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Abstract
A typical navigation system for a Micro Aerial Vehicle (MAV) relies basically on GPS for position estimation. However,
for several kinds of applications, the precision of the GPS is inappropriate or even its signal can be unavailable. In this
context, and due to its flexibility, Monocular Simultaneous Localization and Mapping (SLAM) methods have become a good
alternative for implementing visual-based navigation systems for MAVs that must operate in GPS-denied environments.
On the other hand, one of the most important challenges that arises with the use of the monocular vision is the difficulty
to recover the metric scale of the world. In this work, a monocular SLAM system for MAVs is presented. In order to
overcome the problem of the metric scale, a novel technique for inferring the approximate depth of visual features from an
ultrasonic range-finder is developed. Additionally, the altitude of the vehicle is updated using the pressure measurements
of a barometer. The proposed approach is supported by the theoretical results obtained from a nonlinear observability test.
Experiments performed with both computer simulations and real data are presented in order to validate the performance of
the proposal. The results confirm the theoretical findings and show that the method is able to work with low-cost sensors.
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1 Introduction

The ability of navigating is an important requirement for
an autonomous Micro Aerial Vehicle (MAV). The Global
Positioning System (GPS) and Inertial Measurements Units
(IMU), or their fused variant, the Inertial Navigation
Systems (INS), represent the most common approaches for
addressing the problem of the MAVs navigation. Available
Attitude and Heading Reference Systems (AHRS) can be
used for providing a reliable estimation of the attitude of the
vehicle. On the other hand, the position estimation can still
impose several challenges for different scenarios.
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For instance, in urban canyons, indoor or cluttered
environments, the availability of the GPS signal can be
compromised. Even, when enough satellites are available,
several sources of error affect the accuracy of GPS position
measurements. The cumulative effect of each of these error
sources is called the user-equivalent range error (UERE). In
[1] these errors are characterized as a combination of slowly
varying biases and random noise. In [2] it is stated that the
total UERE is approximately 4.0 m (σ ), from which 0.4 m
(σ ) correspond to random noise.

Those errors can make GPS-based navigation unreliable
for several scenarios when precision maneuvers are required
[3]. Therefore, additional sensory information is sometimes
integrated into the system in order to improve accuracy.

All those issues have propitiated the use of cameras in
MAVs for performing visual-based navigation in periods or
circumstances when the GPS sensor is unreliable. Cameras
meet the requirements for embedded systems providing
at the same time lots of information. In this context,
thanks to visual SLAM (Simultaneous Localization and
Mapping) methods, a MAV can operate in a priori unknown
environment using only on-board sensors to simultaneously
build a map of its surroundings and locate itself inside this
map (for instance [4] and [5]).
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Compared with other visual configurations (e.g., stereo
SLAM), monocular SLAM presents some advantages in
terms of weight, space, power consumption and scalability.
For example, in stereo rigs, the fixed base-line between
cameras could limit the operation range instead.

On the other hand, the use of monocular vision
introduces some technical challenges as the impossibility of
directly recovering the metric scale of the world [6].

1.1 RelatedWork

In navigation systems for MAVs based on the monocular
vision, different approaches have been followed for
addressing the problem of the metric scale. One of the first
approaches has been the use of a feature pattern with known
dimensions. For example in [7], the initial map features are
determined by the metrics of the feature pattern. Also, some
human-supervised schemes have been used for the same
purpose. For instance, in [5] and [8], the first map estimates
are aligned by hand with a ground-truth at the beginning
of the operation, in order to set the metric scale. Another
approach consists on taking advantage of the topology and
configuration of specific environments. For example, in [9]
a method is proposed with several assumptions about the
structure of the environment. Some of these assumptions are
the flatness of the floor, and the known relative altitude of
the MAV respect the floor by the use of an ultrasonic range
sensor as well as the distance from the MAV to the wall of
the corridor. Due to the several assumptions, this method
is intended to be only applied in environments formed by
corridors, like those commonly found in office buildings.
Other methods like [10] or [11] fuse inertial measurements
obtained from an IMU in order to recover the metric scale.
In these approaches, the scale is explicitly considered as a
variable in the system state, and it is estimated by means
of an Extended Kalman Filter (EKF). In this case, the
innovation error is defined as the difference between the
measured acceleration in the vertical axis (obtained from
the IMU) and the unscaled acceleration (obtained from the
monocular vision). One potential problem with this scheme
is related to the fact that the acceleration obtained by the
IMU has a dynamic bias which is difficult to estimate. This
bias introduces at the same time a bias in the estimated scale.
Also, for these approaches, a careful calibration process is
needed in order to align the camera and the IMU. In [12] an
EKF-based method for visual odometry is presented (there
is not a mapping process). In that work, the trajectory of the
MAV is estimated fusing data from a monocular downward
facing camera, inertial sensors, and a range sensor (sonar
altimeter). In this case, the orography of the terrain is
assumed to be completely planar (flat terrain assumption),
using the range finder to directly measure the altitude of the
vehicle.

1.2 Objectives and Contributions

This work presents a monocular SLAM system to be used in
micro aerial vehicles. The proposed method is intended to
address the problem of the visual-based navigation in fully
GPS-denied environments or as a backup system in periods
where GPS signal is unreliable. In order to overcome the
problem of recovering the metric scale which is inherent
to this kind of systems, a nonlinear observability analysis
is developed. From this analysis, conditions of sufficiency
for the observability of the metric scale are presented. The
design of the proposed method is based on these theoretical
findings. In particular, a novel technique for inferring the
approximate depth of visual features from an ultrasonic
range finder is developed. In this sense, new techniques for
initializing the features into the map as well as for updating
the filter by means of visual and range measurements
are presented. Additionally, the altitude of the vehicle is
proposed to be updated using the pressure measurements of
a barometer.

Unlike other methods, as [9] or [12], in this work the use
of accelerometers for recovering the metric scale is avoided.
Therefore, the problem associated with the dynamic error
bias of the accelerometer is thus avoided. Also, there is no
need of an extensive pre-calibration routine for aligning the
IMU and the camera, like in [10, 11] or [12]. Compared with
[12], where the ultrasonic range finder is used for directly
measuring the altitude of the vehicle, in this work, the range
finder is used for computing the approximate depth of the
visual features that are more likely to be detected by the
sensor. Thus, the assumption of a completely flat terrain
is relaxed by the assumption of a terrain with soft but
continuous changes in altitude.

2 Preliminaries

A simplified 3DOF model will be used for introducing the
problem to be addressed in a clear manner. Note that this
simplified model retains the main aspects to be addressed in
the full problem.

Let the following unconstrained model ẋc = f (x, u)

represent the basic dynamics of a camera on board a MAV
(see Fig. 1):

ẋr = vxżr = vzθ̇r = ωcv̇x = Vx

v̇z = Vzω̇c = � (1)

where xc = [xr , zr , θr , vx, vz, ωc]T is the state vector
of the camera, and [xr , zr , θr ] and [vx, vz, ωc] represent
respectively the position and orientation of the camera, and
their first derivatives. In model (1), it is assumed that the
process is governed by an unknown input u = [Vx, Vz, �]T
of linear and angular accelerations with zero mean and
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Fig. 1 System Parametrization

known covariance Gaussian processes. Note that a constant-
acceleration camera is assumed. Also, it is assumed that
the camera modeled by Eq. 1 is able to provide angular
measurements from a set of 2D feature points composing
the map. In this case, the measurement process is modeled
by the following equation:

yi = hθ i(x) = arctan2

(
zc − zi

xc − xi

)
− θc (2)

where [xi, zi] represents the position of a i-th feature which
is coded in its inverse form:

xi = (1/ρi)cos(θ0i ) + x0i

zi = (1/ρi)sin(θ0i ) + z0i (3)

In this case, the state vector of the i-th feature yi is defined
by yi = [x0i , z0i , θ0i , ρi]T . Here [x0i , z0i] represents the
location of the camera when the feature was first detected,
θ0i is the initial angular measurement, and ρi = 1/di

represents the inverse of the feature depth di (see Fig. 1).
The full state vector x that is intended to be estimated is

integrated by the camera state xc, and the states yi of the
features composing the map.

x = [xc, y1, y2, ..., yn]T (4)

For the system state x it is assumed that the map features yi

remain static (rigid scene).

3 Observability of Metric Scale

In SLAM, the map and trajectory can only be estimated
up to scale, if the system works only with monocular
vision without additional information added to it, [6]. In
this section, the problem of the observability of the metric
scale in a monocular system is investigated. The theoretical

findings obtained with this analysis provide support to the
design of a monocular-based SLAM method able to recover
the metric scale without the need of GPS data.

Firstly, the state vector defined in Eq. 4 will be split
into a metric parameter s, unobservable when only angular
measurements are available, and into a dimensionless map
and camera part. For this purpose, the approach proposed in
[13] is followed. The new system state xs is defined by:

xs = [s,Πxc , Πzc , θc, Πvx , Πvz, Πωc , Πy1 ..., Πyn]T (5)

Camera measurements will reduce the uncertainty related to
the scene geometry, but not the uncertainty related to the
metric parameter s. The transformation of the state vector
xs and the original state vector x is defined by the following
non-linear relationships:⎧⎨
⎩

xc = sΠxc zc = sΠzc vx = sΠvx �t

vz = sΠvz�t ωc = sΠωc�t

yi = [sΠx0i
, sΠz0i

, θi , Πρi
/s]

(6)

Second, the dynamics of the 3DOF monocular SLAM
system is defined, see Section 2, in terms of the metric
parameter s and the dimensionless parameters. For this
purpose, Eq. 6 is substituted into Eqs. 1–3, and the system
state is augmented with s. Therefore, the new system
dynamics becomes:

ṡ = 0 ẋc = sΠvx �t żc = sΠvz�t θ̇c = sΠωc�t

v̇x = 0 v̇z = 0 ω̇c = 0 ρ̇i = 0
(7)

Note that in the system defined by Eq. 7 the metric
parameter s is defined to be constant. The new system
output equation is:

yi = hθ i(x) = arctan2

(
sΠzc − zi

sΠxc − xi

)
− θc (8)

where:

xi = (s/Πρi
)cos(θi) + x0i

zi = (s/Πρi
)sin(θi) + z0i

(9)

If n landmarks are measured by the camera, the system
output is defined as y = [hθ 1, ..., hθ n]T .

Remark 1 When the problem is focused on the position
estimation of the MAV camera, it is assumed that the
orientation of the MAV can be determined from some
independent device (e.g. an AHRS device). Hence, the
system state can be simplified by removing the variables
related to orientation.

Remark 2 According to Section 2, the state of the i-
th feature yi is defined by yi = [x0i , z0i , θi , ρi] where
[x0i , z0i] is the position of the camera Cs when the feature
was first detected, θi is the first bearing measurement, and
ρi = 1/di is the inverse of the feature depth di . Hence, note
that [x0i , z0i , θi] is directly given when the i-th feature is
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initialized. In this case, for the observability analysis only
the state of the camera and the inverse depth ρi of features,
will be considered.

According to Remark 1 and Remark 2 the system state xs

is defined as follows:

xs = [s,Πxc , Πzc , Πvx , Πvz, Πρ1 , Πρ2 , ..., Πρn]T (10)

The property of the observability has important con-
sequences for a SLAM system. A system is defined as
observable if the initial state x0, at any initial time t0, can
be determined given the state transition model of the sys-
tem ẋ = f (x, u), the observation model y = h(x) and the
measurements y[t0, t] from time t0 to a finite time t . When
a system is fully observable, the lower bound of the error
in the estimations of its state will only depend on the noise
parameters of the system and will not be reliant on initial
information about the state.

A nonlinear system is determined to be locally weakly
observable if the observability rank condition rank(O) =
dim(x) is verified [14]. For the investigated problem, the
observability matrix O can be computed from:

O =
⎡
⎣L0

f (hθ 1)

∂x

T L1
f (hθ 1)

∂x

T

...
L0

f (hθ n)

∂x

T L1
f (hθ n)

∂x

T
⎤
⎦

T

(11)

where Li
f (h) is the i-th-order Lie Derivative [15] of the

scalar field of the measurement h with respect to the
vector field f . Note that in Eq. 11 the observability matrix
O is composed of the zero-order and the first-order Lie
Derivatives for the n angular measurements yi = hθ i(x).

For the system state vector defined in Eq. 10, the results
have been obtained using the MATLAB symbolic toolbox
and:

– As it could be expected, the system is partially
observable. The maximum degree of observability was
obtained with 4 landmarks. In this case, dim(xs) = 9,
rank(O) = 8. Adding more landmarks does not improve
the observability. Based on [13], the non-observable
mode should correspond to the metric parameter s.

In order to improve the observability of the system, a
different sensory source must be considered. In this case, it
will be considered that measurements of the altitude of the
MAV camera are available. The additional system output
equation ya is:

ya = hzc (x) = zc = sΠzc (12)

For n landmarks being measured by the camera, the full sys-
tem output is now defined by y = [hzc , hθ 1, ..., hθ n]T . The
new observability matrix O can be now computed from:

O=
[
L0

f (hzc )

∂x

T L1
f (hzc )

∂x

T L0
f (hθ 1)

∂x

T L1
f (hθ 1)

∂x

T

...
L0

f (hθ n)

∂x

T L1
f (hθ n)

∂x

T ]T

(13)

The following results have been obtained with this observ-
ability matrix O:

– The system becomes observable. The maximum degree
of observability was obtained with 3 landmarks, that is,
dim(xs) = 8, rank(O) = 8.

– A sufficient condition for observability is defined by
(Πvz �= 0). That means that the altitude of the vehicle
must be varying in order to improve the observability of
the system.

As a step forward, it will be considered that measure-
ments of range (depth) are available for a subset of map
features instead of altitude readings. A range measurement
for an i-th feature can be modeled by:

yd = hρi(x) = 1/ρi = s/Πρi
(14)

Therefore, if n landmarks are being measured by the
camera Cs , and m range measurements (m ≤ n) are
available, the system output can be defined by y =
[hθ 1, ..., hθ n, hρ1, ..., hρm]T . The new observability matrix
O can be computed as:

O =
⎡
⎣L0

f (hθ 1)

∂x

T L1
f (hθ 1)

∂x

T

...
L0

f (hθ n)

∂x

T L1
f (hθ n)

∂x

T

,

× L0
f (hρ1)

∂x

T

...
L0

f (hρm)

∂x

T
⎤
⎦

T

(15)

Note that in Eq. 15, only the zero-order Lie Derivative
is calculated for range measurements [hρ1, ..., hρm]T . The
following results have been obtained with this observability
matrix O:

– The system becomes observable. In this case, the
observability does not depend on the number of features
included into the system state. Full observability,
dim(xs) = rank(O), can be reached by including a
single measurement of range hρi .

Remark 3 As of that moment on, after analyzing the
observability of the system, the metric parameter s will be
implicitly considered again into the system state.
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4Method Description

4.1 Sensor Fusion Approach

As previously seen, when the monocular vision is used
as the unique sensory input to the SLAM system is not
possible to recover the metric information of estimations.
Nevertheless, according to the theoretical results obtained
with the observability test, the metric scale becomes
observable if the measurements of the MAV absolute
altitude are considered. Therefore based on this theoretical
result, in the proposed system the altitude of the vehicle
is updated through the atmospheric pressure measurements
obtained from a barometer. On the other hand, according
to the same analysis, when altitude measurements are used,
the observability of the scale depends on the movement of
the vehicle along the vertical axis. For different scenarios,
this dependency on the movement of the MAV could affect
the effectiveness of the scale recovery if only altitude
measurements are used for this purpose.

In order to improve the robustness of the proposed system
for recovering the metric scale, a technique that makes
use of an ultrasonic range finder for incorporating depth
information of visual features is developed. The technique
is based on a second theoretical result which states that the
metric scale can become observable if the measurement of
the depth of a single feature is available.

4.2 System Assumptions

In this work, a quadrotor MAV moving freely in R
3×SO(3)

has been considered, anyway, it is not difficult to extend the
research to another aerial configurations. In the presented
contribution, it is assumed that the monocular camera, as
well as the ultrasonic range finder, are mounted on a servo-
controlled gimbal that counteracts the movements of the
MAV in order to stabilize its orientation toward the ground
(See Fig. 2). Also, it is assumed that the range sensor is
mounted near the camera and aligned with its optical axis.

It is important to note that the use of the servo-controlled
gimbal adds some extra weight to the MAV. In this sense,
the inherent benefit related to the use of monocular vision
in terms of weight could be affected. On the other hand, it
is also well known that the stabilized video facilitates the
operation of visual-based SLAM systems.

In order to obtain measurements of the altitude of the
MAV, it is assumed that a barometer is available. Also, it is
assumed that the location of the origin of the camera frame
respect to other elements of the quadcopter (e.g. barometer)
is known and fixed.

Additionally to the assumption regarding the orientation
of the camera is maintained stably by the use of the gimbal,
in this work, it is assumed that an Attitude and Heading

Reference Systems (AHRS) is available for providing
attitude and heading estimates with enough accuracy.
Considering the above, for the sake of simplicity, the
attitude variables are removed from the SLAM filter. And
thus, this work is focused only on position estimation. Also,
note that the observability results were obtained under the
same assumption. Fortunately, in practical applications, the
available Attitude and Heading Reference Systems (AHRS),
can address the problem of the estimation of the attitude
(roll and pitch) of the MAVs in a robust manner (e.g. [16]
and [17]). However, it is important to note that a typical
AHRS makes use of magnetometers for updating the Yaw
(heading) of the vehicle. Magnetometers are often difficult
to calibrate and are sensitive to external disturbances. In this
work, it is assumed that the AHRS provides an acceptable
heading estimation. However, this aspect should be studied
more carefully in a future work.

The system proposed in this work is mostly intended
to be applied in scenarios involving flight trajectories near
to the origin of navigation reference frame. Therefore,
the initial position of the MAV defines the origin of
the navigation coordinates frame. The navigation system
follows the NED (North, East, Down) convention. The
magnitudes expressed in the navigation and camera frame
are denoted respectively by the superscripts N , and C . All
the coordinate systems are right-handed defined.

4.3 Sensor Measurement Models

4.3.1 Visual Measurements

A central-projection camera model is used for modeling the
monocular camera on board the MAV. In this case, the image
plane is assumed to be located in front of the camera’s origin
where a non-inverted image is formed. The camera frame
C is right-handed with the z-axis pointing to the field of
view. The R

3 ⇒ R
2 projection of a 3D point, located at

pN = (x, y, z)T , to the image plane is defined by:

u = x′

z′ v = y′

z′ (16)

where u and v are the image coordinates (in pixels) of the
projection of the 3D point, and:

⎡
⎣ x′

y′
z′

⎤
⎦ =

⎡
⎣ f 0 u0

0 f v0

0 0 1

⎤
⎦pC (17)

where pC is the same 3D point pN , but expressed in the
camera frame C by pC = RNCpN . RNC is the rotation
matrix transforming from the navigation frame N to the
camera frame C . Note that RCN is known by the use of the
gimbal and it fulfills that RNC = (RCN)T .
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Fig. 2 Aerial platform and
coordinate systems. The
ultrasonic range finder is used
for estimating the approximate
depth of visual features lying in
its beam pattern. An elliptic
paraboloid is used as a simple
model of the actual beam pattern
of the ultrasonic range finder

Reciprocally, a vector hC = [hC
x , hC

y , hC
z ]T , pointing

from the camera optical center position to the 3D point
location, can be obtained from the image point coordinates
u and v by means of:

hC(u, v) =
[
u0 − u

f
,
v0 − v

f
, 1

]T

(18)

The vector hC can also be expressed in the navigation
frame by hN = RCNhC . Note that for the R

2 ⇒ R
3

transformation defined in Eq. 18, depth information is
unavailable.

The camera lens distortion is considered through the
model described in [18]. Using the former model (and its
inverse form), undistorted pixel coordinates (u, v) can be
obtained from (ud, vd) and conversely. In this work, it is
assumed that the intrinsic parameters of the camera are
already known: focal length f, principal point (u0, v0), and
radial lens distortion k1, ..., kn.

4.3.2 Measurement of Visual Features Depth

According to the theoretical analysis, the metric scale can
become observable when a single measurement of a feature
depth is available. Therefore, a new technique is proposed
for determining the approximate depth of visual features
(whenever is possible). The idea is to define a subset of
visual features whose depths are more likely to be related to the
distance measured by the ultrasonic range finder. For this
end, an image region will be computed in order to serve as
criteria for choosing the visual features whose approximate
depth will be inferred from the ultrasonic sensor. Note
that the operation rate of ultrasonic range finder sensors is
typically lower (3-4 Hz) than the frame rate of cameras.
Therefore, the proposed technique can only be applied

to a subset of frames. In this case, in order to establish
some degree of synchrony between frames and ultrasonic
readings, every time that a range measurement is available,
the next available camera frame is associated with it.

An elliptic paraboloid with equation z = ax2 + ay2 is
used for modeling the actual beam pattern of the ultrasonic
sensor (see Fig. 3). For adjusting the model to the actual
beam pattern (as best as possible), the parameter a is chosen
using the sensor datasheet.

A circle zr = ax2 + ay2, with radius rm = √
zr/a,

can be determined by the intersection of the paraboloid and
the plane z = zr , where zr is the current reading obtained
from the ultrasonic range finder. The interior of this circle
defines a ground region where the landmarks that lie inside
can be associated with the range measurements provided by
the ultrasonic sensor (see Fig. 2).

In order to project the circular ground region to the image
plane, a single 3D point pN = (rm, 0, zr ) is projected using
Eq. 16. The radius rc (in pixels units) of the circular image
region is determined by:

rc = ||[uc, vc]T − [u0, v0]T || (19)

where [uc, vc] are the image coordinates obtained from
projecting the 3D point pN = (rm, 0, zr ). Note that rc =
f (zr , a) is a function of the beam pattern shape of the
ultrasonic sensor as well as the range it measures (see
Fig. 3).

Any visual feature i satisfying ri < rc, where ri =
||[ui, vi]T − [u0, v0]T ||, lies inside the circular region.
Hence, for such a feature it is assumed that it has an
approximate depth di given by:

di = zr ||hC ||
hC

z

(20)
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Fig. 3 An elliptic paraboloid is used as a simple model of the actual
beam pattern of the ultrasonic range finder (left). The size of the ter-
rain region detected by the ultrasonic range finder is a function of the

beam pattern of the sensor and the flight altitude of the MAV. Frame
captured at 7m of altitude (middle). Frame captured at 3.9m of altitude
(right)

where hC is computed with Eq. 18 and it represents the
directional vector pointing from the camera optical center to
the 3D location of the i visual feature.

4.3.3 Altitude Measurements

Under certain conditions, the observability of the metric
scale can be improved by incorporating altitude measure-
ments into the system. In this case, the altitude or height of
the MAV above a local ground location can be computed
from the change in the atmospheric pressure between the
ground and the altitude of interest. The following equation
can be used to obtain altitude readings za from a barometer:

za =
⎛
⎜⎝1 −

(
P

Pg

)RL0

Mg

⎞
⎟⎠ T

L0
(21)

where P is the current barometric pressure measurement;
Pg is the barometric pressure at the initial position (home
position); R = 8.31432 N-m/(mol-K) is the universal gas
constant for air; L0 = −.0065 K/m is the rate of temperature
decrease in the lower atmosphere; M = 0.0289644 kg/mol
is the standard molar mass of atmospheric air; g = 9.80665
m/s2 is the gravitational constant and T is the temperature
at flight location in Kelvin degrees.

In this work, a measurement za of the actual MAV’s
altitude zN is modeled by:

za = zN + xz + vz (22)

where xz is an additive error (bias) and vz is a Gaussian
white noise with a power spectral density (PSD) σ 2

z .
To model the transient behavior of the bias xz, a Gauss-

Markov process is used:

ẋz = −λzxz + vλ (23)

where the constant parameter λz is a correlation time factor
which models how fast the bias of altitude measurements

are varying, and vλ is a Gaussian white noise with a power
spectral density (PSD) σ 2

λ .

4.4 EKF-SLAM

The proposed method makes use of the standard EKF-
SLAM methodology for estimating the system state.
Interested readers are referred to [19] and [20] for an
extensive review on the EKF-SLAM methodology.

The system state to be estimated is:

x = [rN , vN, xz, y1, y2, ..., yn]T (24)

Let rN = [xr , yr , zr ] represent the position of the
MAV camera expressed in the navigation frame; let
vN = [vx, vy, vz] denote the linear velocity of the vehicle
expressed in the navigation frame; let xz represent the
barometer bias (in meters), and let y1, y2, ..., yn represent
the n features that compose the stochastic map.

To represent the features in the map two different models
are used: i) Euclidean parametrization, and ii) inverse-depth
parametrization. Map features whose depth is assumed to
be approximately known are represented in their Euclidean
form. On the other hand, the inverse-depth parametrization
is more convenient for features whose depth has a high
degree of uncertainty.

Euclidean features are defined by:

yei
= [xi, yi, zi]

T (25)

Let [xi, yi, zi] be the coordinates of the i-th feature,
expressed in the navigation frame.

Inverse-depth (ID) features are defined by:

yidi
= [ri, θi, φi, ρi]

T (26)

Let ri = [x0i
, y0i

, z0i
] be the coordinates of the center

of the camera when the feature was observed for the very
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first time; let θi and φi represent azimuth and elevation
respectively, and let ρi = 1/di be the inverse of the depth
di , and:

θi = atan2(hN
y , hN

x ) φi = acos

(
hN

z√
(hN

x )2+(hN
y )2+(hN

z )2

)

(27)

Here, hN = [hN
x , hN

y , hN
z ]T is computed from Eq. 18.

Note that the Euclidean form is more computationally
efficient since it requires half of the parameters of the
inverse-depth parametrization.

4.4.1 System Prediction

The following discrete model is used to take a step forward
to the system state x:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rN
[k+1] = rN[k] + vN[k]�t

vN
[k+1] = vN[k] + V N

xz[k+1] = (1 − λz�t)xz[k] + Vλ

y1[k+1] = y1[k]
:
yn[k+1] = yn[k]

(28)

At every step, it is assumed that there is an unknown linear
velocity with acceleration zero-mean and known-covariance
Gaussian processes σa , producing an impulse of linear
velocity: V N = σ 2

a �t . In Eq. 28, the equation used for
modeling the behavior of the barometer bias xz, was derived
from the first order discretization of the Eq. 23, in this case
Vλ = σ 2

λ�t . Let �t be the system sample time.

4.4.2 Initialization of Map Features

New features are initialized in those frames where a range
measurement zr is available (see Section 4.3.2). To perform
this process, a random search is conducted in the image
in order to detect regions with salient visual points. In this
work, the detector proposed in [21] is used for this purpose.

Every visual point i detected with image coordinates
(ui, vi), is tested in order to know if an approximate depth
di can be associated with it (see Section 4.3.2). Then, the
visual points are initialized according two possible cases:

Case 1 Visual points whose depth is assumed to be
available are initialized as Euclidean map features. The
initialization function yenew = fe(x, ui, vi, di) used for
computing new Euclidean features is:

yenew =
⎡
⎣ xi

yi

zi

⎤
⎦ = rN + RCN

(
hC

‖ hC ‖di

)
(29)

Let RCN be the camera to navigation rotation matrix, let rN

be the actual camera-vehicle position, hC is computed from
Eq. 18, and let di be the approximate depth computed from
Eq. 20.

Case 2 Visual points whose depth is assumed to be
uncertain are initialized in their inverse-depth form. The
initialization function yidnew = fid(x, ui, vi, di) used for
computing new ID features is:

yidnew = [r0, θ0, φ0, ρ0]T (30)

with [r0, θ0, φ0] calculated as in Eq. 26; and ρ0 = 1/di .
Note that di is taken as the best hypotheses of depth for ID
features.

The system state x is augmented in a simi-
lar manner for both kinds of features: xnew =
[rN , vN, y1, y2, ..., yn, ynew]T , either ynew = yenew or
ynew = yidnew .

Also, in each case, the new covariance matrix Pnew is
computed by:

Pnew = ∇J

⎡
⎣ Pold 0 0

0 R 0
0 0 σ 2

d

⎤
⎦∇J T (31)

Let ∇J be the Jacobian computed from the proper
initialization function (either fe or fid ), let R be the
measurement noise covariance matrix for (ui, vi), and σd is
chosen according to the kind of map feature (see Fig. 4):

– For Euclidean features, σd is chosen with an small
value. For example, in experiments good results were
found with σd = 1/(10 × di).

– For ID features, σd is chosen as in [22] (σd = ρ0/2), in
order to cover a big uncertainty region.

4.4.3 Measurement of Map Features

In frames with an associated range zr , when a feature
is re-observed its image coordinates (ui, vi) are tested in
order to know whether an approximate depth di can be
associated to it (see Section 4.3.2). Features satisfying the
above condition will be used for updating the filter with both
range and bearing measurements. If visual features do not
satisfy such a condition, and for all the visual features re-
observed in frames without an associated range, only visual
information will be available for updating the filter.

The following procedures are used for the two possible
cases:

Case 1: For features with an associated depth di , both
Euclidean and ID features, it is assumed that an indirect 3D
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Fig. 4 Initialization of new map features: Camera image plane (left
plot). 3D view of the estimates (right plot). The operational range of
the ultrasonic sensor is indicated respectively by the blue circle in
the image plane and by the green paraboloid in the 3D view. The

blue ellipsoids indicate the initial uncertainty region of each new fea-
ture 3D location. Note that the visual features, that are assumed to be
detected by the ultrasonic sensor, are initialized with a smaller initial
uncertainty in depth

position measurement zmi = [xi, yi, zi] is available. The
measurement zmi is computed as follows:

zmi = hC

‖ hC ‖di (32)

where hC is computed by Eq. 18, using the undistorted pixel
coordinates obtained from (ui, vi). The measurement model
[xi, yi, zi] = hi(x, yi) is defined as follows:

pC = hi(x, yi) = RNC(pN − rN) (33)

where RNC is the camera to navigation rotation matrix, and
pC is the predicted 3D position of the feature yi , expressed
in the camera frame. In case of Euclidean features, pN = ye.
In case of ID features:

pN = ri + 1

ρi

m(θi, φi) (34)

where m(θi, φi) = (cos θ sin φ, sin θ sin φ, cos φ)T is the
unit vector defined by the pair of azimuth-elevation angles
in yid .

Case 2: For features without an associated depth di , the
visual measurement zmi = [ui, vi] is used together with
the standard measurement model [ui, vi] = hi(x, ye). In
this case pC is computed using Eq. 33 as well. Then pC

is projected to the image plane by Eqs. 16 and 17 (See
Section 4.3.1).

4.4.4 MapManagement

This work is mainly intended to address the local navigation
problem, that is, the proposed system is intended to be
applied in scenarios involving flight trajectories near to the

origin of the navigation frame. Hence, large-scale SLAM
and loop-closing are not considered in this work. On the
other hand, a SLAM framework that works reliably in a
local way can be applied to large-scale problems using
different methods, such as sub-mapping or graph-based
global optimization [23].

In order to improve the computational efficiency of
the algorithm, ID features whose depth estimation has
converged, are converted to Euclidean features using the
method proposed in [24]. In a similar way, visual features
with high percentage of mismatching are removed from the
system state and covariance matrix.

4.4.5 Altitude Updates

When a new barometer reading is available, the system can
be updated with an altitude measurement, using the standard
update equations. In this case, altitude measurements za are
computed using Eq. 21, from the pressure readings.

The measurement model ha(x) is defined by:

ha = zN + xz (35)

where zN and xz are taken directly from the system state x.

5 Experimental Results

In order to validate the performance of the proposed
method, several experiments have been carried out either
in simulation and with real data. The methods used in the
experiments were implemented in MATLAB�.
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Fig. 5 Comparison between the proposed system and a stereo system, during a flight trajectory at low altitude. In this case, the mean absolute
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5.1 Experiments with Simulations

In simulations, the model used to implement the vehicle
dynamics was taken from [25]. The monocular camera was
simulated using the same parameter values of the camera
used in the experiments with real data. The barometer
was simulated using the data presented in Section 4.3.3.
The ultrasonic sensor was simulated using parameters
values taken from the datasheet of the real device used in
experiments with real data. In each case, Gaussian noise
was added in order to model system uncertainty. Also,
it is assumed that the visual features can be detected
and matched without errors. The simulation results were
obtained averaging 20 Monte Carlo executions.

Figures 5 and 6 present the results obtained from
comparing the proposed method with a stereo system. Both
cameras of the stereo system (with a fixed baseline of 20
centimeters) are simulated using the same parameters of the
monocular camera used by the proposed method. The same
magnitude of noise is added to both the monocular system
and the stereo system. It is well worth to observe that for

flight trajectories, at low altitude above the ground (less
than three meters), both systems perform reasonably well
(See Fig. 5). Nevertheless, the performance of stereo system
behaves considerably worse as the altitude of the vehicle
increases (see Fig. 5). This fact is due to the fixed baseline
between the cameras of the stereo system. Therefore, the
operating range of the stereo system is highly restricted to
low altitudes.

It is also important to note that an ultrasonic sensor
has a limited operating range (typically under ten meters).
Above that altitude, the ultrasonic sensor is unable to
provide information about the depth of visual features. In
these conditions, the recovering of the metric scale of the
estimates rely only on the altitude information provided by
the barometer. However, as it was previously mentioned,
the efficacy of this latter approach heavily depends on the
movements of the MAV.

Figures 7 and 8 present the results obtained from
analyzing the effects of the inclusion of the range-finder
model into the proposed method. It is important to recall
that previous approaches assume that the orography of
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Fig. 6 Comparison between the proposed system and a stereo system, during an ascendant flight trajectory. Note that for the stereo system, the
error in the position considerably increases as the vehicle gets more altitude
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the ground is completely planar (e.g.[12]). On the other
hand, in the proposed method, it is assumed that only the
portion of the ground detected by the ultrasonic sensor is
approximately flat. For this experiment, a variant of the
proposed method, that does not make use of the technique
presented in Section 4.3.2, was used for comparison
purposes. Such a technique defines what visual features are
more likely to be related to the distance measured by the
ultrasonic range finder. Without this technique, the depth of
all the visual features are inferred from the readings of the
ultrasonic sensor.

It is remarkable to observe that when a terrain
without orography changes is considered (see Fig. 7), the
performance when no range-finder model is used is even
slightly better. This is because more depth information
is incorporated into the system. However, when a terrain
with a slope of 10 degrees is considered (see Fig. 8), the
variant without range-finder model is unable of correctly
mapping the landmarks. This fact has as a consequence a
high drift in position error. On the other hand, with the use
of the range-finder model, the proposed system is able to
correctly estimate the map and trajectory. In this manner,
the assumption of a completely flat terrain is relaxed by the
assumption of a terrain with soft but continuous changes in
altitude.

Figure 9 presents the results of an experiment carried
out for validating the ability of the filter for estimating the
barometer bias xz. In this case, an initial bias of 0.5 meters
was considered. For this experiment, the convergence time
was about of 15 seconds.

For the proposed method, it is assumed that a servo-
controlled Gimbal stabilizes the orientation of the camera
and range-finder toward the ground. Figure 10 shows
the results of an experiment that analyzes the effects on
estimation, derived from the Gimbal angle control error.
For this experiment, the same ascendant flight trajectory
shown in Fig. 6 has been used. But in this case, sinusoidal
signals have been used for perturbing the actual attitude of
the Gimbal, while the estimation algorithm still assumes
that the device points perfectly toward the ground. The
experiment was repeated varying the magnitude of the angle
control error. Table 1 summarizes the average mean absolute
error (MAE) that was obtained for different angle control
errors of the Gimbal. It is important to note that according
to different manufacturers of low-cost servo-controlled
Gimbal for MAVs, a typical value for the precision control
angle is within the range of ±0.1◦. Therefore, observing the
results, it can be inferred that the use of a commercial low-
cost Gimbal should not introduce a significant additional
error to the estimates.
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5.2 Experiments with Real Data

A custom-built quadrotor equipped with low-cost sensors
was used for capturing real data. The set of sensors is
composed of: i) DX201 DPS camera with wide angle
lens, ii) ultrasonic range-finder XL-MaxSonar-EZ0, iii)
barometer integrated with the flight controller (Ardupilot,
[26]).

The camera and the range-finder are mounted over a low-
cost TURNIGY 2-Axis brushless gimbal. The experimental
data sets were captured while the vehicle was manually
radio-controlled. A ground-based application received the
video from the camera, by mean of a 5.8-Ghz video link,
as well as the data sensors, by means of a 915 MHz radio
telemetry. The camera frames and data sensors are time
stamped and stored. The camera gray scale frames with a
resolution of 320 × 240 pixels were captured at 26 fps. The
barometer signal was captured at 7 Hz. The range-finder
signal was captured at 5 Hz.

It is important to recall that the proposed method
is mainly intended to be applied to local small-scale
navigation applications. In order to validate the performance
of the proposal under the above conditions, an independent
flight trajectory reference was computed using a perspective
on 4-point (P4P) technique [27]. For this purpose four
marks were placed in the floor, forming a square of known
dimensions (see Fig. 3). The trajectory obtained by means
of this technique should not be considered as a perfect
reference of ground-truth. However this approach was very
helpful to have a fully independent reference of flight for
evaluation purposes.

Figure 11 shows the experimental results obtained for a
small-scale flight. In this experiment the proposed method
was compared with two additional approaches:

(i) The undelayed inverse depth method (UID) [22], with
an initial inverse-depth value of ρ0 = 1/2m. In this
case, because no extra sensory information is used, the
metric scale of estimations depends only on the initial
inverse-depth value. This approach was considered
in order to illustrate the difficulty of recovering the
metric scale using only monocular vision. (ii) The UID
method with altitude measurements obtained from the
barometer (A+UID). This approach was considered in
order to validate the observability result regarding the
inclusion of altitude measurements.

Table 2 summarizes the results obtained in the foregoing
experiment. In the table, the proposed method is indicated
by (A+R), the UID+Altitude variant is indicated by
(A+UID), and the undelayed inverse depth method by
(UID). The following results have been computed for
each method: i) number of the features initialized into the
system state (NIF); ii) number of features deleted from the
system state (NDF); iii) Number of features been tracked
at each frame (FPF); iv) total time of execution (TTE) in
miliseconds; and v) average mean absolute error (aMAE) of
the vehicle position in meters. For computing the aMAE, the
P4P trajectory has been used as an independent reference of
the vehicle position.

As it would be expected, the UID method was able
only to estimate the flight trajectory in a scaled manner.
By means of the inclusion of altitude measurements, the

Fig. 10 Sensitivity analysis for
the Gimbal control errors. The
actual attitude (roll and pitch) of
the Gimbal is perturbed with
sinusoidal signals of different
amplitudes. As it could be
expected, the MAE in position
increases as the angle control
error of the Gimbal increases
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Table 1 Average MAE obtained for different angle control errors of
the Gimbal

Maximum control error

(degrees) average MAE (meters)

0.0◦ 0.111 ±0.040σ

±0.2◦ 0.114 ±0.046σ

±0.5◦ 0.133 ±0.060σ

±1.0◦ 0.185 ±0.087σ

±2.0◦ 0.327 ±0.147σ

A+UID method was able to partially recover the metric
scale. However, it is important to recall that in this case
the observability of the metric scale depends largely on the
velocity of the vehicle in the vertical axis. Note that this
particular flight trajectory presents considerable variations
in altitude. On the other hand, with the inclusion of range
measurements in the proposed method (A+R), a better
concordance was found with the P4P visual reference. An
additional experiment was carried out in order to validate
the performance of the method by mean of a medium-
scale flight trajectory. Figure 12 shows an aerial view of

Table 2 Results for flight trajectories (a)

Method NIF NDF FPF TTE (ms) aMAE (m)

A+R 76.8±5.6σ 27.6±1.8σ 35.2±10.9σ 170±21σ .25±.09σ

A+UID 89.6±4.2σ 32.4±3.5σ 43.2±11.3σ 197±11σ .87±.54σ

UID 84.2±4.9σ 27.6±4.0σ 43.5±11.7σ 192±9σ 1.43±.73σ

the estimated map and trajectory for this flight. The P4P
technique can only be applied, for obtaining a trajectory
reference, if the four marks placed on the floor are observed
during all the flight. Therefore, for this experiment a GPS
device equipped on the quadcopter was used to obtain a
trajectory reference. For this experiment, the duration of the
flight was about one minute and a half.

According to the experiments with simulations and with
real data, it is interesting to note that the theoretical findings
presented in Section 3 are well supported by the empirical
results. In particular, the proposed method is able to recover
the metric scale of the estimations in a reasonable manner.
Also, it is shown that the proposed method is capable of
working with the data obtained from low-cost sensors.
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Fig. 11 Experimental results obtained with real data for a small-scale
flight. Left plots show the sectional (z-x/y) view of maps and estimated
trajectories for the proposed method. Right plots show the evolution

over time for the estimated position expressed in each coordinate
North, East, and Down (x, y, z), for the proposed method and the UID
and A+UID methods
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6 Conclusions

This work presented a monocular SLAM system applied
to micro aerial vehicles which is aided with altitude and
range measurements. The proposed method is intended to
be useful for performing visual-based local navigation in
periods or circumstances where the GPS is not available or
is unreliable.

One of the challenging aspects of working with
monocular vision has to do with the impossibility of directly
recovering the metric scale of the world.

In order to address this problem, the observability of
the metric scale has been investigated by means of a
nonlinear observability test. Two conditions of sufficiency
were found from the observability test: i) The metric scale
can become observable if measurements of altitude are
included into the system and there is a movement of the
vehicle along the vertical axis. ii) The metric scale can
become observable if a measurement of the depth of a single
map feature is available. Based on the theoretical findings,
a novel technique for inferring the approximate depth of
visual features from an ultrasonic range-finder is developed.
Additionally, in the proposed method, the altitude of the
vehicle is updated using the pressure measurements of a
barometer.

Computer simulations as well as experiments with real
data, obtained from a custom-built quadrotor equipped with
low-cost sensors, have been carried out in order to validate
the performance of the proposed method.

The experimental results confirm the theoretical findings
and show that with the proposed system is possible to

estimate the flight trajectory of the MAV, as well as a map
of the environment, using only its onboard sensors.
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