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Abstract
The operation of launched micro aerial vehicles (MAVs) with coaxial rotors is usually subject to unknown varying external
disturbance. In this paper, a robust controller is designed to reject such uncertainties and track both position and orientation
trajectories. A complete dynamic model of coaxial-rotor MAV is firstly established. When all system states are available,
a nonlinear state-feedback control law is proposed based on feedback linearization and Lyapunov analysis. Further, to
overcome the practical challenge that certain states are not measurable, a high gain observer is introduced to estimate
unavailable states and an output feedback controller is developed. Rigid theoretical analysis verifies the stability of the
entire closed-loop system. Additionally, extensive simulation studies have been conducted to validate the feasibility of the
proposed scheme.

Keywords Coaxial-rotor micro aerial vehicles · Robust control · Filtered tracking errors · Lyapunov method · Nonlinear
control

1 Introduction

Growing attention has been paid to mini or micro aerial
vehicles (MAVs) along with the development of advanced
techniques in recent years [10, 11, 16, 23, 25, 30]. Thanks to
their features of small size, low cost and high efficiency of
unmanned autonomy, MAVs have been recognized as new
approaches to accomplish many tasks, such as homeland
security protection, limited environment monitoring and
battlefield assessment in both civilian and military appli-
cations [1, 8, 9, 22]. However, their applicability is still
hindered by the low flight speed and limited cruising abil-
ity, especially in certain circumstances that rapid arrival to
the destination is needed. To meet this requirement, a new
type of unmanned Coaxial-Rotor MAVs (CRMAV) known
as Gun Launched Micro Aerial Vehicle (GLMAV) are intro-
duced by French-German Research Institute of Saint-Louis
(ISL) [6].
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A GLMAV is conceived as a kind of micro rotorcrafts
with an architecture of two coaxial contra-rotating rotors.
In its initial flight phase, a GLMAV stands like a projectile
with its rotors folded into a shell. With the help of a gun-like
delivery device, it can be quickly brought to the target zone.
Once arriving at the apogee, the rotors are deployed and
start rotating to slow down the projectile for the hovering
flight as a MAV. Finally, it can make a return voyage after
fulfilling missions. For autonomous operations, a GLMAV
has to be equipped with a navigation system like GPS, a
power system, and an autopilot for control purposes. Other
devices such as vision systems can also be equipped for
meeting mission requirements.

Early research efforts have been devoted to verification
of designs [6] (e.g., two coaxial contra-rotating rotors
architecture, size confirmation, and payload calculation),
and modeling the dynamics of a GLMAV during hovering
flights via both theoretical and experimental studies
[15]. Besides, aerodynamic modeling and parameters
identifications [12–14] have also been carried out to
complete the dynamic 6 DOF model of a GLMAV.

Numerous attempts have also been made from the per-
spective of control design. A standard nonlinear backstep-
ping based tracking control strategy is proposed in [3] to
enforce desired trajectories of the GLMAV. However, the
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effect of unknown external wind still can not be well han-
dled by the proposed control law. Moreover, adaptive con-
trols have also been discussed to deal with unknown aero-
dynamic effects [4, 5]. The external forces and moments are
estimated online for control purpose. But only constant or
slowly time-varying unknown disturbances are considered
in simulation tests. Recent advances also include observers
(i.e., a liner extended state observer (LESO) and a dis-
turbance observer with finite time convergence (FTDO))
to solve the path tracking problem of a GLMAV despite
of unknown aerodynamic effects [20, 21]. The controllers
are able to deliver satisfactory performance under a sine-
like external disturbance. However, most aforementioned
solutions are based on backstepping methodology, which
may lead to a time-scale separation [28, 29] or extreme ill
conditions of the control problem, since the derivative of
the control signal enters into the remaining system [17].
Moreover, one of the widely recognized drawbacks of the
backstepping design is that the complexity of the system
increases drastically with the system order resulting from
the repeated differentiation of the virtual control input [19].

Therefore, the focus of this paper is to provide a high-
performance backstepping-free trajectory tracking control
strategy for a GLMAV. A mathematical model for control
design is firstly derived in hovering flight. Subsequently,
an error dynamics based on filtered tracking error is
developed, and a nonlinear feedback linearization based
control law is discussed. A robust design is introduced
to deal with unknown time-varying external disturbance.
The disadvantages involved by backstepping method are
avoided. Moreover, considering that certain system states
are not available, an output feedback control version is
designed with the help of a high-gain observer. The tracking
performance along with the stability of the entire closed-
loop system in the presence of unknown time-varying loads
is guaranteed via strict Lyapunov analysis.

The rest of this paper is organized as follows: Section 2
discusses modeling of a GLMAV dynamics, while Section 3
presents the procedures of the control law design and the
stability analyzes based on Lyapunov theory. Simulation
studies are conducted in Sections 4 and 5 concludes the
work accomplished in this paper.

2 SystemModeling

In this section, an explicit outline of the 6 DOF GLMAV
dynamics in hovering fight is introduced. The complete
model of GLMAV can be divided into two subsystems:
a rigid body model and an aerodynamic model [7]. The
reference frames and major modeling parameters consid-
ered in this study are diagrammatically shown in Fig. 1.

2.1 Rigid BodyModel

An inertial frame {O, xe, ye, ze} and a body-fixed frame
{G, xb, yb, zb} are firstly defined for the transformation
of position, velocity, angles and angular rates [18]. By
reasonably considering the GLMAV to be a rigid body with
a fixed mass m, its translational and rotational dynamics
can be derived by applying Newton-Euler laws based on a 6
DOF model. Therefore, the dynamic model of the GLMAV
with respect to the inertial frame can be given by

ṗ = v

v̇ = a

ma = Rηf

J ω̇ = −ω × Jω + �

(1)

where p, v, a ∈ R
3 are the position, linear velocity and

acceleration of the center of mass G with regard to the
reference point O in the initial frame. f, � ∈ R

3 are
the total forces and moments that act on the vehicle in
body-fixed frame, ω ∈ R

3 is the angular velocity, J =
diag[Jxx, Jyy, Jzz] ∈ R

3×3 is the diagonal initial matrix,
and Rη ∈ R

3×3 is the rotation matrix from the body frame
to the initial frame, which is a function of the Euler angle
set η = [φ, θ, ψ]T ∈ R

3

Rη =
⎡
⎣

cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ

⎤
⎦ (2)

where φ, θ and ψ are the roll, pitch and yaw angles,
respectively. For convenience, define sη = sin η, cη =
cos η, tη = tan η. Finally, the attitude dynamics derived by
Euler’s law in body-fixed frame can be also given by

η̇ = Qηω (3)

with

Qη =
⎡
⎣
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎦ (4)

2.2 Aerodynamic Model

During flight in outdoor environment, the dynamics of
GLMAV is subject to various aerodynamic forces and
moments. By neglecting the gyroscopic effect on moments,
the major loads usually considered are generated by the
coaxial rotors, the cyclic swashplate incidence angles, and
the airflow [15]. Therefore, the motion of GLMAV is the
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Fig. 1 Reference frames and
parameters of GLMAV

result of thrusts generated by rotors, aerodynamic forces
induced by wind speed, gravitational force.

2.2.1 Forces Generated by Rotors

Thrusts are generated by the upper rotor T1 and the lower
one T2. Both two rotors contribute to the vertical force,
which can be employed by the GLMAV to control the rate
of climb. Moreover, the lower rotor can produce two lateral
forces owing to the swashplate incidence angles.

Theoretically, the total rotor thrust T is the vector sum of
T1 and T2. However, provided that there commonly exists
an aerodynamic coefficient loss in vertical direction due to
the airflow interactions, the total thrust is calculated as [15]

T =
⎡
⎣

Tx

Ty

Tz

⎤
⎦ =

⎡
⎣

−β sin δcy cos δcx 

2
2

−β sin δcx 

2
2

σα
2
1 + σβ cos δcx cos δcy 


2
2

⎤
⎦ (5)

where 
1 and 
2 are the rotor rotation speeds of the upper
rotor and the lower rotor, α and β are the corresponding
aerodynamic coefficients, δcx and δcy are the swashplate
incidence angles and σ is an efficiency coefficient with
0.8 ≤ σ ≤ 1.

2.2.2 Forces Acting on the Body

Two major forces acting on the body of a GLMAV are
considered: the aerodynamic force fw induced by wind
speed, and the gravity fg .

First, the aerodynamic force fw directly results from
the total wind speed V , which mainly contains the airflow
speed Vr generated by the rotors, the body velocity Vb

generated by the GLMAV’s motion, and the external wind
Vw which is usually unknown [3]. Thus, the total wind speed
in body-fixed frame becomes

V = Vr − Vb + Vw =
⎡
⎣

Vx

Vy

Vz

⎤
⎦ (6)

Therefore, fw can be determined by

fw =
⎡
⎢⎣

fwx

fwy

fwz

⎤
⎥⎦ =

⎡
⎢⎣

1
2ρScCxVx‖V ‖
1
2ρScCyVy‖V ‖
1
2ρSsCzVz‖V ‖

⎤
⎥⎦ (7)

where Sc is the cylinder surface, Ss the half-sphere surface,
and Cx , Cy , Cz the aerodynamic coefficients.
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The gravity of a GLMAV in the body-fixed frame can be
written as

fg = mg

⎡
⎣

− sin θ

cos θ sinφ

cos θ cosφ

⎤
⎦ = RT

η

⎡
⎣
0
0
mg

⎤
⎦ (8)

Generally, the aerodynamic force fw is difficult to
identify in practice, and thus it is regarded as the unknown
external disturbance acting on the body of a GLMAV, which
is compactly denoted by fext = fw in the body frame, or
Fext in the inertial frame, such that Fext = Rηfext .

Thus, the total force can be now given as

f = T + fg + fext (9)

2.2.3 Moments Acting on the Body

In this study, the major moment acting on the body of a
GLAMV is considered to be induced by the rotors. As a
result, the roll moment L and the pith moment M produced
by the longitudinal and lateral tilts of swashplate can be
presented as a cross product of the distance vector from the
gravity center G to the lower rotor rotation center O2 and
the lower rotor thrust. Meanwhile, the yaw moment depends
on the speed difference between the two rotors and the yaw
aerodynamic coefficients. Therefore, the moment vector can
be given as

τ =
⎡
⎣

L

M

N

⎤
⎦ =

⎡
⎣

−dβ sin δcx 

2
2

dβ sin δcy cos δcx 

2
2

γ1

2
1 + γ2


2
2

⎤
⎦ (10)

where d is the distance between center poins G and O2, γ1,
γ2 the yaw aerodynamic coefficients.

Similarly, by considering an unknown external moment
Mext resulted from the unknown forces in the body frame,
the total moments acting on the GLMAV are summarized as

� = τ + Mext (11)

2.3 System Dynamics

Provided that the contribution of lateral forces induced
by the incidence angles of the swashplate is negligible
compared to the main vertical force Tz, the lateral forces
Tx and Ty in Eq. 5 are both omitted for simplicity [5],
or Tx=Ty=0. Hence, the forces acting on the GLMAV are
simplified as

f = Tze3 + RT
η mge3 + fext (12)

with e3 = [0, 0, 1]T .

Thus, the dynamics for control design can be rewritten as

ṗ = v

v̇ = 1
m

(
TzRηe3 + mge3 + Fext

)
η̇ = Qηω

ω̇ = J−1(−ω × Jω + τ + Mext )

(13)

In this study, Tz and τ are regarded as the control inputs
of the GLMAV system. Once Tz and τ are determined by
certain control law, the four actual control signals 
1, 
2,
δcx and δcy acting on the GLMAV can be readily calculated.
As a matter of fact, by considering that the swashplate
incidence angles are small enough, paraxial approximation
is applicable [27], such that sinζ ≈ ζ, cosζ ≈ 1. Thus, the
following relationship can be established by recalling Eqs. 5
and 10.


2
1 = Tz−σβ
2

2
σα


2
2 = σαN−γ1Tz

σαγ2−σβγ1

δcx = −L

dβ
2
2

δcy = M

dβ
2
2

(14)

Remark 1 It has to be noted that the un-modeled
disturbances Fext and Mext are assumed to be time-varying
functions, instead of constants in literature [4, 24]. They will
be compensated by the robust control design introduced in
the following section.

3 Control Design

In this section, a robust controller is proposed for
trajectory tracking of GLMAV based on Lyapunov method.
The objective is to manipulate the GLMAV (13) to
track a desired translational and rotational trajectory, or
equivalently, to track a desired position pd = [xd, yd, zd ]T

and a desired yaw angle ψd . The whole diagram of the
closed-loop control system is shown in Fig. 2. Before
proceeding, following mild assumptions are present.

Assumption 1 The unknown disturbances Mext , and Fext ,
along with the first-order and second-order derivatives are
bounded, such that |Mext | ≤ M̄ , |Fext | ≤ F̄0, |Ḟext | ≤ F̄1,
|F̈ext | ≤ F̄2, where |·| denotes the L1-norm.

Fig. 2 Diagram of the closed-loop control system of GLMAV
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Assumption 2 The desired posture pd = [xd, yd, zd ]T and
ψd are smooth and bounded along with their derivatives.

3.1 Filtered Tracking Error Dynamics

Firstly, the position tracking error δp0 is defined as

δp0 = p − pd (15)

Then, the filtered position tracking error is defined as

rp = kp0δp0 + kp1δp1+kp2δp2+δp3 (16)

whose derivative can be derived as

ṙp = kp0δp1 + kp1δp2+kp2δp3+δp4 (17)

with δ̇p0 = δp1 , δ̇p1 = δp2 , δ̇p2 = δp3 , δ̇p3 = δp4 and kp0 ,

kp1 , kp2 ∈ R
+ are positive constants to meet that s3 + kp2

s2 + kp1s + kp0 is Hurwitz. Thus, δpi
→ 0 asymptotically

as rp → 0.
By differentiating δp0 and recalling the system dynamics

(13), one has

δp1 = v − ṗd

δp2 = 1
m

(TzRηe3 + mge3 + Fext ) − p̈d

δp3 = 1
m

(
ṪzRηe3+TzRηω̃e3 + Ḟext

) − p
(3)
d

(18)

where Rηω̃ = Ṙη with ω̃ being a skew symmetric matrix of
the vector ω as

ω̃ =
⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (19)

Proceeding with differentiating δp3 and recalling Eq. 13
yield

δp4 = 1
m

(
T̈zRηe3 − TzRηẽ3J

−1τ + 2ṪzRηω̃e3
+TzRηω̃

2e3 + TzRηẽ3J
−1(ω × Jω − Mext )

)

+ F̈ext

m
− p

(4)
d

(20)

where ẽ3 is the skew symmetric matrix of the vector e3 as

ẽ3 =
⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦ (21)

Similarly, the orientation tracking error δψ0 is defined as

δψ0 = ψ − ψd = eT
3 η − ψd (22)

Subsequently, the filtered orientation tracking error and
its derivative can be defined as

rψ = kψ0δψ0 + δψ1 (23)

ṙψ = kψ0δψ1 + δψ2 (24)

with δ̇ψ0 = δψ1 , δ̇ψ1 = δψ2 and kψ0 being a positive
constant. Thus, δψi

→ 0 asymptotically as rψ → 0.

Recalling Eq. 13, the first-order and second-order
derivatives of the orientation tracking error δψ0 can be
calculated as

δψ1 = eT
3 Qηω − ψ̇d (25)

δψ2 = eT
3

(
Q̇ηω + QηJ

−1(−ω × Jω + τ+Mext )
)

−ψ̈d (26)

3.2 State Feedback Control Design

It is firstly assumed that all states of the GLMAV system
are available for control design as feedback signals, i.e, p,
v, a, ȧ, η, ω are all accessible. In this way, a state feedback
control design is developed in this subsection.

The objective of the controller is to achieve rp → 0 and
rψ → 0. Firstly, substituting Eqs. 18 and 20 into Eq. 17
yields

ṙp = kp0δp1 + kp1δp2 + kp2δp3 − p
(4)
d + F̈ext

m

+ 1
m

(
T̈zRηe3 − TzRηẽ3J

−1τ + 2ṪzRηω̃e3
+TzRηω̃

2e3 + TzRηẽ3J
−1(ω × Jω − Mext )

) (27)

Thus, if the control law for position tracking is designed
to satisfy

1
m

(
T̈zRηe3 − TzRηẽ3J

−1τ
)

= − 1
m

(
2ṪzRηω̃e3 + TzRηω̃

2e3 + TzRηẽ3J
−1(ω × Jω)

)
−sgn(rp)�p−cprp−(

kp0δp1 + kp1δp2+kp2δp3

) + p
(4)
d

(28)

one has the dynamics of the filtered position tracking error
as

ṙp = −cprp − sgn(rp)�p + �p (29)

where cp is an user-defined positive constant,

�p = 1

m

(
|TzRηẽ3J

−1|M̄ + F̄2

)

and

�p = 1

m

(
−TzRηẽ3J

−1Mext + F̈ext

)
.

Furthermore, the dynamics of the filtered orientation
tracking error can be obtained by combining Eqs. 24 – 26 as

ṙψ = kψ0δψ1 − ψ̈d + eT
3 QηJ

−1τ

+eT
3

(
Q̇ηω + QηJ

−1(−ω × Jω + Mext )
) (30)

Similarly, design the control law for orientation tracking
to satisfy

eT
3 QηJ

−1τ = eT
3

(−Q̇ηω + QηJ
−1(ω × Jω)

)
−sgn(rψ)�ψ − cψrψ − kψ0δψ1+ψ̈d

(31)

which give us the dynamics of the orientation position
tracking error as

ṙψ = −cψrψ − sgn
(
rψ

)
�ψ + �ψ (32)
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where cψ is an user-defined positive constant, �ψ =
|eT
3 QηJ

−1|M̄ , and �ψ = eT
3 QηJ

−1Mext .
Therefore, Combining Eqs. 28 and 31, the two control

inputs can be compactly obtained by

[
τ

T̈z

]
= C−1X =

[
C11 C12

C21 C22

]−1 [
X1

X2

]
(33)

with

X1 = − 1
m

(
2ṪzRηω̃e3 + TzRηω̃

2e3
+TzRηẽ3J

−1(ω×Jω)
)−sgn(rp)�p−cprp

−(kp0δp1 + kp1δp2+kp2δp3) + p
(4)
d

X2 = eT
3

(−Q̇ηω + QηJ
−1(ω × Jω)

)
−sgn

(
rψ

)
�ψ − cψrψ − kψ0δψ1+ψ̈d

C11 = − 1
m

TzRηẽ3J
−1

C12 = 1
m

Rηe3
C21 = eT

3 QηJ
−1

C22 = 0

(34)

Remark 2 It should be noted that the position tracking
controller is based on establishing a dynamics of Tz, and T̈z

is employed as the augmented control signal. The vertical
thrust Tz and its first derivative Ṫz are considered as the
internal states of the controller and employed as feedback.

Remark 3 The matrix C in Eq. 33 must be invertible for the
acquirement of the control inputs, the determinant of which
can be calculated as

det(C) = − 1

m3

1

JxxJyyJzz

T 2
z

cosφ

cos θ
(35)

It is straightforward to find that there exist two “failure
situations”, in which det(C) = 0: 1) The vertical thrust
equals to zero; 2) The GLMAV is overturned [3]. In this
study, the desired posture is designed to avoid the two
scenarios and thus they are out of the scope of discussion.

Finally, the stability analysis for the control laws
designed in Eqs. 33 and 34 can be given by the following
theorem.

Theorem 1 Let Assumptions 1 and 2 hold. Consider a
GLMAV system represented by Eq. 13 with the state vector
available. If the controller is designed as Eq. 33, then,
all system signals are bounded, and the tracking errors
converge to zero asymptotically, i.e., δp0 → 0, δψ0 → 0, as
t → ∞.

Proof Please see the Appendix.

3.3 Output Feedback Control Design with High-Gain
Observer

In practice, not all states of the GLMAV system are available.
In general, only the position states p, v and the attitude
states η, ω are accessible for feedback. As a consequence,
the state-feedback based controller designed in the previous
subsection cannot be directly implemented. In this case,
a high-gain state observer is designed for estimating the
unavailable states, whose outputs are subsequently routed to
the controller.

Firstly, rewrite the system state δp4 in Eq. 20 as

δp4 = χ + �p (36)

with

χ = 1
m

(
T̈zRηe3 − TzRηẽ3J

−1τ
) + 1

m

(
2ṪzRηω̃e3

+TzRηω̃
2e3 + TzRηẽ3J

−1(ω × Jω)
) − p

(4)
d

(37)

is a known function.
Subsequently, the structure of the high-gain observer to

identify the unknown states δp2 and δp3 is shown as

˙̂
δp1 = δ̂p2 + h1(δp1 − δ̂p1)˙̂
δp2 = δ̂p3 + h2(δp1 − δ̂p1)˙̂
δp3 = χ + h3(δp1 − δ̂p1)

(38)

where δ̂p1 , δ̂p2 , and δ̂p3 are respectively the estimate of δp1 ,
δp2 and δp3 . h1, h2, h3 ∈ R

+ are positive constant observer
gains satisfying 1 � h1 � h2 � h3.

The observer errors are defined as ep = [eT
p1

, eT
p2

, eT
p3

]T
with epi

= δpi
− δ̂pi

, i = 1, 2, 3. The error dynamics can be
delivered from the definitions and Eq. 38 as

ėp1 = ep2 − h1ep1

ėp2 = ep3 − h2ep1

ėp3 = �p − h3ep1

(39)

which can be compactly written as

ėp = Aep + B�p (40)

with

A =
⎡
⎣

−h1I3 I3 03
−h2I3 03 I3
−h3I3 03 03

⎤
⎦ B = [

03 03 I3
]T

(41)

where I3 ∈ R
3×3 is the identity matrix, and 03 ∈ R

3×3 is the
null matrix. A is chosen to be a Hurwitz matrix, thus there
exists a symmetric, positive definite matrix P ∈ R

9×9 s.t.

AT P + PA = −λI9 (42)

where λ ∈ R
+ is a positive constant, and I9 ∈ R

9×9 is the
identify matrix.

Moreover, it has to be noted that the discontinuous
function sgn(·) in the control law (33) will require infinite
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actuator bandwidth and result in chattering effects [31].
To overcome this difficulty, the following continuous
hyperbolic function tanh(·) is employed instead to replace
sgn(·), where

tanh(u) = eu − e−u

eu + e−u
(43)

Following Lemma is then presented for stability analysis.

Lemma 1 ([26]) The following inequality holds for any
constant ε > 0 and for any u ∈ R

0 ≤ |u| − u tanh
(u

ε

)
≤ κε (44)

where κ satisfies κ = e−(κ+1); i.e., κ = 0.2785.

Thereafter, provided that the estimates δ̂p2 and δ̂p3 are
utilized to replace the unknown states δp2 and δp3 , the output
feedback controller can be given as

[
τ

T̈z

]
= C−1X =

[
C11 C12

C21 C22

]−1 [
X1

X2

]
(45)

with

X1= − 1
m

(
2ṪzRηω̃e3 + TzRηω̃

2e3

+TzRηẽ3J
−1(ω×Jω)

)−tanh
(

r̂p
εp

)
�p−cpr̂p

−
(
kp0δp1 + kp1 δ̂p2+kp2 δ̂p3

)
+ p

(4)
d

X2= eT
3

(−Q̇ηω + QηJ
−1(ω × Jω)

)

−tanh
(

rψ
εψ

)
�ψ − cψrψ − kψ0δψ1+ψ̈d

(46)

At last, the stability analysis for the output feedback
control law designed in Eqs. 45 and 46 is given by the
following theorem.

Theorem 2 Let Assumptions 1 and 2 hold. Consider a
GLMAV system represented by Eq. 13 with only the system
states p, v, η and ω available. If an output feedback
controller is designed as Eq. 45 with a state observer
in Eq. 38, then, the tracking errors, as well as all
system signals, are uniformly ultimately bounded (UUB).
Moreover, the tracking errors can be arbitrarily reduced by
increasing control gains.

Proof Please see the Appendix.

4 Simulation Results

In order to verify the performance of the proposed
controller, extensive simulation studies are conducted on a
complete GLMAV model in Eq. 1. The parameters adopted

Table 1 Parameters of GLMAV for simulations

Parameter Value Unit

α −3.6835 × 10−5 N .rad−2.s−2

β −3.7760 × 10−5 N .rad−2.s−2

γ1 1.4765 × 10−6 N .m.rad−2.s−2

γ2 −1.3266 × 10−6 N .m.rad−2.s−2

ρ 1.204 kg.m−3

σ 1 −
Cx 0.09 −
Cy 0.09 −
Cz 0.2 −
d 67.6 × 10−3 m

D 40 × 10−3 m

g 9.81 m.s−2

Jxx 1.383 × 10−3 kg.m2

Jyy 1.383 × 10−3 kg.m2

Jzz 2.72 × 10−4 kg.m2

l 130 × 10−3 m

m 410 × 10−3 kg

Sc 10.4 × 10−3 m2

Sprop 34 × 10−2 m2

Ss 5.0 × 10−3 m2

in simulations are tabulated in Table 1 [7]. A trajectory
tracking task in a hovering flight is considered in this study,
and the initial conditions are set as: p0 = [0 0 100]T ,
v0 = [0 0 0]T , a0 = [0 0 0]T , η0 = [0 0 0]T

and ω0 = [0 0 0]T . For simplicity, only the output-
feedback controller is implemented in simulation tests and
the corresponding parameters of the controller are selected
as cp = 2.5, kp0 = 1.5, kp1 = 2.5, kp2 = 2.5, cψ = 2.5,
kψ0 = 2.5, F̄2 = 5 × 102, M̄ = 6 × 10−3, εp = 2 × 102,
εψ = 2 × 10−2, h1 = 50, h2 = 500 and h3 = 5000.

Firstly, the performance of the proposed controller is
evaluated in four scenarios: 1) flight without external
disturbance; 2) flight with sine-like external disturbance;
3) flight with sensing noise; 4) flight with turbulent
disturbance. Initially, the MAV is supposed to run in the
operational phase. It is maneuvered to track a piecewise
continuous desired trajectory [2]. Additionally, a path
tracking comparison study in opposite to [20, 21] has also
been carried out to validate the benefits of the proposed
scheme.

4.1 Scenario 1: Flight without External Disturbance

Firstly, consider an ideal case where no external disturbance
is acting on the body of the GLMAV, i.e., Fext , Mext = 0.
The position and orientation tracking performance of the
proposed robust controller in hovering flight is illustrated
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(a) (b)

Fig. 3 Simulation result without external loads

in Fig. 3a. It can be found that the vehicle is able to converge
to the desired curve with settling time of less than 5
seconds. Moreover, the trajectories of control inputs are also
demonstrated in Fig. 3b, which shows the boundedness of
control signals and the stability of the closed-loop system.
Physical limits of the actuators for safe flights are also
plotted as dashed lines.

4.2 Scenario 2: Flight with Sine-like External
Disturbance

In practice, the MAV is usually subject to varying external
disturbance. In this scenario, to verify the robustness of the
proposed controller, consider unknown external loads Fext

andMext on the system dynamics during flight. Specifically,
sine-like signals [20] are adopted in this case as following

Fext =
⎡
⎣
1 + 0.2 sin(0.5t)
1 + 0.2 sin(0.5t)
1 + 0.2 sin(0.5t)

⎤
⎦ (N)

Mext =
⎡
⎣
1.5 + 0.3 sin(0.5t)
1.5 + 0.3 sin(0.5t)
1.5 + 0.3 sin(0.5t)

⎤
⎦ (mN .m)

(47)

The generated output trajectories of the proposed scheme
are plotted in Fig. 4a. It can be observed that, when
the proposed robust controller is enforced, the GLMAV’s
position and orientation still can rapidly track the desired

(a) (b)

Fig. 4 Simulation result with sine-like external loads
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trajectories even in the presence of unknown varying
external loads. To testify the stability of the whole system,
the control signals are also provided in Fig. 4b. Due
to the involvement of unknown external loads, higher
regulating frequency in the control inputs can be observed
for compensating the additional disturbance.

4.3 Scenario 3: Flight with Sensing Noise

Moreover, considering that there always exists sensing
noise in signal measurements, a numerical test similar to
Scenario 2 but with measurement noise in output signals
is conducted. Specifically, the system outputs (i.e., p, v, η

and ω) are corrupted with 3% white noise. The generated
trajectories depicted in Fig. 5a demonstrate alike tracking
performance compared with Fig. 4a, even in the presence of
sensing noise. Meanwhile, certain chattering phenomenon
appears in the control signals plotted in Fig. 5b, which is a
result of the high-frequency measurement noise.

4.4 Scenario 4: Flight with External Turbulent
Disturbance

This simulation study is conducted by considering the fact
that the stochastic winds are usually the major cause of
external disturbance appearing in the flight of GLMAVs.
In order to better imitate the actual flight, a turbulent
wind is introduced into each body axis of the system
dynamics via Eqs. 6 and 7. The wind is generated by Wind
Turbine Blockset in Matlab Simulation based on the Kaimal
turbulent model, whose profile is shown in Fig. 6. It has a
mean value of 20m/s and turbulence intensity of 12%.

The simulation result in Fig. 7a shows satisfactory
tracking performance of the controller despite of stochastic

Fig. 6 Turbulent wind profile for scenario 3

turbulent winds. Fast convergence to the desired trajectory
can be observed and the stability of the closed-loop system
is further demonstrated in Fig. 7b. The proposed controller
has exhibited strong robustness with respect to external
disturbance in various conditions.

4.5 Scenario 5: Trajectory Tracking Comparison
with Current Approaches

In this scenario, a comparison study between the proposed
controller and the hierarchical approaches in [20, 21] is
conducted for path tracking task under varying external
loads adopted in Scenario 2. The output trajectories of all
approaches are plotted in Figs. 8 and 9, respectively in 3D
and top view. Although all of them can achieve satisfactory

(b)(a)

Fig. 5 Simulation result with sensing noise
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(a) (b)

Fig. 7 Simulation result with external turbulent winds

Fig. 8 Comparison result in 3D view (a the proposed approach; b controller with LESO in [20]; c controller with FTDO in [21])

Fig. 9 Comparison result in top view (a the proposed approach; b controller with LESO in [20]; c controller with FTDO in [21])
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tracking performance, it can be seen that the proposed
controller delivers the best result.

5 Conclusion

In this paper, how to achieve satisfactory tracking control
performance of an unmanned coaxial-rotor MAV in a highly
uncertain environment is investigated. A detailed dynamic
model with unknown external loads is firstly established for
control design purpose. A nonlinear robust controller is then
proposed based on filtered tracking errors and Lyapunov
analysis provided that all system states are available. To
overcome the practical challenge that certain states are not
measurable, a high gain observer is introduced to estimate
derivatives of the vehicle position and an output feedback
controller is developed. Theoretical analysis verifies the
stability of the entire closed-loop system. Additionally,
extensive simulation studies illustrate that the proposed
scheme can achieve a good performance in terms of position
and orientation trajectory tracking.

Future work includes designing mechanical prototypes to
conduct real-world experiments and proposing more intelli-
gent control algorithms for the vehicle with severe system
uncertainties (both external aerodynamic disturbances and
undetermined system parameters).
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Science Foundation of China (Grant No. 61673347, U1609214).

Appendix

Proof of Theorem 1 Considering a candidate Lyapunov
function

V = Vp + Vψ (48)

with

Vp = 1

2
rT
p rp, Vψ = 1

2
rT
ψ rψ (49)

Recalling Eq. 29, the time derivative of Vp is given by

V̇p = rT
p

˙rT
p

= −cprT
p rp + rT

p �p − rT
p sgn

(
rp

)
�p

≤ −cprT
p rp + |rT

p |�p − rT
p sgn(rp)�p

≤ −cprT
p rp

(50)

Further, Eq. 32 can be employed to obtain the derivative of
Vψ

V̇ψ = rT
ψ ṙT

ψ

= −cψrT
ψ rψ + rT

ψ �ψ − rT
ψ sgn

(
rψ

)
�ψ

≤ −cψrT
ψ rψ + |rT

ψ |�ψ − rT
ψ sgn

(
rψ

)
�ψ

≤ −cψrT
ψ rψ

(51)

Thus, the derivative of V is

V̇ = V̇p + V̇ψ ≤ −cψrT
ψ rψ − cprT

p rp ≤ cV (52)

where c = min{2cp, 2cψ }. Solving Eq. 52 generates

0 ≤ V ≤ V (0)e−ct (53)

where V (0) = 1
2 (r

T
p (0)rp(0) + rT

ψ (0)rψ(0)) is the initial
value.

Obviously, V → 0 as t → ∞. This implies that
rp, rψ → 0 as t → ∞. Subsequently, the tracking error
δpi

and δψi
defined in Eqs. 16 and 23 also converge to zero

asymptotically by definition. Thus, the closed-loop system
can asymptotically track the reference trajectories pd and
ψd . With the help of Eq. 18 and Assumption 1 − 2, v

and Tz are bounded. Rη and Qη are also bounded since
−π

2 < θ, φ < π
2 . Similarly, the signals ωx , ωy and Ṫz are

all bounded according to Eq. 18. Through Eq. 25, one can
reach that ωz is bounded, and so is Q̇η. Thus, the two control
inputs τ and T̈z are also bounded from Eq. 33.

Proof of Theorem 2 Consider the following Lyapunov func-
tion candidate

V = V p + V ψ (54)

with

V p = 1

2
rT
p rp + eT

p P ep, V ψ = 1

2
rT
ψ rψ (55)

Define the estimated filtered position tracking error as

r̂p = kp0δp0 + kp1δp1+kp2 δ̂p2+δ̂p3 (56)

If enforcing the output feedback controller (45), the
filtered position tracking error dynamics (27) can be
rewritten as

ṙp = − tanh
(

r̂p
εp

)
�p + �p + kp0δp1 + kp1δp2

+kp2δp3 − cpr̂p −
(
kp0δp1 + kp1 δ̂p2+kp2 δ̂p3

)

= − tanh
(

r̂p
εp

)
�p + �p + (kp1 + cpkp2)ep2

+(kp2 + cp)ep3 − cprp

(57)

Thus, the derivative of V p can be given by

V̇ p = rT
p ṙp + ėT

p P ep + eT
p P ėp

= −rT
p tanh

(
r̂p
εp

)
�p + rT

p �p + (kp1 + cpkp2)r
T
p ep2

+(kp2 + cp)rT
p ep3 − cprT

p rp + ėT
p P ep + eT

p P ėp

(58)
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Substituting Eqs. 40 and 42 into Eq. 58 generates

V̇ p = −rT
p tanh

(
r̂p
εp

)
�p + rT

p �p − cprT
p rp

+(kp1 + cpkp2)r
T
p ep2 + (kp2 + cp)rT

p ep3

+eT
p (AT P + PA)ep + 2eT

p PB�p

= −rT
p tanh

(
r̂p
εp

)
�p + rT

p �p − cprT
p rp

+(kp1 + cpkp2)r
T
p ep2 + (kp2 + cp)rT

p ep3

−λeT
p ep + 2eT

p PB�p

(59)

Meanwhile, by resorting to Lemma 1, it is apparent that for
the vector rp ∈ R

3 and a positive constant εp > 0,

0 ≤ rT
p

(
sgn(rp) − tanh

(
rp

εp

))

= |rp| − rT
p tanh

(
rp

εp

)
≤ 3κεp (60)

Thus, one further has

V̇ p = −rT
p tanh

(
r̂p
εp

)
�p + rT

p tanh
(

rp
εp

)
�p

−rT
p tanh

(
rp
εp

)
�p + rT

p sgn
(
rp

)
�p

−rT
p sgn

(
rp

)
�p + rT

p �p − cprT
p rp

+(kp1 + cpkp2)r
T
p ep2 + (kp2 + cp)rT

p ep3

−λeT
p ep + 2eT

p PB�p

≤ −rT
p tanh

(
r̂p
εp

)
�p + rT

p tanh
(

rp
εp

)
�p

+3κεp�p − rT
p sgn

(
rp

)
�p + rT

p �p − cprT
p rp

+(kp1 + cpkp2)r
T
p ep2 + (kp2 + cp)rT

p ep3

−λeT
p ep + 2eT

p PB�p

≤ 3κεp�p + rT
p

(
tanh

(
rp
εp

)
− tanh

(
r̂p
εp

))
�p

(kp1 + cpkp2)r
T
p ep2 + (kp2 + cp)rT

p ep3

−cprT
p rp − λeT

p ep + 2eT
p PB�p

(61)

With the help of Young’s inequality and the fact that | tanh
(·)| ≤ 1, Eq. 61 results in

V̇ p ≤ 3κεp�p + rT
p rp

2ε1
+ 6ε1�2

p − cprT
p rp

+ (
kp1 + cpkp2

) (
rT
p rp

2ε2
+ ε2e

T
p2

ep2
2

)

+(kp2 + cp)

(
rT
p rp

2ε3
+ ε3e

T
p3

ep3
2

)
− λeT

p ep

+ε4e
T
p ep + ‖PB�p‖2

ε4

≤ −
(
cp − 1

2ε1
− kp1+cpkp2

2ε2
− kp2+cp

2ε3

)
rp

T rp

−
(
λ − (kp1+cpkp2 )ε2

2 − (kp2+cp)ε3
2 − ε4

)
eT
p ep

+3κεp�p + 6ε1�2
p + ‖PB�p‖2

ε4

(62)

where ‖ · ‖ denotes the L2-norm, and ε, ε1, ε2, ε3, ε4 ∈ R
+.

Similarly, with the controlled designed in Eq. 45,
the filtered orientation tracking error dynamics can be
rephrased to be

ṙψ = −cψrψ − tanh
(

rψ
εψ

)
�ψ + �ψ (63)

Hence, the derivative of V ψ can be given by

V̇ ψ = rT
ψ ṙψ = −rT

ψ tanh
(

rψ
εψ

)
�ψ + rT

ψ �ψ − cψrT
ψ rψ

≤ −cψrT
ψ rψ + κεψ�ψ

(64)

Combining Eq. 62 with Eq. 64 delivers

V̇ ≤ −
(
cp − 1

2ε1
− kp1+cpkp2

2ε2
− kp2+cp

2ε3

)
rp

T rp

−
(
λ − (kp1+cpkp2 )ε2

2 − (kp2+cp)ε3
2 − ε4

)
eT
p ep

−cψrT
ψ rψ + κ

(
3εp�p + εψ�ψ

)+6ε1�2
p+ ‖PB�p‖2

ε4≤ −cp1rp
T rp − cp2e

T
p ep − cψrT

ψ rψ + C

(65)

where cp1 , cp2 , C ∈ R
+ with

cp1 = cp − 1
2ε1

− kp1+cpkp2
2ε2

− kp2+cp

2ε3

cp2 = λ − (kp1+cpkp2 )ε2
2 − (kp2+cp)ε3

2 − ε4

C = κ
(
3εp�p + εψ�ψ

) + 6ε1�2
p + ‖PB�p‖2

ε4

(66)

Hence, V̇ will becomes negative as long as

rp /∈ 
rp =
{

rp

∣∣∣∣‖rp‖ ≤
√

C

cp1

}
(67)

or

ep /∈ 
ep =
{

ep

∣∣∣∣‖ep‖ ≤
√

C

cp2

}
(68)

or

rψ /∈ 
rψ =
{

rψ

∣∣∣∣‖rψ‖ ≤
√

C

cψ

}
(69)

According to the standard Lyapunov analysis, one has
that the filtered tracking errors rp, rψ , and the observer error
ep are uniformly ultimately bounded (UUB). Furthermore,
the tracking errors can be arbitrarily reduced by increasing
control gains cψ , cp, h1, h2 and h3. By following the
similar analysis in Proof of Theorem 1, the signals Tz, Ṫz,
ω are bounded as well as all the elements of Rη, Qη and
Q̇η. Furthermore, the estimation signals δ̂p2 , δ̂p3 and r̂p
are bounded since the observer error vector ep is bounded.
Thus, the control signals T̈z and τ are proved to be bounded
from Eq. 45.
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