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Abstract
A novel unified control approach is proposed to simultaneously solve tracking and obstacle avoidance problems of a
wheeled mobile robot (WMR) with unknown wheeled slipping. The longitudinal and lateral slipping are processed as three
time-varying parameters and an Adaptive Unscented Kalman Filter (AUKF) is designed to estimate the slipping parameters
online More specifically, an adaptive adjustment of the noise covariances in the estimation process is implemented using
a technique of covariance matching in the Unscented Kalman Filter (UKF) context. A stable unified controller is applied
to simultaneously handle tracking and obstacle avoidance for this WMR system to compensate for the unknown slipping
effect. Applying Lyapunov stability theory, it is proved that tracking errors of the closed-loop system are asymptotically
convergent regardless of unknown slipping, the tracking errors converge to the zero outside the obstacle detection region
and obstacle avoidance is guaranteed inside the obstacle detection region. The effectiveness and robustness of the proposed
control method are validated through simulation and experimental results.

Keywords Trajectory tracking control · Obstacle avoidance · Slipping parameters estimation · Adaptive unscented Kalman
filter · Wheeled mobile robot

1 Introduction

All kinds of mobile robots will change our lives in the
near future. The relevant environmental information can be
obtained by various types of sensors in motion control of
a mobile robot [1, 2]. As an important branch of mobile
robots, the wheeled mobile robots (WMRs) have better
dexterity and larger working space than the traditional
industrial robots [3, 4]. Therefore, they are extensively
used in complex dynamic environments, such as military
scientific and commercial fields and so on [5]. Some con-
trol problems on the WMR have been studied by means of
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neural networks in [6]. Adaptive slipping mode control
is usually used to deal with the model uncertainty in
the WMR [7]. A radio frequency identification (RFID)-
based control method has also been proposed for a mobile
robot [8, 9]. Furthermore, the WMR often encounters
obstacles when working in complex environment [10]. In
this case, some control problems of WMR have been
investigated on tracking and obstacle avoidance based
on the kinematic model [11–13] We notice that tracking
and obstacle avoidance controllers are separately designed
in most of the previously existing researches, which
easily lead to the low work efficiency and cause high
frequency noise [14]. So, it is necessary to design a unified
controller to solve simultaneously the two problems–
tracking and obstacle avoidance control Furthermore, we
notice that these previous works always assume that the
mobile robots are subject to a ‘pure rolling without
slipping’, namely they satisfy nonholonomic constraints for
controlling mobile robots. However, the slipping effects
have a crucial influence on the performance of mobile
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robots that cannot be ignored. It means that we should
deal with the mobile robot model with slipping induced
from perturbed nonholonomic constraints for more practical
consideration. From this aspiration, some researchers
proposed some approaches for controlling mobile robots
considering skidding and slipping [15–19]. Among of them,
the lateral slipping effect was only considered in [15, 16].
Wang and Low proposed models of the WMR considering
wheel’s slipping and analyzed its controllability according
to the maneuverability of the WMR in [17] They also
designed controllers for path following and tracking of the
WMR considering unknown slipping [18, 19]. However, it
required that the information of skidding and slipping can
be measured by the global positioning system (GPS) and the
kinematics was only used for designing the controllers in [9,
18]. What is more, these works [17–19] did not include any
ideas for the obstacle avoidance of the WMR with wheels’
slipping

For the above reasons, it is very arduous and difficult
to handle both the tracking and obstacle avoidance by
using one unified controller There are only a few results
available on the tracking control problem for the WMR
considering obstacle avoidance, even though the problem
is practical and important. Recently, some research works
have been investigating the problem at the kinematic level
[20, 21] and at the dynamic level [22–24]. In [21] that paper
considers distributed control of multiple nonholonomic
wheeled mobile robots moves along a desired trajectory
under the condition that the desired trajectory is available
to only a portion of the group of systems. Therefore, the
Lyapunov techniques and results from graph theory are
applied. Distributed control laws are proposed with the aid
of neighbors’ information. However, obstacle avoidance and
wheels’ slipping effects are not considered in the design of
the controllers. Some control approaches were reported in
that [20, 22] are generally designed for tracking controllers
with obstacle avoidance by using position tracking errors
without the coordinate transformation. However, some
methods were developed without considering skidding
and slipping effects [20, 22], and obstacle avoidance is
not considered in [23]. In [24], an adaptive controller is
designed for trajectory tracking and obstacle avoidance of
mobile robots considering unknown slipping at the dynamic
level by backstepping technology, but the design process
of controller is rather complex and it is very difficult to
carry out in practice. These factors above motivate us to
further the study on the tracking and obstacle avoidance
problems of the WMR in the presence of unknown wheels’
slipping

The main contributions of our work are the design
of a unified control system for tracking and obstacle
avoidance of a class of mobile robots in the presence of
unknown slipping at the robot kinematic level Notice that

tracking and obstacle avoidance controllers are separately
designed in most of the previously existing researches
However, an adaptive unscented kalman filter (AUKF) is
designed to estimate the slipping parameters in a noisy
environment, and provides far greater accuracy than the
previous standard unscented Kalman filter(UKF). Different
from the extended kalman filter (EKF), the UKF can be
applied to approximate the nonlinear process. Therefore,
the proposed control strategy is novel in this paper. More
specifically, in the theoretical part of this paper, we design
a controller that guarantees tracking with bounded error and
obstacle collision avoidance for the WMR with unknown
wheels’ slipping First of all the kinematic model of the
WMR considering slipping influence is established, where
slipping is modeled as three time-varying parameters.
Secondly, the AUKF is applied to estimate online time-
varying slipping parameters in a noisy environment. The
proposed unified controller is designed by applying the
Lyapunov design technique where the angle velocities of the
wheels’ are considered as the real-time control to deal with
the unmatched slipping factor at the robot kinematics level.
By using the Lyapunov stability approach with a potential
function, we prove that tracking errors of the closed-loop
robot system can converge asymptotically, the tracking
errors converge to zero outside the obstacle detection region
and no collision between the robot and the obstacle is
guaranteed inside the obstacle detection region, regardless
of unknown slipping. Finally, simulations and experiments
are carried out to verify the effectiveness of the proposed
control approach.

This paper is organized as follows. In Section 2, we
establish the kinematic model of mobile robots considering
slipping influence, where slipping is modeled as three time-
varying parameters. In Section 3, an AUKF is employed to
estimate slipping parameters, which is introduced in details.
In Section 4, the control law is designed that guarantees
tracking and obstacle avoidance for the mobile robot with
slipping, and the stability of the proposed control system is
analyzed. Simulation and experimental results are discussed
in Section 5. Finally, Section 6 gives some conclusions.

2 Kinematic Model of theWMR
in the Presence of Slipping

The model of a differentially steered WMR is shown as
Fig. 1. It has two driving wheels and two universal wheels
where the two driving wheels are powered independently
by two direct current motors respectively and have the same
wheel radius.

To describe the motion characters of tracked mobile
robot simply and rigorously in the general plane motion, a
fixed reference coordinate frame F1(xf , yf ) and a moving
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Fig. 1 Wheeled mobile robot with two independent driving wheels

coordinate frame F2(xm, ym) are defined which attach to the
robot body with origin at the geometric center Om

The linear velocities of the left and right driving wheels
of the WMR without wheels’ slipping are represented as
follows

vL = rωL, vR = rωR (1)

where ωL and ωR are the angular velocities of the left and
right wheels respectively and r is radius of the wheels.
Longitudinal slipping ratio of the left and right wheels of a
mobile robot are defined as [25]

iL = rωL − vs
L

rωL

, iR = rωR − vs
R

rωR

(2)

where vs
L and vs

R are the linear velocities of the left and
right wheels of the mobile robot with wheels’ slipping
respectively.

The lateral slipping ratio of a WMR is defined as [25]

δ = tan α (3)

where α is the lateral slipping angle of a mobile robot (see
Fig. 1) It is the angle between the velocity of the mobile
robot v and the x axis of a local frame attached to the mobile
robot

Assumption 1 The ranges of longitudinal slip ratios iL, iR
lie in {i |i ∈ R, i �= 1 }

Assumption 2 The lateral slipping angle α lies in
{α |α ∈ R, α �= π/2 }

Assumption 3 The reference trajectory is smooth and
satisfies the following conditions:

|e3| �= π

2
, α − e3 �= π

2
(4)

where e3 = θ − θr is the orientation error, θ is orientation
angle, θr is reference orientation angle and α is the lateral
slipping angle of a mobile robot (See Fig. 1)

Remark 1 If iR = iL = 1, from (2), we know that vs
L =

vs
R = 0, which implies a complete slipping, i.e., the wheels

of the mobile robot are rotating, while its forward speed
is zero, the mobile robot is uncontrollable This case is not
considered.

Remark 2 If α = π/2, it implies that mobile robot is in
a state of complete lateral slipping and the mobile robot is
uncontrollable This case is not considered. That is the lateral
slipping ratio δ is bounded.

Remark 3 Assumption 3 on the reference trajectory implies
the following two conditions:

(1) The reference trajectory is such that it does not initiate
sharp turns of 90◦ with respect to the current orientation of
the robot.

(2) When Assumption 3 is not satisfied, θr is replaced to
solve the singularity problem with the following perturbed
version: θ̄r = θr + ε̄1, in which ε̄1 �= 0 is some small
perturbation value.

Remark 4 Abrupt changes of the slipping parameter has its
obvious physical meaning: the slipping parameter δ reflects
the lateral slipping effect of the WMR, Sudden acceleration
of the WMR can directly lead to the sudden changes;
Similarly, the slipping parameters iR and iL represent the
longitudinal slipping of the left and right wheels of robot,
slipping parameters iR = 0 or iL = 0 indicates that
no slipping occurrence, iR > 0 or iL > 0 indicates
accelerated slipping (such as the starting process of robot,
or declined ground friction coefficient), and iR < 0
or iL < 0 indicates that decelerated slipping (such as
braking process), namely when the robot changes suddenly
motion direction and accelerated motion can lead to abrupt
changes.

In coordinate frame F1(xf , yf ), the kinematic mode of
the differential WMR with slipping is described as follows
[25]

ẋ = rωL(1−iL)+rωR(1−iR)
2 (cos θ + δ sin θ)

ẏ = rωL(1−iL)+rωR(1−iR)
2 (sin θ − δ cos θ)

θ̇ = rωR(1−iR)−rωL(1−iL)
b

(5)

where [x, y, θ]T is posture vector of the mobile robot, θ is
heading angle of the WMR. We suppose slipping parameters
iR, iL and δ are all unknown.
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An auxiliary control input is defined as [v, ω]T, and the
relationship between auxiliary control input and real control
input [ωL, ωR]T is obtained as
[

v

ω

]
=

[
r(1−iL)ωL+r(1−iR)ωR

2−r(1−iL)ωL+r(1−iR)ωR

b

]
= T

[
ωL

ωR

]
(6)

where matrix T is a nonsingular matrix, and T is defined as

T = r

[
1−iL

2
1−iR

2−(1−iL)
b

1−iR
b

]
(7)

From (6), we know that the effective control input
[ωL, ωR]T can be obtained as follows:
[

ωL

ωR

]
= T −1

[
v

ω

]
= 1

r

[
1

1−iL
− b

2(1−iL)
1

1−iR

b
2(1−iR)

][
v

ω

]
(8)

Equation (5) can be rewritten as follows:⎡
⎣ ẋ

ẏ

θ̇

⎤
⎦ =

⎡
⎣ cos θ + δ sin θ 0

sin θ − δ cos θ 0
0 1

⎤
⎦

[
v

ω

]
(9)

It can be seen from (9) that in order to solve tracking and
obstacle avoidance unified control problem of the WMR
with unknown slipping parameters, it is the top priority to
estimate time-varying slipping parameters online, and then
to design unified controller on the basis of estimation results
of the slipping parameters.

3 A Scheme of the Robotic Slipping
Parameter Estimation

Due to the factor that three slipping parameters iR, iL, δ in
(5) are not measured directly, it is necessary to estimate
slipping parameters in order to design tracking controller. To
estimate the states and slipping parameters, joint estimation
technique can be used, that is, states and parameters are
estimated simultaneously using a same filter [26]. It is often
used to solve the state feedback control with uncertain
parameters, or the modeling of the parameters with noise
and states that can’t be measured directly. Because of
the incorporation of the states and the parameters, more
accurate results may be made using this approach. In the
localization of the mobile robot with slipping, the pose and
the slipping parameters should be estimated at the same
time. A new state vector P̄ = [x, y, θ, iR, iL, δ]T is defined
as a combination of the old states and parametric vector. In
this augmented state, the dynamic of the slipping parameters
are often unknown. In discrete time domain, it can be
rewritten as follows:

P̄k+1 = P̄k + wp̄,k, k = 0, 1, 2, · · · (10)

where P̄k ∈ Rp is the discrete parametric vector; wp̄,k ∈
Rpis the additive process noise which drives the model.
The UKF is introduced to estimate jointly the state and
slipping parameters. Unlike the EKF [27], the UKF is
able to approximate the nonlinear process and observation
models [28]. Instead, it uses the true nonlinear models and
approximates the distribution of the state random variable.
The UKF, which does not need to compute the Jacobian,
the so-called unscented transform and sigma points are used
to propagate all of them through models. We propose an
AUKF to estimate slipping parameters of the WMR. More
specifically, the values of the process and measurement
noise covariances are adaptively adjusted in the estimation
process, on the basis of the output pose sequence of the
mobile robot model. As a result, the AUKF often leads to
more accurate estimations than the standard UKF.

Given the following general nonlinear system

{
xk+1 = f (xk, uk) + wk

yk+1 = h(xk) + vk
(11)

where f (xk, uk) and h(xk) are the nonlinear process
and measurement models of the WMR, respectively.
The unmeasurable state vector is represented by xk =[
x y θ iR iL δ

]T
, uk is known as the control input

vector, and yk = [
ẋ ẏ θ̇

]T
is the observed output. wk

and vk are the process and measurement noise, respectively,
which are both uncorrelated zero-mean Gaussian white
sequences. The initial state vector is defined as x0. The
AUKF algorithm is given as follows

i) Standard UKF:

(1) Initialization at k = 0:

{
x̄0 = E [x0]
P0 = E

[
(x0 − x̄0)(x0 − x̄0)

T
] (12)

where x̄0 is the expected value of the initial state, P0 is initial
covariance.

The augmented state including original states, parameters
and process noises are defined as

{
x̂a

0 = [ x̄T
0 0 0 ]T

P a
0 = diag(P0, Q0, R0)

(13)

(2) For k = 1, 2, · · · , ∞
(a) Calculate sigma points

Xk = [
x̂a
k , x̂a

k + γ
√

P a
k , x̂a

k − γ
√

P a
k

]
(14)
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(b) The prediction step
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X∗
k+1,k = f (Xk, uk)

x̂a
k+1,k =

2n∑
i=0

Wm
i X∗

k+1,k(i)

P a
k,k+1 =

2n∑
i=0

Wc
i

[
X∗

k+1,k(i) − x̂a
k+1,k

] [
X∗

k+1,k(i) − x̂a
k+1,k

]T + Qk

Xk+1,k =
[

x̂a
k+1,k, x̂a

k+1,k + γ
√

P a
k,k+1, x̂a

k+1,k − γ
√

P a
k,k+1

]
Yk+1,k = h(Xk+1,k)

ŷk+1,k =
2n∑
i=0

Wm
i Yk+1,k(i)

(15)

where Qk is the process noise covariance matrix and the
weights Wm

i and Wc
i are defined as follows

⎧⎪⎨
⎪⎩

Wm
i = λ

n+λ
, i = 0

Wc
i = λ

n+λ
+ (1 − α2

F + βF ), i = 0
Wm

i = Wc
i = 1

2(n+λ)
, i = 1, 2, · · · , 2n

(16)

where n is the dimension of the augmented states, αF

controls the size of the sigma point distribution and
should be ideally a small number to avoid sampling non-
local effects when the nonlinearities are strong and βF

is a non-negative weighting term, which can be used to
acknowledge the information of the higher order moments
of the distribution. For a Gaussian prior the optimal choice
is βF = 2, and to guarantee positive semi-definiteness of
the covariance matrix tuning parameter κ ≥ 0 is chosen.
The other parameters are defined as
{

λ = α2
F (n + κ) − n

γ = √
n + λ

(17)

(c) The update step

Pyy =
2n∑
i=0

Wc
i

[
Yk+1,k(i)−ŷk+1,k

] [
Yk+1,k(i)−ŷk+1,k

]T+Rk

Pxy =
2n∑
i=0

Wc
i

[
Xk+1,k(i) − x̂a

k+1,k

] [
Yk+1,k(i) − ŷk+1,k

]T

Kk = PxyP
−1
yy , x̂a

k+1 = x̂a
k+1,k + Kk(yk+1 − ŷk+1,k)

P a
k+1 = P a

k,k+1 − KkPyyK
T
k

(18)

where Rkis the measurement noise covariance matrix.

ii) Adaptive UKF

In order to further improve the estimation precision,
an adaptive adjustment of the noise covariances in the
estimation process is implemented using a technique of
covariance matching in the UKF context. More specifically,
the adaptive estimation of the process noise covariance
Qand measurement noise R on the basis of the pose
sequence of the mobile robot will be considered. Therefore,

Q and R are estimated and updated iteratively from the
following [29]:

Qk = KkCk(Kk)
T

Rk =Ck+
2n∑
i=0

Wc
i

[
Yk+1,k(i)−ŷk+1,k

] [
Yk+1,k(i)−ŷk+1,k

]T

(19)

where ŷk+1,k is measured pose of the WMR and Ck is
defined as

Ck =
k∑

i=k−L̄+1

Ei(Ei)
T (20)

where E = [
x − x̂ y − ŷ θ − θ̂

]T
are the pose estimation

errors of the mobile robot at time step k, Ck is an
approximation to the covariance of the voltage residual at
time step k, and L̄ is window size for covariance matching.
More details can be found in [29, 30].

4 Design of the Tracking and Obstacle
Avoidance Unified Controller

4.1 Potential Function for Obstacle Avoidance

To deal with the obstacle avoidance of the WMR with
slipping, we consider the following potential function [31,
32]

Vob =
(

min
{

0, (d2
ro − L2)(d2

ro − l2)−1
})2

(21)

where l > 0 and L > 0 with L > l > b > 0 are
radius of the avoidance and detection regions (see Fig. 2),
respectively. The parameter l can be chosen by considering
the radius of the mobile robot body. The function dro is

x

y

x

y

L
l

v

0

A

B

B
A

Avoidance region

Detection region

obV

rodl L

Fig. 2 Wheeled mobile robot with avoidance and detection region
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the distance between the robot and the obstacle, which is
defined as

dro =
√

(x − xo)2/α2
c + (y − yo)2/β2

c (22)

where (xo, yo) is the position of the obstacle to avoid,
αc and βc are all positive constants. The shapes of the
potential function are decided by these two parameters.
Therefore, to break the symmetry, different shapes of the
potential function for example ellipsoids, can be obtained
by choosing different values for the coefficients αc and βc

From (21), we can see the potential function Vob goes to
infinity as the boundary of the avoidance region for the
mobile robot approaches the obstacle, and is zero outside
the detection region.

The first-order partial derivatives of the potential
function Vob with respect to the x and y coordinates can be
obtained as

∂Vob

∂x
=

{
4(L2−l2)(d2

ro−L2)

α2
c (d2

ro−l2)3 (x − xo), if l < dro < L

0, otherwise
(23)

∂Vob

∂y
=

{
4(L2−l2)(d2

ro−L2)

β2
c (d2

ro−l2)3 (y − yo), if l < dro < L

0, otherwise
(24)

4.2 Design of Controller

4.2.1 Control objective

Our control objective is to design an adaptive control law
for mobile robots with unknown wheels’ slipping described
by kinematic model (9) so that

1) Outside the detection region (dro ≥ L), the mobile
robot tracks the reference trajectory generated by the
following reference robot:
⎡
⎣ ẋr

ẏr

θ̇r

⎤
⎦ =

⎡
⎣ cos θr 0

sin θr 0
0 1

⎤
⎦[

vr

ωr

]
(25)

where xryr and θr are the position and orientation of the
reference robot, and vr and ωr are the linear and angular
velocities of the reference robot, respectively.

2) Inside the detection region (l < dro < L), the
mobile robot safely avoids the obstacle under the influ-
ence of the reference trajectory ẋr = ẏr = 0 and θr =
A tan 2(−Ey, −Ex), where Ex and Ey are defined as
{

Ex = x − xr + ∂Vob

∂x

Ey = y − yr + ∂Vob

∂y

(26)

This means that as the robot detects an obstacle in its path,
it momentarily freezes its reference to the last data received,
while trying to resolve the collision. Once it is outside the

collision region, it updates the reference to the new values.
The reason for this choice is that collision avoidance has
a higher priority than tracking, as collision among robots
could lead to system damage, which is more critical than
temporary degeneration of tracking performance.

Assumption 4 The reference velocities vr and ωr are
bounded, where vr > 0 outside the detection region and
vr = 0 inside the detection region.

Remark 5 Assumption 4 is reasonable because this research
focuses on the trajectory tracking problem outside the
detection region and to solve the obstacle avoidance
problem inside the detection region, respectively.

From θr = Atan2(−Ey, −Ex), the following can be
obtained:

θ̇r = ExĖy − ĖxEy

E2
x + E2

y

(27)

Accordingly

ˆ̇θr = Ex
ˆ̇Ey − ˆ̇ExEy

E2
x + E2

y

(28)

where ˆ̇θr is a smooth estimation of θ̇r . ˆ̇Ex and ˆ̇Eyare given
as follows [33]

{ ˆ̇Ex = Ex(t+T )−Ex(t)
Tˆ̇Ey = Ey(t+T )−Ey(t)

T

(29)

where [t − T , t] is a quite short slipping time window. We

assume that
∣∣∣ ˆ̇θr − θ̇r

∣∣∣ ≤ ε for some small positive ε. Note

that most of the variables in θ̇r can be measured in fact we
have that

∣∣∣ ˆ̇θr − θ̇r

∣∣∣ = Ex(Ėy − ˆ̇Ey) − Ey(Ėx − ˆ̇Ex)

E2
x + E2

y

(30)

where Ex , Ey ,
√

E2
x + E2

y can be computed by the state

measurements and desired values. So Ex , Ey are smooth

almost everywhere, we have that (Ėx − ˆ̇Ex) 
 (Ėy − ˆ̇Ey) 

o(T ) and we can chooseε 
 o(T ) (o(T ) denotes higher
order infinitesimal of T ).

4.2.2 Design of the unified controller

The tracking errors of mobile robot are defined as e1 =
x − xr , e2 = y − yr , e3 = θ − θr . Considering (8) and
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the AUKF, the error dynamic equation of the mobile robot
is obtained as⎡
⎣ ė1

ė2

ė3

⎤
⎦ =

⎡
⎣ v[cos(e3 + θr) + δ̂ sin(e3 + θr)] − ẋr

v[sin(e3 + θr ) − δ̂ cos(e3 + θr)] − ẏr

ω − θ̇r

⎤
⎦ (31)

In the presence of the slipping, we employ Lyapunov’s
direct method, and the auxiliary control input is obtained as
follows

[
v

ω

]
=

⎡
⎣ −k1

√
E2

x + E2
y(cos e3 + δ sin e3)

−k2e3 + ˆ̇θr

⎤
⎦ (32)

where k1 and k2 are positive constants.
However, if the slipping parameters iR , iL and δ that

appear in (4) are unknown, we cannot choose directly
the auxiliary control input as given by (32). Hence, it
is necessary to design an AUKF to attain the estimation
values of the slipping parameters. If îL, îR and δ̂ denote
the estimation values of iR, iL and δ respectively then from
(32), the auxiliary control input can be obtained as follows

[
v

ω

]
=

⎡
⎣ −k1

√
E2

x + E2
y(cos e3 + δ̂ sin e3)

−k2e3 + ˆ̇θr

⎤
⎦ (33)

where ˆ̇θr is determined by (28), from (8), actual control
input ωL and ωR can be obtained also by the followings

[
ωL

ωR

]
= 1

r

[ 1
1−îL

− b

2(1−îL)
1

1−îR

b

2(1−îR)

][
v

ω

]
(34)

Remark 6 If îL = 1 or îR = 1, from (34), we know that
actual control input ωL or ωR will go to infinity. One way to
avoid this is by letting ωL or ωR be replaced by ωmax(ωmax

of each wheel can achieve a maximum angular velocity).

It can be seen from the above analysis that trajectory
tracking and obstacle avoidance yield a unified control
principle of the mobile robot with wheels’ slipping can be
described by the following scheme (See Fig. 3).

4.2.3 Stability analysis of control system

Lemma 1 If the real number matrix A ∈ Rn×n is a
positive definite symmetric matrix, then ∀x ∈ Rn satisfies
the following conditions:

λmin(A) ‖x‖2 ≤ xTAx ≤ λmax(A) ‖x‖2 (35)

where vector norm ‖x‖ is defined as ‖x‖ =√
xTx λmin(A) > 0 and λmax(A) > 0 denote the mini-

mum eigenvalue and the maximum eigenvalue of the matrix
A respectively.

Theorem 1 Consider both system (9) and the reference
trajectory described by (25) that satisfies Assumptions 3-
4. Also a static obstacle is considered to be avoided that
is located at (xo, yo). The desired orientation is defined
as θr = A tan 2(−Ey, −Ex). Then tracking with bounded
error outside the detection region, and obstacle avoidance
are guaranteed inside the detection region if the control
law (33) is applied for all control gains k1 > 0, k2 >

0. Furthermore, the tracking error can be reduced by
increasing the value of the control gains.

Proof Consider the error dynamics (31) and control law
(33), the closed-loop error dynamics can be obtained as
follows⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = −k1

√
E2

x + E2
y(cos e3 + δ̂ sin e3)[cos(e3 + θr )

+ δ̂ sin(e3 + θr)] − ẋr

ė2 = −k1

√
E2

x + E2
y(cos e3 + δ̂ sin e3)[sin(e3 + θr)

− δ̂ cos(e3 + θr)] − ẏr

ė3 = −k2e3 + ˆ̇θr − θ̇r

(36)

From the desired orientation angle θr =
A tan 2(−Ey, −Ex), we have

sin θr = Ey√
E2

x + E2
y

, cos θr = Ex√
E2

x + E2
y

(37)

Fig. 3 Mobile robot trajectory
tracking and obstacle avoidance
unified control principle scheme
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Then, from (36) and (37), (36) can be rewritten as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė1 = −k1(cos e3 + δ̂ sin e3)[Ex(cos e3 + δ̂ sin e3)

− Ey(sin e3 − δ̂ cos e3)] − ẋr

ė2 = −k1(cos e3 + δ̂ sin e3)[Ex(sin e3 − δ̂ cos e3)

+ Ey(cos e3 + δ̂ sin e3)] − ẏr

ė3 = −k2e3 + ˆ̇θr − θ̇r

(38)

From (26), we obtain

∂Vob

∂x
= Ex − e1,

∂Vob

∂y
= Ey − e2 (39)

Furthermore, we notice that ẋ = ė1 + ẋr , ẏ = ė2 + ẏr

Let us choose Lyapunov-like function candidate as
follows

V = 1

2

(
e2

1 + e2
2 + e2

3

)
+ Vob (40)

The first-order derivative of the Lyapunov function V is
obtained as

V̇ = e1ė1 + e2ė2 + e3ė3 + ∂Vob

∂x
ẋ + ∂Vob

∂y
ẏ (41)

Substituting (38)-(39) into (41), the following is obtained

V̇ = e1ė1 + e2ė2 + e3ė3 + (Ex − e1)(ė1 + ẋr )

+ (Ey −e2)(ė2+ẏr ) = −k1(E
2
x + E2

y)(cos e3+δ̂ sin e3)
2

− e1ẋr − e2ẏr + e3(−k2e3 + ˆ̇θr − θ̇r ) ≤ −k1(E
2
x + E2

y)

(cos e3 + δ̂ sin e3)
2 − e1ẋr − e2ẏr − |e3| (k2 |e3| − ε)

(42)

1) When the mobile robot is outside the detection range
(dro > L), we have

∂Vob

∂x
= ∂Vob

∂y
= 0 (43)

Accordingly, the inequality (42) becomes

V̇ ≤ −k1
(
e2

1 + e2
2

)
(cos e3 + δ̂ sin e3)

2 − e1ẋr − e2ẏr

− |e3| (k2 |e3| − ε)

= −
⎡
⎣ e1

e2

e3

⎤
⎦

T

A

⎡
⎣ e1

e2

e3

⎤
⎦ −

⎡
⎣ e1

e2

|e3|

⎤
⎦

T ⎡
⎣ ẋr

ẏr

−ε

⎤
⎦

≤ −
⎡
⎣ e1

e2

e3

⎤
⎦

T

A

⎡
⎣ e1

e2

e3

⎤
⎦ +

∥∥∥∥∥∥
⎡
⎣ e1

e2

e3

⎤
⎦

∥∥∥∥∥∥
∥∥∥∥∥∥
⎡
⎣ ẋr

ẏr

−ε

⎤
⎦

∥∥∥∥∥∥
(44)

where A =
⎡
⎣ k1(cos e3 + δ̂ sin e3)

2 0 0
0 k1(cos e3 + δ̂ sin e3)

2 0
0 0 k2

⎤
⎦,

2-norm
∥∥∥[

e1 e2 e3
]T

∥∥∥ =
√

e2
1 + e2

2 + e2
3

From Assumption 3, we know that (cos e3 + δ̂ sin e3)
2 >

0. Hence, from Lemma 1, we know that V̇ < 0 for

∥∥∥[
e1 e2 e3

]T
∥∥∥ >

∥∥∥[
ẋr ẏr ε

]T
∥∥∥

λmin(A)
(45)

where λmin(A) denotes the minimum eigenvalue of matrix
A. Therefore, the stability of error dynamics, and bounded
tracking errors, are guaranteed outside the detection
region. Furthermore, the tracking errors can decreased by
increasing the control gains k1, k2

2) When the mobile robot is inside the detection range
(l < dro < L), since ẋr = ẏr = 0, the inequality (42)
becomes

V̇ ≤ −k1(cos e3 + δ̂ sin e3)
2(E2

x + E2
y) − |e3| (k2 |e3| − ε)

≤ − |e3| (k2 |e3| − ε) (46)

V̇ is negative definite, once the following condition is
satisfied

|e3| >
ε

k2
(47)

Therefore, as shown in reference [20], since V̇ is negative
definite, V is non-increasing inside the detection region.
Since

lim
‖z−zo‖→l+

Vob = ∞ (48)

where z = [
x y

]T
, zo = [

xo yo

]T
, then obstacle

avoidance is guaranteed.

Remark 7 The singularity condition Ex = Ey = 0 can
occur outside the detection region where

∂Vob

∂x
= ∂Vob

∂y
= 0 (49)

which corresponds to e1 = e2 = 0 and this case can easily
be dealt with applying zero controller v = ω = 0

If the singularity condition occurs inside the detection
region where the reference direction θr is opposite to the
direction vector θ and they are equal magnitudes, this is a
deadlock position. This case can be handled by changing the
reference trajectory to drive the robot out of the singularity.
We do not investigate this case further in this paper.

5 Simulations and Experiments

5.1 Simulations

In this section, to validate the effectiveness of the proposed
tracking and obstacle avoidance unified control scheme,
we perform simulations for trajectory tracking and obstacle
avoidance of the WMR in the presence of unknown slipping.
We will perform some simulations on the kinematic model
of the tracked WMR with slipping using the methods
described in previous sections In the simulations, the
angular velocities of the two driving wheels are considered
as input variables. To observe and compare the simulation
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results more easily, we choose two kinds of reference
trajectories for the simulations: one is a straight line
trajectory, and the other is a circle one. System parameters
of the WMR are chosen as follows: In this simulation, we
choose the system parameters as r = 0.125m, b=0.5m.
The detection and avoidance radius are L = 4m l = 2m
The filter parameter αF controls the size of the sigma

point distribution and should be ideally a small number to
avoid sampling non-local effects when the nonlinearities
are strong βF is a non-negative weighting term, which
can be used to acknowledge the information of the higher
order moments of the distribution, γ is a non-negative
weighting for

√
P a

k in (13), and L̄ is window size for
covariance matching in (20) The constant filter parameters
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Fig. 4 Simulation results for a straight line reference trajectory in the presence of wheel’s slipping
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Fig. 4 (continued)

are determined carefully by trialanderror as follows: αF =
1, βF = 2, γ = 0and L̄ = 100 In (33), the controller gains
are chosen through trial-and-error as follows: k1 = 50k2 =
20.

Note that the kinematic model of the robot is described
by the continuous-time (5), (9) and (31). On the other

Table 1 Estimation errors of the slipping parameter with UKF and
AUKF

Filters Slipping Parameters Maximum Mean

UKF iL 0.2273 0.0032

iR 0.0682 0.0033

δ 0.0205 0.0042

AUKF iL 0.1774 0.0018

iR 0.0465 0.0017

δ 0.0052 0.0012

hand, the AUKF is a discrete-time algorithm. Thus, to
perform the computer simulation, the continuous-time (5),
(9) and (31) are discretized using Euler’s forward-difference
scheme with a sampling period of Ts = 0.02s. Accordingly,
the working frequency controller/AUKF is chosen as
50Hz.

Table 2 Estimation errors of the slipping parameter with UKF and
AUKF

Filters Slipping parameters Maximum Mean

UKF iL 0.3997 0.0033

iR 0.1398 0.0023

δ 0.4897 0.0048

AUKF iL 0.3245 0.0023

iR 0.1138 0.0012

δ 0.2686 0.0037
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(1) The straight line reference trajectory tracking

A straight reference trajectory is considered in this
example. The initial posture of the reference trajectory is set
at
[
xr(0) yr(0) θr (0)

]T = [
0m 0m π

4 rad
]T

The actual initial posture of the WMR is given as
[
x(0) y(0) θ(0)

]T = [− 2m −2m π
4 rad

]T

The reference velocity vr = 2m/s and ωr = 0rad/s, the
reference orientation angle θr = π rad/4. The obstacle is
located at (xo, yo) = (8m, 10m). In order to demonstrate
the tracking performance, abrupt changes are simulated to
occur in the three slipping parameters at time t = 8s Three
slipping parameters and their initial estimation values are as
follows:
[
iL iR δ

] = [
0.15 −0.15 0.1 sin(0.2t)

]
[
îL(0) îR(0) δ̂(0)

] = [
0 0 0

]

The slipping parameters of the mobile robot contain
Gaussian white noise, their amplitudes lie within in
[−0.1, 0.1].

The straight line trajectory tracking and obstacle
avoidance results of the proposed control strategy are
presented in Fig. 4. From Fig. 4a we know that the proposed
control method can conquer the effect of slipping while
the obstacle avoidance is guaranteed. Tracking errors of the
controlled robot system are shown in Fig. 4b-d Observe that
the tracking errors converge asymptotically to zeroes except
in the range that the mobile robot detects the obstacle and
when the wheels’ slipping occurs In addition, the distance
between the robot and obstacle is shown in Fig. 4e From
this figure, notice that this distance is always larger than
the avoidance radius l = 2m, that is to say there is no
collision between the robot and the obstacle. Meanwhile,
the obtained result for slipping parameters estimation with
AUKF is shown in Fig. 4f-h The result is also compared
with the standard UKF, which is shown in Fig. 4f-h and
Table 1 The estimation errors are shown in Table 1. It is
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Fig. 5 Simulation results for a curved line reference trajectory in the presence of wheels’ slipping
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Fig. 5 (continued)

clear that the AUKF-based algorithm can estimate three
slipping parameters as well as the pose of the robot more
accurately, compared with the standard UKF. Additionally,
Table 1 shows that the maximum absolute error of the
AUKF algorithm and the absolute mean error are all much
smaller than the UKF algorithm. In the presence of robot

wheel’s slipping, the control input ωL and ωR are shown in
Fig. 4i-j

(2) The curved line reference trajectory tracking

In this case, we consider a curved line reference
trajectory generated by reference velocities vr = 2m/s and
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ωr = 0.2rad/s for 0 ≤ t ≤ 40. The equation of the straight
line reference trajectory is given as{

xr = 2 cos t

yr = 2 sin t

In addition, it is assumed that the obstacle is located at
(xo, yo) = (−7, −0.5). The initial postures of the reference
trajectory and the actual mobile robot are chosen as
[
xr(0) yr(0) θr (0)

]T = [
10m 0m π

4 rad
]T

The actual initial posture of the WMR is
[
x(0) y(0) θ(0)

]T = [
7m 0m π rad/4

]T

The wheel’s slipping is described as[
iL iR δ

] = [
0.15 −0.15 0.6 cos(0.2t)

]
which influences the mobile robot after t = 15s.

In order to facilitate comparison of the simulation results,
the control system parameters, control parameters and the
parameters of the AUKF are all the same as in the previous
simulations in the case of straight line reference path
tracking

In the case of tracking a circle reference trajectory the
simulation results are shown in Fig. 5 where the proposed
control strategy can compensate the slipping effects and
has good performance of obstacle avoidance (see Fig. 5a-
d). Additionally, Fig. 5e reveals that there is no collision
between the robot and obstacle Fig. 5f-h and Table 2 show
that the three slipping parameters can be estimated more
accurately in real time by the AUKF compared with the
standard UKF In the presence of robot wheel’s slipping, the
control input ωL and ωR are shown in Fig. 5i-j

Furthermore, from Figs. 4 and 5, we can further find
that the proposed control method can avoid static obstacles
and effectively conquer the wheels’ slipping effect for
the given trajectory tracking of the mobile robot This
is mainly because the designed tracking controller has
adaptive ability, whose slipping parameters are estimated in
real time. Moreover, even if the wheels’ slipping parameters
change suddenly, the AUKF can still exactly estimate
slipping parameters in real time to satisfy the demands of
the robot in the actual working environment. Consequently,
the unified control algorithm for tracking and obstacle
avoidance has good robustness and adaptive ability to cope
with slipping parameter perturbations of the mobile robot.

5.2 Experimental Results

In order to demonstrate the effectiveness and applicability
of the proposed method, a real-time control system is
implemented for the mobile robot. In the experiment, a
mobile robot with one vision navigation system fixed on
the top moves along the marking line. Figure 6 shows the

Fig. 6 Mobile robot in real experiment

picture of the robot which is used in the experiment. It
has the same structure as Fig. 7, with two driving wheels
and two passive wheels. The diameter of the robot is 50cm
and the radius of driving wheel is 12.5cm. The driving
wheels are driven by motors with the maximum permissible
speed of 3900n/min. The motor and the driving wheel are
connected by a reduction gears box. For convenience of
comparison the parameters of the control law and AUKF are
all the same as the simulations.

The control board of the mobile robot consists of the
main controller and motor controller. The main controller
of the robot is dsPIC30F6014, which is running at 32MHz.
It is used to communicate with host computer and motor
controller. It receives the voltage instruction from the host
computer and calculates the voltage distribution on the
right and left motors, respectively, and then sends the
data through SPI communication to the auxiliary motor
controller, dsPIC4012. The motor controller generates a
PWM signal with different duty cycles according to the
voltage instruction.

In the real experiment, the obstacles are detected by
ultrasonic sensors. On one hand, the actual position (include
the orientation angle θ) measure of the mobile robot are
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Fig. 7 Schematic diagram of the experiment control System
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Fig. 8 Experimental results for the straight-line tracking errors with initial error (0m, 0m, rad)

reconstructed by using the photoelectric encoders, which
samples the left and right wheel velocities to calculate
the current robot configuration. On the other hand, the
position measure would be not accurate due to the slipping
between the robot and the ground. So the orientation angle is
necessary to be obtained by the camera navigation system to
amend the orientation angle θ measured by the photoelectric
encoders.

Figure 7 shows the whole schematic diagram of the
trajectory tracking system for the mobile robot. Because
of the complexity of the calculation process, the proposed
adaptive tracking controller based on AUKF is carried out
in the main computer running at the frequency of 1.86MHz.
The software for implementing the algorithm is developed
in Visual C++2015. After the reference trajectory has
been set up, the proposed adaptive tracking controller
generates the real voltage instruction. The dsPIC controller

can generate the PWM signal to control the velocity of the
mobile robot so that the mobile robot moves according to
the instruction. The vision navigation system evaluates the
posture of the robot and feedback the information to the host
computer until the posture error is minimized.

In order to validate the applicability of the proposed
control scheme, the mobile robot was required to track
reference trajectories of a straight line in an obstacle
environment. The real position of the mobile robot is fed
back to the mobile robot every 0.05 second by a camera
navigation system. In the straight-line tracking the reference
velocities are given as vr = 2m/s ωr = 0rad/s The
robot started tracking with initial errors e1=0m, e2=0m and
e3=0◦ At t = 2s, the arbitrary external wheels’ slipping
disturbance is fed into the robotic system by laying sand on
the ground and the sand on the ground is located at (2.5m,
2.5m). The actual initial posture of the WMR is located
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Fig. 9 Experimental results for the circular trajectory tracking errors with initial error (-3m, 0m, rad)
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at [x(0), y(0), θ(0)] = [0m, 0m, 45◦] and the obstacle is
located at (xo, yo) = (34m, 37m). The detection radius
is L = 4m, and the avoidance radius is l = 1.5m In
the circular trajectory tracking the reference velocities are
given as vr = 2m/s ωr = 0.20rad/s. The robot started
tracking with initial errors e1= − 3.0m, e2=0m and e3=0◦.
The arbitrary external wheels’ slipping disturbance is fed
into the robotic system by laying sand on the ground, and the
sand on the ground is located at (-1.0m, 1.0m). The actual
initial posture of the WMR is located at [x(0), y(0), θ(0)] =
[-1m, 0m, 45◦] and the obstacle is located at (xo, yo) =
(−1m, 1.3m).

The experimental results are shown as Figs. 8 and 9.
From Figs. 8b and 9b, we can see that the tracking
errors of the proposed adaptive control algorithm are
asymptotically convergent regardless of tracking a linear
trajectory or a circular trajectory. In the straight line
reference trajectory simulated results, even if the robot is
affected by wheels’ slipping interference and the obstacle,
the mobile robot eventually approaches the reference
trajectory with asymptotic stability within 3.5 seconds to
0.5% error bound by the proposed unified controller for
tracking and obstacle avoidance In the circular reference
trajectory simulated results, the mobile robot eventually
approaches the reference trajectory with asymptotic stability
within 4.2 seconds to 0.5% error bound Meanwhile, Fig. 8a
and 9a all reveal that there is no collision between the robot
and obstacle. This fact demonstrates the effectiveness of the
proposed unified control method

In both simulation and experimental results, the distur-
bances caused the collision avoidance and wheels’ slipping
effect indicates a trajectory that is not subject to a nonholo-
nomic mobile robot. The reason is that collision avoidance
has a higher priority than trajectory tracking, as collision
among robots could lead to system damage, which is more
critical than temporary deterioration of tracking perfor-
mance. Furthermore, the wheels’ slipping effect causes the
mobile robot to not meet the nonholonomic constraint.

6 Conclusions

In this paper, a unified control approach has been proposed
to simultaneously solve the tracking and obstacle avoidance
of mobile robots with the wheel’s unknown slipping at
the kinematic level. The robot kinematic model has been
derived from the model without slipping. The AUKF is
designed to estimate three slipping parameters online in a
noisy environment Meanwhile, a novel unified controller is
used to handle tracking and obstacle avoidance for mobile
robots has been designed by the Lyapunov design technique.
We have designed the control law to compensate for
unknown wheels’ slipping and have proved the stability of

the controlled closed-loop robot system from the Lyapunov
stability approach with the potential function. Finally,
simulation and experimental results have validated that
the proposed controller has good tracking and obstacle
avoidance control performance and robustness against the
unknown wheels’ slipping
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