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Abstract
This paper presents CRSPF-SLAM, a critical rays self-adaptive particle filtering occupancy grid based SLAM system that
can operate efficiently with different kinds of odometer in real time, in small and large, indoor and outdoor environments
for various platforms. Its basic idea is to eliminate the accumulated error of odometer through scan to map matching based
on particle filtering. Through some improvements for the original particle filtering method, the lidar system becomes more
robust to conduct accurate localization and mapping. Specifically, in our proposed method, particle filter based on Monte-
Carlo algorithm is designed to be out-of-step to the odometer; During the scan matching process, the influence of some
critical rays selected through a ray-selection algorithm is enhanced and that of the unreliable rays is weaken or removed; The
current optimal match value is regarded as the feedback to reset the particle number and the filtering range; Once the optimal
pose and scan are obtained, the previous error scan stored in the map will be removed. It is also introduced in the paper that
the method can work effectively with dead reckoning, visual odometry and IMU, respectively. And we have tried to use it
on different types of platforms — an indoor service robot, a self-driving car and an off-road vehicle. The experiments in a
variety of challenging environments, such as bumpy and characterless area, are conducted and analyzed.

Keywords SLAM · Particle filtering · Critical rays · Self-adaptive · Occupancy grid

1 Introduction

In recent years, autonomous robots with different functions
start to get involved and play an essential role in people’s
daily life. To help an autonomous robot to survive and
navigate within its surroundings, two basic and critical prob-
lems need to be addressed: Mapping the environment and
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finding its relative pose within the map. For this reason, sim-
ulataneous localization and mapping (SLAM) [17] undoubt-
edly is the most important component for an autonomous
robot, whose basic idea is locating the robot by matching
its observations with a consistent and incremental map and
updating the map at the same time. With the development of
robot technology, a wealth of research into the SLAM prob-
lem has been conducted, resulting in many reliably working
solutions for indoor service robot, outdoor detecting robot
and so on. Overall, they can be roughly divided into three
types according to the sensors: laser range finder(LRF),
camera and RGB-D sensor. What’s more, the core algo-
rithms of them generally include three different kinds of
optimization methods: KF [2], PF [6] and g2o [16].

Among all the sensors, laser range finder has been the
most widely used with occupancy grid map on account of
its high accuracy and reliability. Many researchers have real-
ized accurate positioning and mapping for the autonomous
robot in different situations by using laser solely or com-
bining it with odometry, which has been studied, e.g. in [7,
9, 12, 15, 24–26] and so on. For this type of methods, the
core part is the scan-matching approach, which can be scan
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to each other matching and scan to map matching. Further-
more, it also can be categorized into three types: feature
to feature, point to feature and point to point. In the fea-
ture to feature matching approaches, features such as range
extrema [18], corners or lines [13] extracted from laser scans
are matched. Similarly, the second approach matches cur-
rent points to the detected features in the last frame. Com-
pared with the two types, the third type is widely used and
plenty of methods are proved to be highly reliable. Some
of them are conducted based on scan to each other match-
ing, and the others are based on scan to map matching. The
representative works are iterative closest point (ICP) [22],
iterative matching range point (IMRP) [19] and the popu-
lar iterative dual correspondence (IDC) [1]. These methods
always can work well in the static or ideal environments,
but get into trouble in the noisy or real-life environments.
What’s more, when there are few scans or the scan feature
is not obvious, they almost can’t work normally and their
real-time capability goes to bad when there are too many
rays. To improve them, [7] avoids searching for point asso-
ciations by simply matching points with the same bearing in
the polar form to develop a faster scan-matching algorithm,
but they only conduct simulation in the static environment in
their paper and the dynamic or difficult environment seems
challenging for it. Taleghani et al. [25] proposes a innovative
method named ICE matching, which detects novel feature
points, such as intersection, corner and end of wall, from
each frame of scan and conducts scan matching focusing on
the detected points. CRSM-SLAM [26] employs Random
Restart Hill Climbing (RRHC) method to conduct point to
map scan matching, which also extracts feature points as
critical rays for its matching to reduce the complexity and
time. These two methods extract features from scans but
they don’t belong to type one or type two, in other words,
they only use the feature points to make the scan matching
more robust. Inspired by them, we enhance the influence
of some rays which are called critical rays during our scan
matching. We require that the critical rays must can represent
the architectural feature of the scan and the number of them
is as little as possible. We have tested the open source of
these two methods and found their critical rays selection
method can’t meet our requirements. Finally, we succeed
tomodify IPAN [3] algorithm to select critical rays for our sys-
tem, and compared it with the two selection methods on dif-
ferent environments. On the other hand, many researchers
apply particle filtering or kalman filtering to conduct scan
matching, such as Gmapping [12] and DP-SLAM [9]. They
usually can obtain perfect results even in some tough envi-
ronments according to the simulation with robot’s moving
slowly, but their real-time performance sometimes can’t
make it for the practical application such as robot’s mov-
ing fast and moving in the bumpy environment. To obtain a

better applicability, TinySLAM [24] simplifies the particle
filter algorithm to get a good real-time capacity and a not
bad result. They eliminate positioning error of the odom-
etry by using a simple Monte-Carlo algorithm to match
the current scan with the map. However, in their method,
the filtering range and particles number is constant and the
process of dead reckoning is isochronous with particle fil-
tering, which leads to its poor robustness in some cases. Our
method adopts and improves their scan matching method
and designs a feedback according to the last match value
to change the filtering range and particles number in real
time. Furthermore, in our method, the execution frequency
of odometer’s dead reckoning is designed to be much higher
than filtering process to make the system more robust and
another thread is created to try to remove the inaccurate
scans or noises drawn in the map wrongly according to the
high-reliable frames.

In addition to LRF, mono camera and rgbd sensors are
more and more popular for the SLAM researcher. Both
LSD-SLAM [10] and ORB-SLAM [21] are the excellent
mono SLAM methods, which can create a sparse 3D map.
Nevertheless, this kind of method can’t recover absolute
scale without some kind of external reference. Therefore,
more researchers try to use rgbd sensors or stereo camera
to help the robot to locate itself and create a absolute scale
map, such as [8, 14] and [11]. In our paper, we also have
tried to combine the visual odometry of [11] with our lidar
filtering system instead of the wheel odometry to get a better
result.

Of course, in some special application scenarios,
researchers also use other kinds of sensors to find landmarks
for locating the robot and creating the map. For example,
[27] uses the wireless sensor nodes as landmarks in their
method to help the robot work indoor.

The contribution of this paper is that we present a real-
time and robust SLAM method for practical applications in
diverse environments. We design a simple particle filtering
to conduct scan matching, and the previous match values are
regarded as feedback to optimize the filter at the same time.
What’s more, to strengthen the structural characteristics of
the environment, some critical rays are selected from the
scan based on computation geometry. On the other hand,
we try to combine it with different kind of odometry and
the handle rate of dead reckoning is designed to be much
higher than scan matching. In our paper, experiments with
wheel odometry, visual odometry and IMU are conducted
on different kinds of platforms, respectively. Specifically,
different platform employs different odometry and LRF
sensor with different data processing method. Moreover,
the matched high-reliable scans are used to remove the
inaccurate scans or noises drawn in the map wrongly before
so that the map is able to adapt to the changing environment.
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2 SystemOverview

We have developed several groups of experimental plat-
forms to demonstrate the effectiveness of our system, which
are shown in Fig. 1. In the first group, the autonomous
all-terrain vehicles — IN2BOT series, which are modi-
fied by ourselves, mainly equip a Velodyne 3D lidar as the
laser range finder and an IMU as the odometry. Specifically,
information from 3D lidar is processed into the format of
2D occupancy grid according to an improved ground model
algorithm and the velocity of car from IMU is accumulated
for dead reckoning. They have taken part in “China Intelli-
gent Vehicle Future Challenge” for many times and gotten
good grades in the last few years. Generally, this group is
utilized to test our methods in the bumpy road or the field
environments. In the second group, a HongQi car is used
to test our methods in the high speed situation. For the
SLAM system, we mainly add a SICK 2D lidar for obsta-
cle detecting and a Bumblebee2 stereo camera for visual
odometer to this car. The detection range of this 2D lidar
is up to 80 m outdoor and the baseline of the cameras is
12 cm. The third group is primarily for indoor service, that
includes two small robots: iRobot-ATRV and Pioneer3. On
the one hand, they mainly equip a Hokuyo (URG-04LX-
UG01) 2D lidar as their LRF, which has a detection range of
5 m and a view angle of 180◦. On the other hand, there are
two high-precision encoders on their wheels to assist them
to realize the wheel odometer function. In general, the pro-
posed CRSPF-SLAMmethod has been tested on each group
in different kinds of environments and the experimental
results are discussed in this paper.

Figure 2 shows the software architecture of our method
in this paper. It includes three main modules: Particle
Filtering, Odometry and Map Update, that are operating at

the same time in three different threads. Moreover, they
share some essential information to each other. Specifically,
Odometry module gives its current pose to PF incessantly
as the observed or reference pose for scan matching. In
return, PF module gives back the obtained accurate pose to
Odometry as its new initial pose under certain conditions.
And on the same conditions, PF module also offers the
optimal pose and scan to Map Update module to refresh the
map. Meanwhile, Odometry module is sending its current
pose to Map Update continually for robot’s location in
the map. More specifically, firstly, the algorithm performs
initialization of the structures needed to store the map, all
acquired scans and other information. Then, for PF module,
there are three main sub-parts. Rays Selection will process
the original scan if there is a new frame of laser data to
obtain the critical rays for enhancing the environmental
structure characteristics. Then, Scan Matching matches the
processed scan with the map based on the observed pose
from Odometry module to get an optimal pose and a match
value. Then the current match value will be used as feedback
to reselect a suitable filtering range and particles number in
the next frame. Furthermore, the latest several continuous
match values are analyzed in Match Values Analyzer to
decide whether the “optimal pose” can be sent to Odometry
module and what will be done in Map Update module. For
Odometry module, only one of the three odometers(wheel
odometer, visual odometer and IMU) is used to conduct
dead reckoning for current rough pose. And for Map Update
module, there are three types of modifications: Draw Scan,
Remove Error and Remain Unchanged. WhenMatch Values
Analyzer gives a “good result”, the current scan with the
optimal pose is drawn on the map and the error on the map
is removed at the same time. However, the map remains
unchanged with the observed pose from Odometry when

Fig. 1 Experimental platforms
that CRSPF-SLAM works on
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Fig. 2 Software architecture of
CRSPF-SLAM

Match Values Analyzer generates a “bad result”. In this way,
we can always get a stable map and a not bad location in as
many cases as possible.

3 Odometry

In the Odometry module, we have tested three different
kinds of odometers on various types of platforms. Their
common goal is to obtain a rough but real-time robot’s pose
as the observation

{
x̂, ŷ, ω̂

}
.

3.1Wheel Odometer

In our research, we adopt two motion models of mobile
robot to conduct dead reckoning, respectively. For some
robots like that in Fig. 3a, they use two actual drive
wheels with two encoders to move and generate odometry
measurements, which is discussed in [4]. When the
robot moves straight, its model is shown in formula (1).
Otherwise, the motion model is shown in formula (2)
according to Fig. 3b, where, rk = B

2 (
Lk+Rk

Lk−Rk
), Lk and Rk are

the walking ranges of the two driving wheels, and B is the
wheel span. For other robots like that in Fig. 4a, Ackerman

Fig. 3 Differential steering robot and its odometer model

Principle is usually used to get a current rough pose, which
is shown in formula (3) according to Fig. 4b, where, Vk is
the current speed of the driving wheel, �k is the current
steering angle and L is the wheel base.
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3.2 Visual Odometer

For Hongqi car, we use the visual odometry algorithm
proposed in [11], which can obtain a rough pose through
conducting feature circle-matching and EKF-based ego-
motion estimation as shown in Fig. 5.

Fig. 4 Servo steering robot and its odometer model
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Fig. 5 Stereo visual odometer
used in our system

3.3 IMU

We also tried to use IMU to accumulate robot’s movement
in the field environments. As we all know, IMU has similar
properties with odometer. Their measuring error increases
as time goes on but the results are always continuous.
What’s more, IMU has higher robustness in the bumpy
environment than other odometers, which is the main reason
why we choose IMU for IN2BOT s.

4 Particle Filtering

InCRSPF-SLAMmethod, theParticleFilteringmodule is desig-
ned to eliminate the accumulative error of the Odometry
module. The input source of this module is the real-time and
stable scan data (scanning spots) from LRF Update part and
an observed pose from the Odometry module. Its outputs
include the analysis result of the matching status and an
accurate pose with the corresponding scan.

4.1 LRF Update

When the robot or autonomous vehicle running indoor or on
the flat roads, 2D lidars such as SICK and Hokuyo usually
can meet the detection requirements. For these platforms
or cases, the original lidar data can be directly used as
the scan in our system. Nonetheless, when working in the
rugged environments, there is so much noise caused by
turbulence in the original data that SLAM is hardly able to
work effectively. For this reason, we choose a 3D lidar for
IN2BOT s to work in the bumpy environments so that more
environmental information can be utilized to overcome the
effects of turbulence.

In our SLAM system, we adopt a modified method based
on our previous research [28] to process the enormous points
cloud data of the Velodyne lidar to get the real-time and

stable scan data source with the same format as 2D lidar
for SLAM. Thus, we can not only improve the robustness
of detection, but also avoid dealing with the 3D points
cloud directly to reduce the time-consumption of this part
immensely. According to our previous method, the 3D
points cloud (Fig. 6a) is divided into 720 sectors, each sector
stands for 0.5◦, which is shown in Fig. 6b. For each sector,
the points in it are sorted to generate a Height-Range(HR)
graph as Fig. 6d. We used to calculate the height difference
and the slope between consecutive points for finding the
obstacle point to get the range of this sector. If both of these
two values exceed some predefined thresholds(10 cm in the
height and 15 degrees in the slope), then the first point is set
to the obstacle point. As we explained in our previous paper
[28], this method succeeded to work efficiently to obtain
the passable area (720 obstacle points) for path planning
even in the bumpy field. Even so, we found the obtained
long-distance obstacle points are not stable enough for scan
matching, which causes a lot of noise in the SLAMmap. So
we only use the obstacle points that are less than 20 meters
as the scan data source for the SLAM system, which are the
red points in Fig. 6c.

4.2 Critical Rays Selection

In the vast majority of cases, enough stable scan points can
be obtained from LRF Update module. However, accurate
location in the longitudinal direction is extremely difficult
for lidar SLAM in the environments with few structural
characteristics, such as the long-straight corridor(Fig. 7a
and b), expressway and so on. To solve this problem,
we select critical rays or dominant points from current
scan points to increase structural features so that the scan
matching in the longitudinal direction can be more accurate,
which is shown in Fig. 7c and d. As we can see, the weeny
characteristics such as the closed doors’ frame and natural
gas pipeline can be detected easily.

J Intell Robot Syst (2018) 92:107–124 111



Fig. 6 720 2D obstacle scan points generation from the 3D lidar points cloud

As we introduced, dominant points are selected as the
critical rays in our SLAM method. Plenty of researchers
have developed great methods for finding dominant points
in the fields of computational geometry and computer
graphics, which has been studied, e.g. in [3, 5, 20] and so
on. In the field of robotics, many researchers try to select
dominant points for conducting points to points matching
and points to map matching to decrease the computational
complexity, such as [26] and [25]. In contrast, we don’t
throw away the uncritical points, but increase the impor-
tance of the critical points in Scan Matching module to

enhance structural features without considering the time
complexity. In our method, we adopted and improved the
dominant points selection method in [3] to select the criti-
cal rays from the current scan. Since the method proposed
in [3] was mainly designed for the theoretical problem and
only tested for some artificial shapes, we have to improve it
according to our own requirements if we want to employ it
in the real system. On the one hand, considering that the dis-
tance between two scan points may become very far or very
near with the change of the scanning environment, which
is quiet uncertain, we use the point’s serial number to set

Fig. 7 Critical rays or dominant
points selection in the
experiments with few structural
characteristics(for example, the
long-straight corridor)
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Fig. 8 Dominant points selection method from the obstacle scan points
in our method

searching scope thresholds instead of the real distance in
[3]. On the other hand, the computational load for serial
numbers is much smaller than that for distance. In detail,
as shown in Fig. 8, in the vehicle-based coordinates system,
the coordinate of the ith scan point pi is (xi, yi), the j th

selected dominant point(critical ray) is p̂j . Three steps are
included in the modified method:

1. Calculating the curvature αpi
of each scan point pi .

2. Judging whether pi is a dominant point candidate
through comparing with its neighboring points.

3. Picking out the real dominant points from the candi-
dates according to the proper threshold.

In the first step, for the ith scan point pi , the variable
triangle (p−

i , pi, p
+
i ) is structured to calculate several

curvature candidates αk
pi

for pi , constrained by a set of
simple rules that are shown in formula (4–6), where I (pi)

is the serial number of pi , namely I (pi) = i. dmin and dmax

are two parameters to determine the selection range of p−
i

and p+
i . Thus, we can get N curvature candidates for pi to

acquire its final curvature value αpi
according to formula

(7).

dmin ≤ ∣∣I (pi) − I (p−
i )

∣∣ ≤ dmax (4)

dmin ≤ ∣∣I (p+
i ) − I (pi)

∣∣ ≤ dmax (5)

αk
pi

= arccos

∣∣pi − p−
i

∣∣2 + ∣∣p+
i − pi

∣∣2 − ∣∣p+
i − p−

i

∣∣2

2
∣∣pi − p−

i

∣∣ ∣∣p+
i − pi

∣∣

(6)

αpi
= min

1≤k≤N
{αk

pi
}, N = (dmax − dmin)

2 (7)

In the second step, pi should be excluded from the
valid candidates if it has a sharper neighbor pv: αpi

>

αpv (|i − v| ≤ dmax). In this way, the final dominant
point candidates are obtained. In the third step, the j th

dominant point p̂j can be acquired if the curvature value

αpi
of its corresponding candidate pi is less than the default

threshold: αpi
< �. In our method, � = 125◦, dmax =

8, dmin = 4.
We have compared this critical ray selection method with

that in CRSM-SLAM system[26] by using its open source
in different environments, which is shown in Fig. 9. In this
figure, (a) and (b) show the critical rays selection result of
CRSM-SLAM system in two kinds of environment, and our
selection results are presented in (c) and (d) under the same
condition. It is obvious that our method is able to obtain
better critical rays than theirs to express the environment
structure characteristics so that Scan Matching becomes
more easy and accurate.

4.3 ScanMatching

In CRSPF-SLAM, an effective points to map scan matching
method based on particle filtering is proposed as shown
in the algorithm box. To make the flow and explanation

Fig. 9 Critical rays selection results comparison between our method
and CRSM-SLAM in different environments
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understood clearly, we present the algorithm in the form
of pseudo code. In which, the basic idea of this module
is converging to an “optimal” particle as the final robot
pose with the corresponding scan from all the particles
that are repeatedly scattered around the current observed
robot pose in the map according to the dynamic filtering
(or searching) range (XM, YM, AM) and the initial particles
number loopnum, as shown in Fig. 10a–c.

In detail, the inputs of this module include the current
scan Sb(t) (in the robot base-link coordinate system), the
current observed robot pose P̃ (t) (in the map coordinate
system) from the odometer and the obtained match value
in the last frame M(t − 1). Then, we can get an “optimal”
robot pose P(t) (in the map coordinate system) with its
corresponding match value M(t) for each frame. What
needs to be explained is that each particle ({Pr(t), Sm(t)})
used in our method includes a random robot pose Pr(t) and
its corresponding scan Sm(t) in the map coordinate system,
which is obtained through transferring the scan Sb(t) in
the base-link coordinate system according to formula (8).
Specifically, the category correspondence of the words
presented in the algorithm box is:

– Pr(t) : bestpose, lastbestpose, posetemp;
– Sm(t) : observescan, scantemp;
– M(t) : matchbest, lastmatchbest,matchtemp;

In the core function, as the first step (lines 7–10), if it is
the first-time system launch, all the states and parameters
are initialized. Otherwise, for each frame, a feedback is
designed to make scan matching method more robust, the
initial particles number of each frame loopnum and the
filtering range (XM, YM, AM) are reset according to the
last match value M(t − 1) by using a inverse proportional
function f (x) = b

/
(x − a) , which is shown in formula

(9). Then, on the one hand, if the current scan points number
Ns(t) is not enough (Ns(t) ≤ N̂s), the observed pose P̃ (t)

with its scan is set to be the best particle and M(t) is
set to be 0 (line 40). In our system, the matching number
threshold N̂s is set to be 60 according to our empirical
intuition when the scan points maximum number Nmax

s is
720. On the other hand, when there are enough scan points
in the current frame, the “optimal” particle {P(t), Sm(t)}
with the highest match value m̃(t) can be obtained through
an iterative convergence process(Monte Carlo), as shown in
the box (lines 12–37).

Sm(t) =
[

cos�(t) −sin�(t)
sin�(t) cos�(t)

]
Sb(t) +

[
X(t) . . . X(t)
Y (t) . . . Y (t)

]

Sm(t) = [pm(1) . . . pm(i) . . . pm(Ns(t))]

Sb(t) = [pb(1) . . . pb(i) . . . pb(Ns(t))]

pm(i) = [xm(i) ym(i)]T

pb(i) = [xb(i) yb(i)]
T

(8)

Algorithm Scan matching in CRSPF-SLAM

Input:
1: The current scan in base-link coordinate system, Sb(t);
2: The current observed robot pose in the map coordinate

system, P̃ (t) =
{
X̃(t), Ỹ (t), �̃(t)

}
;

3: The obtained match value in last frame, M(t − 1);
Output:
4: The obtained “optimal” robot pose in the map

coordinate system, P(t) = {X(t), Y (t), �(t)};
5: The obtained match value in current frame, M(t);

Core function of scan matching
6: function SCANMATCH(Sb(t), P̃ (t), M(t − 1))
7: if FIRST T IME then
8: Conduct initialization and empty

FIRST T IME

9: end if
10: Reset loopnum,XM, YM, AM according to M(t −

1) through formula (9)
11: if Ns(t) > N̂s then
12: observescan = BASESCAN2MAP(Sb(t), P̃ (t))
13: matchbest = MATCHVALCAL(observescan)
14: lastmatchbest = matchbest

15: lastbestpose = bestpose = P̃ (t)

16: discountpose = discountangle = 1.0
17: while counter < loopnum do
18: posetemp = GETRAN-

POSE(lastbestpose)
19: scantemp = BASES-

CAN2MAP(Sb(t), posetemp)
20: matchtemp = MATCHVAL-

CAL(scantemp)
21: if matchtemp > matchbest then
22: matchbest = matchtemp

23: bestpose = posetemp

24: else
25: counter++
26: end if
27: if counter > loopnum

/
3 then

28: if matchbest > lastmatchbest then
29: counter = 0
30: discountpose = discountpose ∗

0.3
31: discountangle = discountangle ∗

0.2
32: lastbestpose = bestpose

33: lastmatchbest = matchbest

34: end if
35: end if
36: end while
37: P(t) = bestpose, m̃(t) = matchbest

38: Caculate M(t) according to formula (11)
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39: else
40: P(t) = P̃ (t),M(t) = 0
41: end if
42: M(t − 1) = M(t)

43: end function

Other functions introduction in brief
44: function BASESCAN2MAP(Sb(t), robotpose)
45: Obtain the current scan Sm(t) in the map coordinate

system through coordinates transformation according to
the robot pose in the map based on formula (8).

46: return Sm(t)

47: end function
48: function MATCHVALCAL(curscan)
49: Calculate the match value m(t) by matching current

scan with the map according to formula (10).
50: return m(t)

51: end function
52: function GETRANPOSE(robotpose)
53: Get a random pose Pr(t) around the current robot

pose:
Xr(t) = ran(−XM, XM) ∗ discountpose

Yr(t) = ran(−YM, YM) ∗ discountpose

�r(t) = ran(−AM, AM) ∗ discountangle

54: return Pr(t)

55: end function

loopnum = (Mmax − Mmin)nmaxnmin

(nmax − nmin)M(t − 1) − (Mminnmax − Mmaxnmin)

XM = (Mmax − Mmin)X
M
maxXM

min

(XM
max − XM

min)M(t − 1) − (MminXM
max − MmaxXM

min)

YM = (Mmax − Mmin)Y
M
maxYM

min

(YM
max − YM

min)M(t − 1) − (MminYM
max − MmaxYM

min)

AM = (Mmax − Mmin)A
M
maxAM

min

(AM
max − AM

min)M(t − 1) − (MminAM
max − MmaxAM

min)

(9)

Specifically, in the iterative convergence process, we
firstly get the observed pose with scan from the odometer
module and initialize the iteration parameters for Monte
Carlo, as shown in lines 12–16. Where, the two key
parameters, discountpose and discountangle, are very
important for the convergence process. They are always
diminishing (lines 30–31) to reduce the random searching
range (line 53) when the local convergence condition
is met. Thus, the particle filter process can eventually
converge to an “optimal” particle. In our system, the decay
factors for position and angle are set to be 0.3 and 0.2,
respectively. They are determined finally through repeating
test to balance the convergence time and the convergence
accuracy. The core part of the iterative convergence process

is conducted in a loop (lines 17–36), where the basic
logic of Monte Carlo is presented in detail. In this loop,
besides reducing searching range and iterating the states,
there are mainly three repeated functions: GETRANPOSE,
BASESCAN2MAP and MATCHVALCAL. They are also
explained in the algorithm box. GETRANPOSE is mainly
used for generating the random particles within a certain
range, in which the initial range (XM, YM, AM) for each
frame is updated dynamically as we introduced above.
BASESCAN2MAP is only for coordinates transformation,
as shown in formula (8). It is obvious that the most
important one among them is MATCHVALCAL, namely how
to calculate the match value for each particle.

For the match value calculation process, a buffer zone
for each particle is designed, as shown in Fig. 10d–e, to
make the iteration process (the loop in the algorithm box)
easier to converge so that the system becomes more robust.
In practice, we have tried two ways to obtain the buffer
zone with a width of wi . Firstly, for each scan point pi , a
block with the width of wi is designed as shown in Fig. 10f.
For the first way, only the pixels around pi at the specific
direction are selected to calculate the match value. For
example, p2a

i , p16
i , p15

i , pi, p
11
i , p12

i , p22
i are the matched

pixels at the direction of
−−→
Opi . However, the calculated

amount will increase greatly if the direction is calculated for
all the scan points of each particle. In order to guarantee the
real-time performance, we adopted a simple way that all the
pixels in the block of pi are used. In the experiments, we
found there is little difference between the match results of
these two approaches.

m(t) =

Ns(t)∑

i=1

{
αi

[
c(pm(i)) +

Hi,Ki∑

h,k=1

(
δkc(p

kh
m (i))

)]}

Ns(t)∑

i=1
αi

(10)

M(t) = m̃(t)+ max{0, (Ns(t) − Ns(t − 1))}
Nmax

s

m̃(t −1) (11)

Based on this matching model, the match value for each
particle m(t) is calculated according to formula (10). In
this formula, c(pm(i)) is the pixel value of the ith scan
point pm(i) (in the mth particle) in the map. Similarly,
c(pkh

m (i)) is the pixel value of the khth buffer zone pixel of
pm(i). And δk is the attenuation coefficient(less than 1.0)
of the buffer zone, which decreases with k increases. For
example,it is set to be δk =

{
2
3 ,

1
3

}
when k = {1, 2} in

our system, respectively. As an empirical choice, the buffer
width Ki is uniformly set to be 2 in our system. What’s
more, we paid more attention to the selected critical rays.
In order to increase the structural features (especially for
the less structural feature environments, like long straight
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Fig. 10 Scan matching process in our method

corridor) without losing the influence of other common
rays, the weight coefficient (αi) for these two type points
must be suitable. It should be set to be appropriately larger
for the critical rays than that for the common rays. Through
experimental testing in different environments, we set αi to
be 10 if pm(i) is the critical ray. Otherwise, αi is set to
be 1. In this way, the match value for each particle m(t)

can be calculated objectively and the best match value m̃(t)

for the “optimal” particle can be obtained after the iterative
convergence process.

Finally, a filtered match value of this frame M(t) is
calculated as the feedback for the next frame according to
formula (11). In which, the best match value of the last
frame m̃(t − 1) is taken into account. When the number
of scan points Ns(t) increases suddenly, the influence of
m̃(t − 1) will be strengthened. For example, m̃(t) may
decrease if a new wall is scanned for the first time according
to formula (10), but M(t) won’t decrease if the localization
in the last frame is accurate. Correspondingly, if the scan
points number doesn’t change greatly between two adjacent
frames, M(t) is approximately equal to m̃(t). Thus, M(t)

can be used to characterize the current positioning accuracy
of the robot.

4.4 Match Values Analyzer

In CRSPF-SLAM system, match values analyzer is another
extremely important part, that decides whether the map can
be updated by using the obtained particle and whether the
“optimal” pose can be given back to the Odometry module
for eliminating its cumulative error.

Result (t) =

⎧
⎪⎪⎨

⎪⎪⎩

{ = 1 M(t) > Mu

= 0 else
, Result (t − 1) = 0

{ = 0 M(t) < Ml

= 1 else
, Result (t − 1) = 1

(12)

A hysteresis comparator is employed in our method to get
the analysis result that is shown in formula (12), where, the
upper thresholdMu is set to be 1850 and the lower threshold
Ml is set to be 1550 in our system. In Fig. 11, the match
value (blue line) changes with robot’s moving in three cases
and the their results (green line) are generated, respectively.
In general, M(t) decreases when the robot makes a turn
or moves suddenly, works in the bumpy environments and
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Fig. 11 Match values analyzer
works in different situations
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Fig. 12 Map Update works for
error elimination

other disturbance occurs. Then, location of the robot can be
determined to be accurate as the key frame when Result =
1 so that most of the noise can be eliminated.

5Map Update

As we introduced in Section 2, Map Update module
includes three process actions: draw scan in the map,
remove the errors of the map and remain unchanged.

Different actions are conducted according to the analysis
result of Match Values Analyzer.

When Result = 0 in Match Values Analyzer, the
localization of robot in the map is determined to be not
good enough for error elimination. In this case, another
hysteresis comparator is used in our system as shown in
formula (13). Where, the upper threshold Md

u is set to be
1250 and the lower threshold Md

l is set to be 850 in our
system. On the one hand, the current scan will be draw in
the map if the current match value M(t) is not too bad(that is

Fig. 13 Time Series Analyzation for the modules in our system
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Table 1 Error estimation for different algorithm in various simulation environments

Simulation experiments

Environment HectorSLAM Gmapping KartoSLAM CoreSLAM LagoSLAM CRSPF-SLAM

1r5map 7.4581 5.3670 5.4380 171.5218 9.3041 6.1675

MRL Arena 0.4563 0.4200 0.5509 11.8393 1.4646 0.5310

Draw = 1). On the other hand, the map will not be updated
(remain unchanged) with the location update of the robot if
Draw = 0. Thus, plenty of error scans are prevented from
being drawn in the map when the robot moves hastily. In
other words, only not bad scans can be regarded as the key
frames candidates.

Draw(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
= 1 M(t) > Md

u

= 0 else
, Draw(t − 1) = 0

{
= 0 M(t) < Md

l

= 1 else
, Draw(t − 1) = 1

(13)

When Result = 1 in Match Values Analyzer, the current
scan can be determined as good enough to be key frames.
The key frames are not only used to draw in the map, but
also used for error elimination. Specifically, the near and
stable scan points of the obtained key frame are selected to
get a passable area. Then, the passable area is corroded to be
a smaller area (green area in Fig. 12) for error elimination.
In our system (iRobot, for example), only the scan points
within 3 m are selected to generate this area when the
detection range of lidar is 5 m considering that the far scan
points are not stable enough. In this way, the previous error
drawing and the trace caused by dynamic obstacles can be
erased accurately.

6 Time Series Analyzation

As we stated above, all the modules of our system are
designed to work asynchronously. In order to explain the
relationship between them clearly, we analyzed the time
series of our system as shown in Fig. 13.

In detail, the odometry module is set to work at the rate
of 10Hz (green histogram shown in Fig. 13) and the cost
time of it is almost constant. The particle filtering module
is set to work at the rate of 3Hz (blue histogram shown
in Fig. 13) and its operation time is variable according to
the last match value. And the map update module is set to
work or not according to the analysis result of the match
values analyzer as the red histogram shown in Fig. 13.
Specifically, this module works only when the match result
(light blue line in Fig. 13) becomes 1. And the match result
is determinated according to the match values (black line
in Fig. 13) by using a hysteresis comparator. Meanwhile, to
prove the effectiveness of the algorithm, the odometer error
(yellow line) is also shown in Fig. 13. It is obvious that the
cumulative error of the odometer can be eliminated through
the low-frequency scan matching and map updating so that
the localization and mapping system can keep stable.

7 Experimental Results

In order to verify the effectiveness of our method and
compare it with other existing 2D SLAM methods, both
stage simulations and plenty of real world experiments on

Fig. 14 Evolution of the CPU
load of each SLAM method
under the same condition
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Fig. 15 Mapping results
comparison in a large meeting
room between our method (a)
and HectorSLAM (b)

Fig. 16 Experimental results comparison in the long straight corridor which is as long as 80 m between our mthod, TinySLAM and CRSM-SLAM
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Fig. 17 Indoor experiments for
our method

(a)

(b)

different kinds of platforms were performed. On the one
hand, considering that it’s so expensive and difficult to get
the ground truth data for the accurate errors calculation,
we mainly evaluate and compare the errors or accuracy of
these methods quantificationally through simulations. On
the other hand, we also present and compare the real world
experimental results of the different methods qualitatively.

For the simulation experiments, we mainly employed
two different maps: MRL Arena and 1r5map, which
were introduced detailedly in [23]. Their paper detailedly
evaluated and compared the common 2D SLAM approaches
by providing the specific errors and parameters based
on their designed evaluation method. The approaches
presented in their paper include HectorSLAM, Gmapping,
KartoSLAM, CoreSLAM and LagoSLAM. What’s more,
the methods and their source code link were also introduced
and presented in their paper. Specifically, in [23], the
authors conducted the simulation experiments by using
the toll – Stage (MRL Arena and 1r5map can be found
in this toll), which is a realistic 2D robot simulator

integrated in ROS. They employed Hokuyo URG-04LX-
UG01 and set same parameters for all the methods in
the simulation environment. What’s more, they conducted
an analysis of the error between the generated map and
the ground truth to evaluate the quality of the obtained
maps. Specifically, they used a performance metric based
on the k-nearest neighbor concept, that is computing the
best fit alignment between the ground truth and the map
by using intensity-based image registration tools. The error
calculation process was introduced detailedly in their paper.
We conduct the simulation experiments based on their
evaluation system and test results. To compare with their
test results for different methods, the simulation parameters
and computational condition are set same (or very close)
as theirs. In this way, we obtained the map errors of
our method for these two environments (MRL Arena and
1r5map), which are shown in Table 1. According to the
simulation experimental results, we can find our method
can get the similar map errors with the valuable methods,
like Gmapping, in these two environments. However, as

Fig. 18 Filtering and one-time
expansion for the outdoor
system
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Fig. 19 Outdoor experiments
for our method

we explained above, our method is a lightweight SLAM
method, which requires lower calculated cost than other
enormous methods, which can be proved in Fig. 14. As we
all know, SLAM methods perform quite differently when
the processor performance is different. For example, it is
usually very hard for the complex methods to get good
results when they works on the low performance computer,
especially with the changing of working environment and
working time. Therefore, we also conducted some real-
world comparison experiments with the enormous method
and other lightweight methods (low computational cost
methods shown in Fig. 14).

For the real-world experiments, we tried to use three
kinds of odometers in our system for different platforms,
respectively. As shown in Fig. 15, we compared our method
with HectorSLAM in a large meeting room whose size is
about 30 m×10 m. In this experiment, we employed the
small platform iRobot and combined its wheel odometer
(Fig. 3) with scan matching to conduct SLAM. The
experimental results show that our method is much easier
than HectorSLAM to get an accurate map under the same
conditions. The system on which the algorithms were
executed, is a mediocre notebook computer with Intel Core
i3-5005U CPU, 4 GB RAM, running Ubuntu 14.04.

For the lidar or radar SLAM system, the long straight
experiments are extremely challenging because of the few

architectural features at the longitudinal direction. There-
fore, we conducted some experiments in this kind of envi-
ronment to test the performance of different methods. For
example, Fig. 16 shows the experimental results for a long
straight corridor which is as long as 80 m without enough
architectural features. Specifically, Gmapping, TinySLAM
and CRSM-SLAM were compared with our method on the
iRobot platform whose detection range is 5 m in the exper-
iment. The traveling speed of the robot was set to be about
1.5 m/s, and its rotate speed was set to be about 45◦/s. Then
we found that the real-time capability of Gmapping[12]
was unable to meet the requirement of the system because
it’s not lightweight enough. Besides, as shown in Fig. 16b,
it’s obvious that the long straight corridor map created by
TinySLAM is not very accurate at the longitudinal direction.
For example, there are much ghosting of the gate and fish
tank in its map at the longitudinal direction compared with
our method (Fig. 16a). And we found CRSM-SLAM failed
to update the map when the robot is moving toward the left
side in the corridor as shown in Fig. 16c because there is
few features for its matching.

What’s more, we also conducted some experiments on
other platforms to test our method. On the one hand, Fig. 17
shows the indoor experimental results of a bank robot which
is made by ourselves. Its calculating system is an industrial
PC with Intel Core i3-4170 CPU and 4 GB RAM. In
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Fig. 17a, its wheel odometer (Fig. 3) was used to map a
long straight corridor with a big hall. In Fig. 17b, the stereo
visual odometer was used to map in an real bank hall.
The results indicate that our method can work effectively
as a service robot in different indoor environments with
different types of odometer. On the other hand, plenty
of outdoor experiments were also done on our different
autonomous vehicles. However, we found there was always
some noise in the outdoor map created by our cars because
the scan obstacle points in our method were obtained after
dealing with the 3D points cloud. Therefore, a simple
median filtering and one-time expansion are conducted on
the outdoor map in our method to make the path planning
easier, which is shown in Fig. 18. And Fig. 19 shows the
outdoor experimental results of two autonomous cars whose
calculating system is an industrial PC with Intel Core i5-
6500 CPU and 4 GB RAM. In Fig. 19a, our autonomous car
employed the IMU odometer to map a part of the campus
and drove by itself. In Fig. 19b, the wheel odometer (Fig. 4)
was used for the other car to map a parking lot in our campus
and parked itself. These outdoor experimental results prove

Fig. 20 Product equipped with our method: Bank Robot – ONE

that our method can meet the requirement of some tasks,
such as autonomous parking and community transportation.

8 Conclusion

A lightweight but robust SLAM method for the indoor
and outdoor applications is presented in this paper. Three
different odometers are tried to be used for working with
a self-adaptive particle filtering algorithm, respectively.
Plenty of experiments conducted on different kinds of
platform in a variety of environments indicate that our
method is more effective than others. What’s more, our
method has been used for many indoor and outdoor products
successfully. For example, the bank robot named ONE
as shown in Fig. 20 is the collaborative product of our
laboratory and China Minsheng Bank to work as a lobby
manager, which has about two hundred orders in China now.
Besides, our method is also used for some cars to realize the
autonomous parking function. To achieve better academic
exchanges, we will share our source code and experimental
videos on our website. In the future, only the stereo cameras
will be used in our system instead of lidar so that the cost of
our products can be lowered greatly.
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