault, big position error can be noticed, and the
controller decides that the detect fault is a total actuator
fault. Thus, the fault signal remains high afterwards.

6 Discussion

During the simulation and experiment, the proposed
algorithm is able to detect the simulated and applied
faults. It is important to notice that using the proposed
algorithm, the fault detection can be achieved without
knowing the physical model of the system. The simulation
and experiment are conducted on the assumption that
the controller does not know the physical model of the
system at all; instead, a NN is used to replace the
physical robot model. This is in contrast to other fault
detection algorithms based on adaptive NN, H-infinity
or generalized momenta, which requires a model based
observer for residual generation or system output prediction.
This feature provides the proposed algorithm several
advantages. First, the computational load can be reduced
considerably, especially for a higher DOF system, as real
time computation of robot dynamics is not needed. Also,
the proposed algorithm can effectively cope with model
uncertainties or parameters which are difficult to estimate
and time variant, such as friction coefficient or sensor
bias, as NN, which replaces the robot dynamic model,
is continuously updated in real time. In addition to that,
as the residual is in the form of filtered fault torque,
the proposed algorithm is robust against sensor noises as

well. Furthermore, the proposed algorithm does not require
acceleration information, which is often noisy and difficult
to estimate in practice.

On the other hand, learning capability of the algorithm
may prevent the algorithm from detecting slow faults, as
NN would learn the fault before it can detect it. This is a
common drawback for many learning based fault detection
algorithms. However, it is reasonable to assume that most
faults would induce a sudden change in the robot model,
which the proposed algorithm can effectively detect, as
shown in the simulation and experimental results. Possible
solutions to detect slow faults are (1) the use of offline
trained NN, (2) the combination of multiple fault detection
algorithms with a statistics-based switching rule, or (3)
the combination of an offline trained NN with a real time
updating NN. However it is often difficult to set up an
appropriate switching or merging rule for the results from
different fault detection algorithms. Also, these methods
inevitably increase the computational load. The target
application of the proposed algorithm is robot manipulators,
which consist of multiple joints; to keep the computational
load at a reasonable level, the use of large offline-trained
NN or multiple detection algorithms are not considered in
this study.

It should be noted from the results presented in Figs. 6,
7, 13 and 15 that the proposed algorithm can detect the
magnitude, direction and shape of the given faults. This
enables systems to effectively identify and react to various
types of faults. For example, in case of a collision, as the
magnitude and direction of the collision are known, the
robot can be controlled to move away from the collision.
In this study, a simple bang-bang trajectory was used.
However, more sophisticated method can be also applied, if
needed. Furthermore, for a multi-DOF system, the location
of the collision can be also estimated; it is the last link with
the residual greater than the threshold.

The delay time for the window function, twindow, is
set to 0.3 second and 1.5 seconds for the simulation and
experiments, respectively. However, this is a conservative
choice and as can be noted from the results, the algorithm
did not take much time to sufficiently update its gains and
biases. This is also the case when the NN update is resumed
after a fault. When the NN update is resumed, the NN
experiences a sudden change in the robot state with respect
to the current weights and biases, which causes the residual
to vibrate with a large error for a short period of time. The
window function ensures that no malfunction will occur
during such a period.

In this study, the experiments have been done using a
single DOF system. However, the same algorithm can be
easily expanded to a multi-DOF system, as shown in the
simulation. For an actual implementation to a multi-DOF
system, to reduce the computational load, it is advisable to

145



keep the size of NN as small as possible. Thus, starting with
a small NN, one should adjust the network size, learning rate
and the momentum coefficient which yields stable, small
residual below the desired threshold during operations.
Setting the learning rate too high is not advisable; it would
cause the network to quickly learn the fault before it can be
detected.

7 Conclusions

FDI can greatly improve the reliability of robotic systems.
The ability of detecting faults, such as actuator malfunctions
or collisions, would prevent robot damages and human
injuries, and increase the robot productivity and efficiency.
In this study, a novel NN based FDI algorithm is
proposed, which does not require the complex system
dynamic model and inaccurate acceleration. The algorithm
is computationally efficient, and can be easily implemented
to existing systems as it does not require additional
sensors or knowledge of the system physical dynamics. The
feasibility of the algorithm is verified through simulations
and experiments.

As the future work, the performance of the proposed algo-
rithm will be tested on a multi-DOF robot. Also, the prob-
lems of fault isolation and slow fault will be investigated.

Acknowledgements This research was supported by Korea Elec-
trotechnology Research Institute(KERI) Primary research program
through the National Research Council of Science & Technol-
ogy(NST) funded by the Ministry of Science, ICT and Future Planning
(MSIP) (No. 17-12-N0101-22)

References

1. Dixon, W.E., Walker, I.D., Dawson, D.M., Hartranft, J.P.: Fault
detection for robot manipulators with parametric uncertainty: a
prediction error based approach. In: Proceeding of the IEEE
International Conference on Robotics and Automation, pp. 3628–
3634 (2000)

2. Luca, A.D., Schaffer, A.A., Hadaddin, S., Hirzinger, G.: Collision
detection and safe reaction with the DLR-III lightweight
manipulator arm. In: Proceeding of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1623–1630
(2006)

3. Luca, A.D., Mattone, R.: Actuator failure detection and isolation
using generalized momenta. In: Proceeding of the IEEE Inter-
national Conference on Robotics and Automation, pp. 634–639
(2003)

4. Lee, S.D., Song, J.B.: Sensorless collision detection based on
friction model for a robot manipulator. Int. J. Precise. Eng. Man
17(1), 11–17 (2016)

5. Caldas, A., Makarov, M., Grossard, M., Ayerbe, P.R., Dumur,
D.: Adaptive residual filtering for safe human-robot collision
detection under modeling uncertainties. In: Proceeding of the
IEEE/ASME International Conference on Advanced Mechatron-
ics, pp. 722–727 (2013)

6. Ferrari, R.M.G., Parisini, T., Polycarpou, M.M.: A robust fault
detection and isolation scheme for a class of uncertain input-
output discrete-time nonlinear system. In: American Control
Conference, pp. 2804–2809 (2008)

7. Capisani, L.M., Ferrara, A., Loza, A.F.D., Fridman, L.M.:
Manipulator fault diagnosis via higher order sliding mode
observers. IEEE. T. Ind. Electron 59(10), 3979–3986 (2012)

8. Mondal, S., Chakraborty G., Bhattacharyya, K.: Unknown input
high gain observer for fault detection and isolation of uncertain
systems. Eng. Lett. 17(2), 121–127 (2009)

9. Luca, A.D., Mattone, R.: An adapt-and-detect actuator FDI
scheme for robot manipulators. In: Proceeding of the IEEE
International Conference on Robotics and Automation, pp. 4975–
4980 (2004)

10. Jung, S., Hsia, T.C.: Neural network inverse control techniques
for PD controlled robot manipulator. Robotica 18, 305–314
(2000)

11. Jung, S., Hsia, T.C.: Neural network impedance force control of
robot manipulator. IEEE. T. Ind. Electron 45, 451–461 (1998)

12. Ziang, Z.H., Ishida, T., Sunawada, M.: Neural network aided
dynamic parameter identification of robot manipulators. In:
Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, pp. 3298–3303 (2006)

13. Bingul, Z., Ertunc, H.M., Oysu, C.: Comparison of inverse kine-
matics solutions using neural network for 6R robot manipula-
tor with offset. ICSC Congress Comput. Intell. Methods Appl.
https://doi.org/10.1109/CIMA.2005.1662342 (2005)

14. Lewis, F.L., Yesildirak, A., Jagannathan, S.: Neural Network
Control of Robot Manipulators and Nonlinear Systems. Taylor &
Francis, Inc., Bristol (1998)

15. Vemuri, A.T., Polycarpou, M.M., Diakourtis, S.A.: Neural
network based fault detection in robotic manipulators. IEEE T.
Robotic. Autom. 14(2), 342–348 (1998)

16. Vemuri, A.T., Polycarpou, M.M.: A methodology for fault
diagnosis in robotic systems using neural networks. Robotica
22(4), 419–438 (2004)

17. Terra, M.H., Tinos, R.: Fault detection and isolation in robotic
manipulators via neural network. J. Field Robot 18(7), 357–374
(2001)

18. Eski, I., Erkaya, S., Savas, S., Yildirim, S.: Fault detection on
robotic manipulators using artificial neural networks. Robot. Cim-
Int. Manuf. 27(1), 115–123 (2011)

19. Van, M., Kang, H.J.: A robust diagnosis and accommodation
scheme for robot manipulators. Int. J. Control. Autom. Syst. 11(2),
377–388 (2013)

20. Chen, M., Shi, P., Lim, C.-C.: Adaptive neural fault-tolerant
control of a 3-DOF model helicopter system. IEEE Trans. Syst.
Man. Cybern. Syst. 46(2), 260–270 (2016)

21. Abbaspour, A., Yen, K.K., Noei, S., Sargolzaei, A.: Detection of
fault data injection attack on UAB using adaptive neural network.
Procedia Comput. Sci. 95, 193–200 (2016)

22. Abbaspour, A., Aboutalebi, P., Yen, K.K., Sargolzaei, A.: Neural
adaptive observer-based sensor and actuator fault detection in
nonlinear systems: application in UAV. ISA Trans. 67, 317–329
(2017)

23. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics
Modelling, Planning and Control. Springer, London (2009)

24. Chan, S.P.: A disturbance observer for robot manipulators with
applications to electronic components assembly. IEEE Trans. Ind.
Electron 42(5), 487–493 (1995)

25. Lee, K., Lee, C.-H., Hwang, S., Choi, J., Bang, Y.: Power-assisted
wheelchair with gravity and friction compensation. IEEE Trans.
Ind. Electron 63(4), 2203–2211 (2016)

26. EtherCAT technology group: IEC 61800-7 ETG implementation
guideline for their cia402 drive profile (2007)

J Intell Robot Syst (2019) 95:137–147146

https://doi.org/10.1109/CIMA.2005.1662342


J Intell Robot Syst (2019) 95:137–147

Chang Nho Cho received MS degree in Mechanical Engineering from
Korea University, South Korea in 2012. Now he works at Korea
Electrotechnology Research Institute. His current research interests
include control of robots, machining tools and other dynamic systems.

Ji Tae Hong received PhD degree in Electrical Engineering from
Pusan University, South Korea in 2012. Now he works at Korea
Electrotechnology Research Institute. His current research interests
include high speed synchronous digital communication and control of
servo motors.

Hong Ju Kim received PhD degree in Control Engineering from
Pohang University, South Korea in 2003. Now he works at Korea
Electrotechnology Research Institute. His current research interests
include machining tools and smart manufacturing.

147


	Neural Network Based Adaptive Actuator Fault Detection Algorithm for Robot Manipulators
	Abstract
	Abstract
	Introduction
	Model-Based Residual Generation Algorithm
	Neural Network Based Collision Detection Observer
	Neural Network Setup
	Backpropagation Algorithm
	Fault Detection Algorithm with Neural Network

	Simulations
	Simulation Setup
	Simulation Results

	Experiments
	Experimental Setup
	Experimental Results

	Discussion
	Conclusions
	Acknowledgements
	References


