
J Intell Robot Syst (2018) 92:545–564
https://doi.org/10.1007/s10846-017-0739-7

Experience Learning From Basic Patterns for Efficient
Robot Navigation in Indoor Environments

Olimpiya Saha1 · Prithviraj Dasgupta1

Received: 21 November 2016 / Accepted: 2 November 2017 / Published online: 20 November 2017
© Springer Science+Business Media B.V., part of Springer Nature 2017

Abstract In this paper we propose a machine learning tech-
nique for real-time robot path planning for an autonomous
robot in a planar environment with obstacles where the
robot possess no a priori map of its environment. Our main
insight in this paper is that a robot’s path planning times can
be significantly reduced if it can refer to previous maneu-
vers it used to avoid obstacles during earlier missions, and
adapt that information to avoid obstacles during its current
navigation. We propose an online path planning algorithm
called LearnerRRT that utilizes a pattern matching tech-
nique called Sample Consensus Initial Alignment (SAC-IA)
in combination with an experience-based learning technique
to adapt obstacle boundary patterns encountered in previous
environments to the current scenario followed by corre-
sponding adaptations in the obstacle-avoidance paths. Our
proposed algorithm LearnerRRT works as a learning-based
reactive path planning technique which enables robots to
improve their overall path planning performance by locally
improving maneuvers around commonly encountered obsta-
cle patterns by accessing previously accumulated environ-
mental information. We have conducted several experiments
in simulations and hardware to verify the performance of the
LearnerRRT algorithm and compared it with a state-of-the-
art sampling-based planner. LearnerRRT on average takes
approximately 10% of the planning time and 14% of the
total time taken by the sampling-based planner to solve the
same navigation task based on simulation results and takes
only 33% of the planning time, 46% of total time and 95%

� Olimpiya Saha
osaha@unomaha.edu

1 Computer Science Department, University of Nebraska
at Omaha, Omaha, USA

of total distance compared to the sampling-based planner
based on our hardware results.

Keywords Experience learning · Real-time robot path
planning · Obstacle feature matching

1 Introduction

Autonomous navigation is a central issue in many robotics
problems that have real-life applications. For example,
autonomous vehicles used in civilian and military applica-
tions [27], assistive robots used for manipulating and grasp-
ing household objects [25], warehouse management robots
[12], and extra-terrestrial rovers [34], employ navigation
algorithms for controlling their movement. In autonomous
navigation, a robot has to determine a path between a start
and a goal location and navigate along the path while avoid-
ing collisions with obstacles. Autonomous navigation is
challenging because, in most real-life situations, the robot
might not have an a priori, accurate map of its environ-
ment, and is also constrained by the limited range of its
on-board proximity sensors. To successfully navigate, the
robot has to find a collision-free path in real-time by deter-
mining and dynamically updating a sequence of waypoints
that connect the robot’s initial position to its goal posi-
tion. In many existing robot navigation algorithms [7], a
motion planner generates a route for the robot to follow
and reach its goal. However, in situations where the robot
does not have prior information about the location of obsta-
cles in its environment, it has to modify its path whenever
it detects a previously unknown obstacle that occludes its
path towards its goal. This is a computationally expensive
operation that can consume considerable time (order of a
few seconds to minutes) especially in a large and complicated

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-017-0739-7&domain=pdf
http://orcid.org/0000-0002-6980-1418
mailto:osaha@unomaha.edu

546 J Intell Robot Syst (2018) 92:545–564

environment that is cluttered with multiple complex obsta-
cles. Excessively expended path planning time also attenu-
ates the robot’s energy (battery) which in turn deteriorates
the overall performance of the robot in achieving its mission.

To address this problem, in this paper, we make the insight
that, although obstacles could be geometrically dissimilar in
nature, they can share some generic features that are preva-
lent in many commonly encountered obstacles. Our main
hypothesis is that if a robot can be initially demonstrated
manually (e.g., through tele-operation) to perform naviga-
tion maneuvers around a set of simple obstacle boundaries,
it can reuse these maneuvers, with suitable adaptations, to
navigate efficiently in different, future environments with
more complex obstacle boundaries, without having to resort
to time intensive motion planning calculations. In this man-
ner, navigation can be learned incrementally by a robot,
without having to be trained independently for each new
environment that the robot is working in. To validate our
hypothesis we describe an algorithm called LearnerRRT,
where, we first train a robot by navigating it in an envi-
ronment where obstacles share some distinctive geometric
features. The features of the obstacles perceived by the
robot’s sensors along with the corresponding movements
or actions which enabled the robot to avoid the encoun-
tered obstacles are recorded and preserved by the robot in
its repository for future reference. Subsequently when the
robot needs to achieve a navigation task in a new envi-
ronment, which requires it to navigate successfully around
obstacles, it retrieves the best obstacle feature-action pair
from its repository. For retrieving the best obstacle feature-
action pair, the robot determines the obstacle feature having
the highest similarity to its currently perceived obstacle fea-
ture and retrieves the action sequence corresponding to the
best matched obstacle feature from its repository. The robot
then adapts the action sequence by considering the geo-
metric details of the current obstacle. We have tested our
algorithm on a simulated Corobot robot using the Webots
simulator as well as a physical robot within different envi-
ronments having different obstacle geometries and spatial
distributions while varying the start and goal locations of
the navigation task given to the robot. Our results show
that our proposed algorithm LearnerRRT can perform path
planning in real time in a more time effective manner com-
pared to sampling based techniques like Informed RRT*.
LearnerRRT on average takes approximately 10% of the
planning time and 14% of the total time taken by Informed
RRT* to solve the same navigation task based on simula-
tion results and takes only 33% of the planning time, 46%
of total time compared to Informed RRT* based on our
hardware results. With respect to navigation times and dis-
tances traveled LearnerRRT on average takes approximately
only 23 percent more navigation time and 20 percent more
distance and 80% of the navigation time and 95% of the

total distance to solve a given task based on simulations
and hardware results respectively. However, the difference
in the simulation results is trivial when compared to the sig-
nificant improvements observed in planning time and total
time taken. We also performed experiments that assessed
the learning performance of LearnerRRT. Our results show
that LearnerRRT improves its performance with increase in
the size of the library like any conventional learning-based
algorithm. It was finally able to achieve a learning rate of
88 percent with the given maximum size of the library. A
preliminary version of this work appeared as an extended
abstract [33] and a non-archival technical report [32]. In this
paper, we have completely rewritten the introduction, moti-
vation and related work sections of the paper and added
several new references. We have added analytical results
about the performance of our algorithm in Section 4. In
Section 5.1, we have added several new experimental results
including comparisons of our approach with a state-of-the-
art robot motion planning algorithm called Informed RRT*
for different metrics including the planning and navigation
times, and distances traveled by robots. We have also added
new experiments to validate the learning performance of our
algorithm in Fig. 9. Finally, the entire Section 5.2 describing
hardware results of our proposed algorithm and Section 6
discussing the findings and results of our research, are new
in this paper.

2 Related Work

Researchers over the decades have investigated techniques
to enable autonomous navigation in robots by proposing
different path planners designed to enable robots to plan
a suitable path to be followed for the timely comple-
tion of a well-defined task. Among the earlier works in
this area are graph-based planners like A*, sampling-based
planners like Probabilistic Roadmap Planners(PRMs) [21]
and Rapidly Exploring Random Trees(RRTs) [23]. Con-
ventional A* algorithm works with a grid embedded in
the robot’s workspace and find the optimal paths based on
heuristics. D∗, Lifelong-A∗, D∗-Lite are advanced graph
replanning algorithms based on the original A∗ algorithm
which are constructed to correct a solution generated by A∗
after the edge weights in the graph have changed.

PRMs are graph-based planners which are more geared
towards multi-query planning. They construct roadmaps in
the free configuration space by randomly sampling valid
configurations and constructing simple paths satisfying col-
lision constraints. The constructed roadmap is then queried
for generating a path from the start to the goal. On the
other hand, RRTs are tree-based planners which are more
suited for single-query problems. RRTs explore C-space
from some start configuration by extending nodes and

J Intell Robot Syst (2018) 92:545–564 547

joining the nearest neighbor in the tree to the new node only
if the edge between the two nodes are valid. These algo-
rithms have grown into a family of advanced path planning
algorithms over the recent years like PRM∗ [20], LazyPRM
[5], OBPRM [2], UOBPRM [47], Spark-PRM [35], RRT-
Connect [22], RRT ∗ [20], ERRT [6], DRRT [15], MP-RRT
[48], LRF [18], RRT # [3], RRTLocTrees [39] and RRT x

[26] where researchers have looked into several aspects to
improve the original algorithm like more efficient sampling
strategy, adaptability to dynamic environments and usabil-
ity in environments with narrow passages. [13] presents a
comprehensive review of different sampling-based motion
planning methods with special emphasis on kinodynamic
planning and motion planning in dynamic and/or uncertain
environments. Sampling-based planners and their advanced
variants have been proposed to solve more complicated
problems of motion planning like planning in higher dimen-
sional spaces and in multi-robot and networked environ-
ments. In [46], the authors propose four path planning
algorithmic families which can be applied on metric occu-
pancy grid maps (OGMs)- Probabilistic RoadMaps (PRMs),
Visibility Graphs (VGs), Rapidly Exploring Random Trees
(RRTs) and Space Skeletonization. In this work the authors
defined metrics for path planning benchmarks as well as
the actual benchmarks of the most common global path
planning algorithms and an educated algorithm parame-
terization based on a global obstacle density coefficient.
In [9], the authors investigate the coordination of multiple
robots with pre-specified paths on the basis of two criteria-
motion safety and travel time minimization. In this work,
the authors proposed a search method which was applied
on PRM to achieve the Pareto-optimal coordination solution
for multiple robots. [10] proposes an adaptive path planning
technique for multiple autonomous underwater vehicles
(AUVs) which estimates the scalar field over a region of
special interest. In this work, the authors utilize a mea-
surable model consisting of multiple basis functions which
represent the scalar field along with a selective basis func-
tion Kalman filter which estimates the model by exploiting
the information accumulated by multiple AUVs. Addition-
ally, the authors proposed the multi-dimensional rapidly
exploring random trees star algorithm which was used as
a path planning technique for the multi-AUV system under
consideration. In [36], the authors consider a networked
system composed of unmanned aerial vehicles (UAVs),
automated logistics service stations (LSSs), customer inter-
face software, system orchestration algorithms and UAV
control software and aim to utilize this networked system to
provide uninterrupted service to its customers in real-time.
However, majority of these works assume that the robot has
access to an initial map of the environment and the environ-
ment can change in the future thus introducing dynamicity
to the same environment. In contrast to this, our problem

considers that the robot is deployed in a completely
unknown environment with no initial map of the environ-
ment. The robot can only perceive its local environment
with the help of its onboard sensors. Another challenge
encountered by these sampling-based planners is the higher
sampling time required by them in environments with com-
plex obstacle geometries. Our problem has some similarities
with Spark-PRM where the authors addressed the problem
encountered by these planners when they encounter narrow
passages owing to the deficiency of valid samples within such
regions. However, in our work we generalize the problem
beyond narrow passages to more different varieties of com-
plicated patterns by utilizing concepts from machine learning.

Machine learning has been a topic of interest in the
robotics community over the recent years. In one of the
earliest works in this direction, Fernandez and Veloso [16]
proposed a policy reuse technique where an agent calcu-
lates its expected rewards from possible actions within a
reinforcement learning framework to select whether to use
the action prescribed by its learned policies to explore new
actions. da Silva and Mackworth [11] extended this work by
adding spatial hints in the form of expert advice about the
world states. Recently, transfer learning has been proposed
to leverage knowledge gained in one task to a related but dif-
ferent task [43] by transferring appropriate knowledge from
related source tasks. Most transfer learning techniques rely
on a source task selection strategy, where the most suitable
source task is selected from the source task pool and applied
to the target task in order to solve it. A related problem with
such an approach is that if the source task is selected incor-
rectly, the target task can be peformed poorly suffer owing
to irrelevant or ‘negative’ transfer of knowledge from the
source task. In [41], the authors have addressed this problem
using a transfer hierarchy. Approaches such as a human-
provided mapping [45] and a statistical relational model
[44] to assess similarities between a source and a target
task have also been proposed to mitigate negative transfer.
Other techniques to learn source to target task mappings
efficiently include an experience-based learning framework
called MASTER [42] and an experts algorithm which is
used to select a candidate policy for solving an unknown
Markov Decision Process task [40]. Our paper is along this
direction of work, and our proposed LearnerRRT algorithm
uses a feature matching algorithm called Sample Consensus
Initial Alignment (SAC-IA) [30] from computer vision to
mitigate the problem of negative transfer.

In contrast to using machine learning techniques to learn
suitable actions, researchers have proposed techniques to reuse
robots’ paths, represented as a set of waypoints, learned from
previous navigation experiences. Lien et al. [24] proposed a
robot motion planner called ReUse-based PRM(RU-PRM)
which constructs local roadmaps around geometric models
of obstacles and stores them in a database; the roadmaps are

548 J Intell Robot Syst (2018) 92:545–564

later used to build a global roadmap for the robot to follow.
Researchers have also proposed the concept of experience
graphs [19, 28, 29] where the robot learns a network of
paths from past experiences and uses it to accelerate plan-
ning whenever possible. The technique reduces to planning
from scratch when no past experiences can be reused. In
[37], the authors proposed a technique to create a global pol-
icy based on some sample trajectories collected during the
training that eventually enables robots to perform navigation
effectively from different parts of the same environments.
In the Lightning and Thunder frameworks [4, 8], a robot
learns paths from past experiences in a high-dimensional
space and reuses them effectively in the future to solve a
given manipulation task. In most of these approaches, the
metric for calculating similarity to previous navigation tasks
is based on similarity between the robot’s start and goal
locations between a previous task and the navigation task
at hand. Similar to these approaches, our LearnerRRT algo-
rithm exploits past knowledge if a considerable amount of
relevance between the current obstacle and a previously
encountered obstacle is identified. Otherwise, to avoid neg-
ative transfer, it reverts to planning from scratch using a
state-of-the-art motion planner called Informed RRT* [17]
to navigate in the target environment. However, in contrast
to these techniques, our approach considers a higher level
of granularity by learning and reusing actions for avoiding
obstacles instead of actions between start and goal locations
of previous navigation paths, to make the navigation apply
across environments that can vary in size and obstacle nature
and distributions. It is important to note here that in order
to be fully successful and autonomous, the robots in these
approaches need an optimal strategy to decide when to add
trajectories, how many trajectories to add and from which
starting points trajectories need to be added which are cur-
rently open challenges in this area of research. Moreover,
these techniques use trajectory samples accumulated during
training in a specific environment and use them to improve
navigation during later runs in the same environment. In
contrast to this approach, our technique is reusable across
domains and can be useful in any environment assuming
that the environments possess some inherent structures com-
monly observed in most of the real-world environments.
In [38], the authors suggested an approach to transfer pol-
icy libraries to new environments by representing libraries
in the feature space. However, their approach stores tra-
jectories as longer paths from start to goal which presents
higher challenges to transfer across environments with sig-
nificant differences. In contrast our approach is based on
transferring only local policies or sub policies around com-
mon obstacle patterns which help the robots to successfully
avoid obstacles and then switch back to direct paths to
the goal once line of sight to the goal is achieved. Hence,
our approach improves navigation by improving obstacle

avoidance capabilities in robots in one-shot manner. The
adopted path can definitely be improved once the robot
has access to few sample trajectories in its environment
following similar strategies.

3 Problem Formulation

The symbols used in the following problem formulation
and their descriptions are summarized in Table 1 above.
Consider a wheeled robot situated within a bounded envi-
ronment Q ⊆ �2. We use q ∈ Q to denote a configuration
of the robot, Qf ree ⊂ Q to denote the free space, and
Qobs = Q − Qf ree to denote the space occupied by
obstacles in the environment respectively. The action set
for the robot’s motion is given by A ⊂ {[−π, π] × �};
an action is denoted as a = (θ, d) ∈ A, where θ ∈
[−π, π] and d ∈ � are the angle (in radians) the robot
needs to turn and the distance it needs to move respec-
tively. Performing an action a in configuration q takes the
robot to a new configuration q ′, which is denoted math-
ematically as a(q) = q ′. A path is an ordered sequence
of actions, P = (a1, a2, a3, ...). Let T denote a nav-
igation task for the robot, T = (qstart , qgoal), where
qstart , qgoal ∈ Qf ree denote the start and goal locations
of T respectively. The objective of the robot is to find a
sequence of actions that guarantees a collision free nav-
igation path connecting qstart and qgoal . In other words,
no action along the navigation path should take the robot
to a configuration that is in collision with an obstacle.
Using the mathematical notations above, the navigation
problem facing the robot can be formally stated as the fol-
lowing: Given navigation task T = (qstart , qgoal), find
navigation path for task T , PT = (a1, a2, a3, ...) ⊂ A
such that �ai ∈ PT , where ai(q) = q ′ ∈ Qobs . To
solve the navigation problem, we propose the LearnerRRT
algorithm that first creates a library of obstacle patterns
and robot actions and reuses the learned actions to nav-
igate around obstacles. The LearnerRRT algorithm pro-
ceeds in two steps that are described in the subsequent
subsections.

3.1 Library Creation

The robot is first trained in an offline manner to find a
collision-free path for navigating around obstacles that have
different but well-defined geometries. Each navigation task
used for training is called a source task. We assume that
the environments in which the robot will perform navi-
gation tasks later on will have obstacles with significant
similarities in their boundary patterns with respect to the
source tasks, although the orientation and dimensions of
individual obstacles in the later environments might vary.

J Intell Robot Syst (2018) 92:545–564 549

Table 1 Symbols used in Problem Formulation and their descriptions

Symbols Description

Q Bounded environment where the robot operates.
Qf ree Free space in the environment.
Qobs Space occupied by obstacles in the environment.
q A configuration of the robot.
A Action set of the robot.
a An action of the robot.
qstart Configuration of the robot at the start.
qgoal Configuration of the robot at the gaol.
T Navigation task of the robot.
PT Navigation pat for task T.
LAB The set of labels for obstacles learned during the training phase.
L Library containing the set of actions learned during the training.
Lab The label of an obstacle in the library L created during training.
Glab Set of gaol locations spatially distributed around an obstacle with label lab in the library L.
gj Each gaol location in Glab

LSlab The set of 2D coordinates which describes the obstacle with label lab created during the training.
pathlabj

Ordered set of distance and orientations required to follow the path to gaol location gj around the obstacle with label lab

LSobs The set of 2D coordinates which describes the obstacle obs perceived during the testing phase while the robot navigates in the
environment.

SF Scaling factor expressed as the ratio of the size of the perceived obstacle LSobs and the best matched obstacle pattern LSlab

obtained form L

θobd,Lab The transformation angle between LSobs and LSlab

J I Jaccard Index calculated to determine the extent of overlap between LSobs and LSlab after applying scaling and transformation.
JIT hr Threshold value for calculated jaccard index to determine the extent of overlap between the two obstacle.
labmatch The obstacle label from L with which the perceived obstacle has the highest match.
pathlabmatch

The set of paths retrieved from the library corresponding to the obstacle pattern labmatch.
pathlabmatch.J

j th path obtained from pathlabmatch

gscale
j The last waypoint in a path obtained by scaling and transforming

We consider four well-defined obstacle geometry patterns
as source tasks - cave, column or passage, corner and block,
as shown in Fig. 1a-d. Each pattern is identified by a label
corresponding to its name. The set of labels is denoted
by LAB. The actions learned by the robot during training
are stored in an action library, L, as described below. We
would like to mention here that these four patterns specifi-
cally evolved from our observations of different real-world
environments as patterns that are most frequently present
in majority of these environments and regions where it gets
difficult for existing path planners to plan paths circum-
navigating them. To the best of our knowledge there is no
formal study in this area aiming to determine a succinct set
of real-world obstacle patterns.

To construct the action library, L, for a source task corre-
sponding to an obstacle with label lab, the robot is initially
placed in front of the obstacle in such a way that the robot’s
range sensor can perceive the obstacle’s inner boundary. A
set of goal locations, Glab, corresponding to positions where
the robot will have avoided the obstacle are specified. Loca-
tions in Glab are spatially distributed uniformly around the
outer obstacle boundary, such that the straight line path from
the robot’s initial position to each gj ∈ Glab is in collision

with the obstacle, as shown in Fig. 1a-d. The range or prox-
imity data obtained from the robot’s sensor while perceiving
the obstacle from its initial position is stored as a set of coor-
dinates in the 2D plane denoted by LSlab = {(x̂, ŷ)}. The
robot internally constructs the obstacle boundary from the
range data and uses the Informed RRT* path planner [17] to
plan a path to each of the goal locations. The path returned
by Informed RRT* consists of an ordered set of waypoints.
It is post-smoothed to reduce any unnecessary turns in the
path. The smoothed path of goal glab,j ∈ Glab, pathlab,j =
{(d̂, θ̂)}, is an ordered set of distances d̂ and orientations θ̂

required to follow the path. This path is stored in the action
library. Each path stored in the action library is indexed
by its obstacle label, and for each label by the different
goal locations for that label. The action library after com-
pleting all the tasks in the source task set is given by Eq. 1.

L = ∪lab∈LAB(LSlab, P athlab) (1)

where Pathlab = ∪glab∈Glab
pathglab

.
The robot records both the obstacle contours in the form

of streams of 2D contours and the corresponding planned
paths generated by InformedRRT* while solving the differ-
ent test cases during the training phase. The robot accesses

550 J Intell Robot Syst (2018) 92:545–564

Fig. 1 a-d Different obstacle
patterns used as source task to
construct the action library. The
robot’s initial position
corresponds to a location from
which its sensor can perceive the
entire obstacle’s inner boundary.
Different goal locations for each
obstacle are denoted by the set
Gcave, Gblock , Gcorner and
Gpassage respectively

Sensor Range

Robot

Obstacle (Cave)
Sensor Range

Robot

Obstacle (Block)

)b((a)

Sensor Range

Robot

Obstacle (Corner) from inside

Sensor Range

Robot

Obstacle (Passage)

)d()c(

this information later on while solving future navigation
tasks. It is important to mention here that our approach in
its core combines experience-based learning technique with
the concept of transfer learning where information related
to environmental obstacle patterns and the corresponding
obstacle avoidance maneuvers learned in one environment
are transferred across other environments to facilitate faster
navigation.

3.2 Obstacle Avoidance Using Learned Navigation
Actions

After learning actions for avoiding common obstacle pat-
terns, the robot (Fig. 2) is given a navigation task T =
(qf ree, qgoal). Note that the new navigation task can be
given in a different environment than the one in which
the action library was created. The general scheme that
the robot uses after constructing its action library is to
reuse actions from its action library, after suitable adap-
tations, when it encounters an obstacle while navigating
towards the goal. The pseudo-code for our proposed Learn-
erRRT algorithm based navigation is given in Algorithm 1.

While moving towards the goal, when the robot encoun-
ters an obstacle obs, its laser sensor scans the environ-
ment and records the proximity data from the obstacle,
LSobs = {(x̂, ŷ)}, as a set of coordinates in the 2D plane.
The laser actually returns a sequence of distances where
it gets obstructed owing to the presence of the obsta-
cle. It then converts the laser distances into a sequence
of 2D coordinates based on its current location and the
laser bearing at that instant. In order to ensure safe naviga-
tion, the robot always has to maintain a minimum distance
from the obstacle(s) present in the environments which is
determined from the robot’s sensor readings. The robot
records an obstacle as soon as the laser sensor returns
a value lower than the minimum safety distance. It then
uses a state-of-the-art algorithm for aligning object fea-
tures called Sample Consensus Initial Alignment(SAC-IA)
algorithm [30], to match LSobs with the obstacle proximity
data for the different obstacles recorded in the action library L.

For each lab ∈ LAB, the LSobs data is first pre-
processed to scale it approximately to match LSlab. For
determining the approximate scaling factor, we perform a
principal component analysis(PCA) on each of LSobs and

J Intell Robot Syst (2018) 92:545–564 551

Fig. 2 a Photograph of a
Corobot robot, b simulated
Corobot robot with visible
distance sensor rays used for
simulations within Webots

LSlab and retrieve the largest eigenvalues from each of the
computed PCA, which reflects the maximal variance of each
data set. The scaling factor SF is given by Eq. 2.

SF =
√

max eig(LSobs)

max eig(LSlab)
(2)

The SAC-IA algorithm takes two point clouds, corre-
sponding to scaled LSobs and LSlab respectively, as inputs
and aligns the first point cloud with respect to the second
to get the best matching between the two. The algorithm
returns the corresponding transformation θobs,lab between
the two point clouds. The extent of match between calcu-
lated by SAC-IA between LSobs and LSlab is measured
by analyzing their Jaccard Index, which reflects the extent
of overlap between two geometric shapes. To limit nega-
tive transfer between the two patterns, we admit only those
obstacle patterns whose Jaccard Index, J I , is greater than a
certain threshold J IT hr , so that two patterns with very low
similarity are not considered in the match calculation. The
obstacle label with which the currently perceived obstacle
has highest match is given by Eq. 3.1

labmatch = arg max
lab∈LAB

J I (LSlab, LSobs) (3)

subject to J I (LSlab, LSobs) > JIT hr .
Once the best obstacle match in the action library labmatch

has been determined, the robot retrieves the set of paths
Pathlabmatch

from the library. It applies the transformation
angle θobs,labmatch

returned by SAC-IA to each of the orienta-
tions in the Pathlabmatch

, followed by applying the same
scaling factor calculated during preprocessing the two point
clouds before applying SAC-IA, to each of the distances in
Pathlabmatch

. It then selects the path pathlab,j ∈ Pathlabmatch

as the path whose scaled goal location, gscale
j minimizes

the distance to qgoal , given by j = arg min d(gscale
j , qgoal),

where, gscale
j = scale(glab,j) and �a = (d̂, θ̂) ∈

1If LSobs does not match any LSlab from the action library, the robot
uses the Informed RRT* planner to plan its path around obstacle obs

instead of attempting to learn from past navigation data.

pathlabmatch,j s.t. q ′ = a(q) /∈ Qf ree. The last constraint
ensures that the robot does not collide with an obstacle while
following the scaled path computed by our algorithm, as
described below.

Finally, the robot does two post-processing steps to cor-
rect and optimize the selected path. The selected path is
first checked for collision with the obstacle at individual
segments consisting the path. If any of the component seg-
ments gets within very close proximity of the obstacle or
intersects with the obstacle, we apply our path correction
strategy which can be classified in two ways depending on
the position of the unsafe segment in relation to the whole
path. If the unsafe segment has both predecessor and suc-
cessor segments, then new waypoints are sampled along
the direction of the predecessor and successor segment and
the unsafe segment in the path is replaced by the new seg-
ment formed by the newly sampled waypoints. On the other
hand, if the unsafe segment has only a predecessor or a suc-
cessor in the path, new points are generated by sampling
points in the direction of the predecessor/successor segment
and by extrapolating the affected segment. The node at the
juncture of the affected segment and predecessor/successor
is replaced by the segment generated by the newly sam-
pled points. In the above procedures sampling continues till
the collision constraints are satisfies by the newly gener-
ated segments. For segments that are not colliding with the
obstacle, the path is interpolated between the extremities
of two successive segments to reduce the length of the
path. Hence, LearnerRRT can handle minor variations in
the learned obstacle patterns by adapting paths suitably fol-
lowing the discussed path correction/optimization approach.
It is important to note that the post processing step dis-
cussed in this section will be able to rectify paths for
robots as long as there are no occlusions and the training
and testing environments significantly share similarities in
obstacle patterns with minor variations. In case the post
processing procedure is unable to correct the planned path
(owing to the complexity, occlusions or uniqueness of a
particular obstacle discovered in the testing phase), the

552 J Intell Robot Syst (2018) 92:545–564

robot uses a local path planner which plans a path from
scratch.

The robot follows the mapped path retrieved from the
action library until is reaches gscale

j . At gscale
j , the robot

might still perceive an obstacle, e.g., if the obstacle extended
beyond the robot’s sensor range perceived from its initial
location. In such a case, it reapplies the above steps of
reusing a path from its action library based on the perceived
obstacle proximity data. To avoid retrieved paths from form-
ing a cycle inside the same obstacle, the robot remembers
the direction in which it had turned when it first encountered
this obstacle, and gives a higher preference to successive
retrieved paths from the action library that are in the same
direction as the first turn.

We would like to emphasize here that although Learn-
erRRT works with 2D point clouds in planar environments,
the algorithm can be easily extended to 3D or higher dimen-
sional spaces as the components used by LeanerRRT for
pattern matching like FPFH, SAC-IA and PCA have been
successfully applied in higher dimensional spaces for object
registration and manipulation by a humanoid robot [30, 31].
As the action library is preserved as sequences of angles and
distances, it will be applicable in 3D and higher dimensional
spaces as well.

4 Analysis

Lemma 1 LearnerRRT will generate a collision free path
which will enable the robot to avoid the encountered obsta-
cle and reach a point as close as possible to the goal

For any real-time path planning problem, the robot has
to determine a collision-free path from start to goal. Our
planner at first optimistically assumes that there exists no
obstacle in the environment and follows the minimum cost
path or the direct path from the start to goal. While the
robot continues in its path, two cases can arise. (1.) The
robot encounters an obstacle in its path and (2.) The robot
does not encounter an obstacle in which case it contin-
ues its motion. For the first case, our LearnerRRT planner
will be able to determine the best matched obstacle pattern
labmatch and return the best mapped path from its library
L. As we use Informed-RRT* to build our library by setting
goal positions around the obstacles, it can be claimed that by
following the Informed-RRT* generated path retrieved and
mapped from the library, the robot will be able to effectively
avoid the obstacle in its path. We select the path from the
library corresponding to the best matched pattern by mini-
mizing the total distance of the path to the goal. This ensures
that by following the path, the robot will definitely reach
a point which is as close as possible to the goal. Hence,
the capability of Informed RRT* to generate collision free
paths integrated with our minimal path distance heuristic

Algorithm 1 LearnerRRT algorithm
Input: currX, currY, goalX, goalY

Output: A collision-free path from start to goal
1 path ← ∅
2 repeat
3 adjustT oGoal(goalX, goalY)

4 repeat
5 Move towards goal
6 until obstacle is detected;
7 ls ← getLaserScan(currX, currY)

8 lsscaled ← scaleLaserScan(ls)

9 pattern, θmatch ← f indBestMatch(lsscaled , L)

pathbest ← f indBestP ath(L, pattern)

pathtransf ← transf ormPath(pathbest , θmatch)

foreach node ∈ pathtransf do
10 if node collides with obstacle then
11 pathmapped ← correctP ath(pathbest)

12 foreach edge ∈ pathtransf do
13 if edge collides with obstacle then
14 pathmapped ← correctP ath(pathtransf)

15 if no node collided with obstacle and no edge
collided with obstacle then

16 pathmapped ← optimizePath(pathtransf)

17 repeat
18 if sensor detects obstacle then
19 go to Line 7 and repeat rest of the steps

20 else
21 f ollowPath(pathmapped)

22 until Line of Sight LOS is achieved or path gets
exhausted;

23 until (goalX, goalY) is reached;

guarantees that LearnerRRT will generate a collision free
path which will enable the robot to avoid the encountered
obstacle and reach a point as close as possible to the goal.

Theorem 1 For a well-defined and relatively similar envi-
ronment E, LearnerRRT terminates and the solution it
returns is guaranteed to be no worse than Nk times the
optimal solution cost in environment E where N is the num-
ber of obstacles and k is the cumulative error in path cost
owing to scaling error and transformation error.

Recall that LearnerRRT returns labmatch, the best-
matched obstacle pattern from the library θobs,labmatch

and the transformation angle between currently perceived
obstacle pattern and the best match. Let D denote the
total distance of the optimal path between start and
goal while avoiding obstacles, dlast denote the length of

J Intell Robot Syst (2018) 92:545–564 553

where �C is the error in total path cost, Cbest is the cost of the
optimal path predicted by Informed RRT* and CLearnerRRT

is the cost of the path generated by LearnerRRT.
This error propagates along the path predicted by the plan-
ner which deviates it from the optimal path. Hence, it can
be concluded that LearnerRRT terminates and the solution
it returns is guaranteed to be no worse than Nk times the
optimal solution cost in the environment. It is worth men-
tioning here that as the error in the scaling factor will result
in the difference of distance of the entire path, the latter
is considered in the calculation of Errors . In contrast due
to the error in transformation angle, the distance covered
by the robot to avoid the obstacle still remains the same.
The excess distance covered by the robot is a consequence
of covering a higher distance to the goal after avoiding
the obstacle. Hence, only the length of the last segment is
considered for the calculation of Errortf in the worst case
scenario.

Theorem 2 LearnerRRT algorithm has a time complexity
of O(Nn1n2) where N is the number of obstacles encoun-
tered by the robot, and, n1 and n2 are respectively the
number of maximum points in an obstacle pattern present
in the library and the number of points in the currently
perceived obstacle pattern.

From Algorithm 1, it can be observed that LearnerRRT
mainly consists of five components- scaling of the obsta-
cle data in the form of point clouds to be compatible
with each other (scaleLaserScan function), pattern match-
ing (findBestMatch function) and fitness score calculation,
determining the best path for the selected candidate obsta-
cle (findBestPath function), transforming and scaling the
retrieved path to be applicable for the current obstacle and
finally correcting/optimizing the path if required. We evalu-
ate the time required for each of the components separately

Fig. 3 a Illustration of optimal
path (green lines) and path
covering more distance under
scaling error (red lines) (b)
Illustration of optimal path
(green lines) and path under
transformation error (red
lines)resulting the robot to travel
more distance to reach the goal
(segment bc)

the last segment in the path and θ denote the angular
error in the transformation angle returned by SAC-IA.

Two main factors which contribute to the error in the
predicted path by LearnerRRT are errors from approximate
scaling and the same from the transformation angle returned
by Informed-RRT*. If we consider the error in the deter-
mined scaling factor is SFerr , then the error in the path cost
owing to inappropriate scaling can be expressed by Eq. 4.

Errors = SFerrD (4)

Hence, inappropriate scaling will result in greater dis-
tance traversed which is expressed as the error in the above
equation. The error due to erroneous scaling is illustrated
in Fig. 3a. On the other hand, it is important to note that
error in the transformation angle will result in the devia-
tion of the path from the appropriate mapped path in the
library which will result in a path that is not as close to the
goal as the perfect mapped path. The distance of both the
paths remain constant though. The error due to approximate
transformation can be expressed by Eq. 5.

Errortf = θdlast (5)

Considering the maximum angular error as θmax , Eq. 5
gets replaced by Eq. 6.

Errortf = θmaxdlast (6)

The error due to error in transformation is illustrated in
Fig. 3b. Considering that there can be N obstacles in the
robot’s path, the total error is expressed by Eqs. 7 and 8.

�C = CLearnerRRT

Cbest

=
N∑

i=1

(Errors + Errortf) (7)

�C = N(SFerrD + θmaxdlast) = Nk (8)

554 J Intell Robot Syst (2018) 92:545–564

to analyze the time complexity of the LearnerRRT algo-
rithm. In order to scale the current obstacle point cloud with
the obstacle patterns from the library LearnerRRT performs
principal component analysis (PCA) on each of the obstacle
point cloud. PCA primarily consists of covariance matrix
calculation and its eigenvalue decomposition which results
in a time complexity T1 = O(|L + 1|(nD2 + D3)) [14]
where n = ρ(obs) is the number of points in the corre-
sponding obstacle obs, D is the dimensionality of the point
clouds and |L| indicates the size of obstacles in the library
L. As LearnerRRT works with 2D point clouds and the size
of library is constant, the above expression can be reduced
to T1 = O(n). Let us consider that n1 = maxobs∈Lρ(obs)

refers to the number of points in the largest obstacle present
in the library. Hence, the worst case time complexity for
the scaling component evaluates to T1 = O(n1). Next, we
evaluate the time complexity from the pattern matching and
fitness score calculation component. SAC-IA computes the
Fast Point Feature Histograms (FPFH) of each of the point
clouds in the library along with the current point cloud
which results in T21 = O(|L + 1|rn) where |L| refers
to the number of obstacle patterns in the library, r is the
size of the neighborhood radius considered by SAC-IA and
n = ρ(obs) is the number of input points in the corre-
sponding obstacle. As the size of the library is constant, the
above expression can be simplified as T21 = O(rn1) where
n1 = maxobs∈Lρ(obs) refers to the number of points in
the largest obstacle present in the library. In order to eval-
uate the best match, LearnerRRTcalculate the fitness score
of the current obstacle with each of the obstacle patterns
in the library after applying the transformation and scaling
retrieved in the previous step resulting in the time com-
plexity of T22 = O(|L|nn2) where n2 = ρ(obs) is the
number of points in the obstacle encountered by the robot
while navigating in the testing phase. Considering the size
of library to be constant, the worst case time complexity
evaluates to T22 = O(n1n2). Hence, the time complexity
of the second component described above is equivalent to
T2 = T21 + T22 = O(rn1) + O(n1n2). As the size of
radius r considered by SAC-IA is generally small, hence,
r << n1, resulting in the effective time complexity of
T2 = O(n1n2). Once the best matched obstacle pattern
from the library L is discovered as lab, the best path is
obtained from Llab after the path is scaled and transformed
using the information from PCA and SAC-IA. Considering
the transformation and scaling assumes constant time, the
best path search in worst case takes T3 = O(|Llab|) time.
Considering post-processing of the selected path (correc-
tion/optimization) takes constant time, the time complexity
can be evaluated as T = T1 + T2 + T3 + T4 = O(n1) +
O(n1n2) + O(|Llab|) + O(1) = O(n1n2). This whole pro-
cess occurs each time a new obstacle is encountered by the
robot. Hence, the final time complexity can be expressed

as T = O(Nn1n2), where N is the number of obstacles
detected by the robot. Hence, proved.

5 Experimental Setup and Results

We have verified the performance of the LearnerRRT algo-
rithm using both simulated as well as hardware Corobot
robots on the Webots version 6.3.2 simulator. The robot
model utilized for the simulations is the Coroware Corobot
robot - an indoor, four-wheeled, skid-steer robot. The foot-
print of the robot measures 40 cm ×30 cm. The robot has a
Hokuyo laser sensor with a 270◦ field of view and a range
of approximately 5 m. An indoor localization device called
a Hagisonic Stargazer, with a localization accuracy of ±2
cm was added to the robot. On the simulated robot, a GPS
and a compass node was used to emulate the behavior of
the localization device. A laser sensor was also added on
the simulated robot to enable the robot perceive its envi-
ronment. A photograph of the Corobot robot is shown in
Fig. 2a and the simulated robot within Webots is shown in
Fig. 2b.

5.1 Simulation Results

We have performed experiments in the navigation domains
using simulated environments. Our test environments have
dimensions of 22 m by 22 m and have different distri-
butions of obstacles with obstacles varying in scales and
alignments in the environments. On average, in our environ-
ments obstacles cover approximately about 40 − 50 percent
of the environment spaces. Figures 4a-d above illustrate dif-
ferent test environments used in our experiments; (0, 0) and
(22, 22) correspond to the bottom left and top right cor-
ners of each environment. Motion planning algorithms that
plan from scratch based on RRTs and their variants have
been used extensively in recent robot motion planning lit-
erature. Therefore, we have selected Informed RRT* as the
baseline approach to compare our technique with, as it is
the most recent and most improved variant of RRT-based
motion planning algorithms. Different test cases have been
created by selecting different start-goal pairs in each of the
environments, as shown in Table 2. The separation distance
between the start and goal locations ranges between 15−20
meters. We have selected the start-goal pairs for our test
cases in such a manner that the direct path connecting the
start to the goal contains maximum number of obstacles in
it. This means that the robot had to replan its path mul-
tiple times while navigating from the start to the goal. In
order to make the test cases representative, we have selected
start and goal locations from different regions of the envi-
ronments. For comparing the performance of our algorithm
with Informed RRT*, we have primarily used three main

J Intell Robot Syst (2018) 92:545–564 555

Fig. 4 Environments used for
testing proposed LearnerRRT
algorithm. (0, 0) and (22, 22)

correspond to the leftmost and
top rightmost corners of each
environment

Environment 1 Environment 2

Environment 3 Environment 4

measures- the planning time to predict the path to be under-
taken by the robot, the total time that the robot requires in
order to traverse the entire arena and lastly we also compared
the total distance that the robot navigated in each of the
cases in order to reach the goal. All our tests were conducted
on a computer with four, 3.20 GHz cores and 12 GB RAM.
The algorithms are implemented in C++. We have used the
Point Cloud Library PCL 1.6.0 for the implementation of the
SAC-IA module in our algorithm. The collision threshold to
avoid getting within close proximity of the obstacle using
the mapped path calculated by our algorithm was set to
0.8 m. The threshold for matching using the Jaccard Index,
J IT hr was set to 0.3 m. This means we considered two
points in the source and the target obstacles have overlapped
if they lie within the proximity of 0.3 m to each other.

First, we have created the action library by generating
paths for each of the source task obstacle patterns using the
Informed RRT* algorithm. For Informed RRT* we have
set a sampling distance of 0.3 m which is approximately
equivalent to the width of the robot and the total number of
iterations N to be 500. Paths are generated for each pattern
by setting the start position of the robot at the center of the
obstacle and goal positions across multiple locations around
the obstacle patterns, as illustrated in Fig. 1. For two of our
patterns, corner and block which can be observed both from
an internal as well as an external position with respect to
the obstacle, the robot’s initial position is varied in addi-
tion to setting different goal locations. Environments used
for building the library are of dimensions 9 meters by 12
meters. The separation distance between the start and goal

locations ranges between 3 to 5 meters. Our library consists
of 4 patterns - cave, corner, block and passage and a total of
16 paths for navigating different goal locations around each

Table 2 Coordinates of the different start and goal locations used as
test cases for the four environments shown in Fig. 4

Start Goal

Env. & Test Case

1 8.61, 11.26 19.62, 9.21
2 2.62, 18.34 19.62, 9.21
3 16.40, 4.18 20.80, 19.88
4 0.47, 10.53 20.80, 19.89

Environment 1
1 0.72, 18.37 15.93, 16.75
2 0.63, 4.99 20.34, 4.77
3 0.60, 18.68 20.34, 4.77
4 17.42, 4.87 11.26, 17.87
5 0.54, 18.27 11.37, 4.89

Environment 2
1 0.63, 0.72 20.80, 19.88
2 1.9, 13.9 18.27, 8.16
3 1.9, 13.9 10.22, 12.08
4 17.20, 1.68 20.80, 19.88
5 0.86, 3.99 20.86, 4.51

Environment 3
1 0.61, 3.91 19.62, 9.21
2 0.60, 18.68 20.34, 4.77
3 1.9, 15.9 19.62, 9.21
4 0.61, 3.91 15.93, 16.75

Environment 4

556 J Intell Robot Syst (2018) 92:545–564

pattern. Figures 5 and 6 show the plots of different paths
generated by Informed RRT*, which are then stored in our
action library.

We performed our experiments on a total of 18 test cases
executed across 180 runs and uniformly distributed over the
four test environments shown in Fig. 4. As our algorithm
uses SAC-IA as a pattern matching algorithm and SAC-
IA returns the approximate transformation between the current
obstacle pattern and the best matched pattern from the library,
there exists a randomness factor in our algorithm which in
effect helps the robot to find its way to the goal in spite
of the presence of multiple obstacles in its route. In order
to account for the randomness factor, we have executed ten
runs for each of the test cases and recorded the means and
the standard deviations for both time and distance.

Figures 7 and 8 show the comparative planning time,
total time and distance traveled by the robot for solving

the test cases by following our LearnerRRT algorithm and
Informed RRT*. It can be observed that for all the 18 test
cases, the planning time and total time taken by Learn-
erRRT is much lesser when compared to Informed RRT*.
For our experiments, we have set the total number of iter-
ations N to be 3000 for Informed RRT* and a step size of
1 meters. Informed RRT* was tested to give the best per-
formance with these parameter values in our environments.
When compared with the mean of the planning times and
total times for all the test cases across all environments,
LearnerRRT was found to beat Informed RRT* approxi-
mately by a factor of 10 for planning time and a factor of
7 for total time. This huge improvements of LearnerRRT
in terms of planning time and total time stems from the
fact that our algorithm reuses knowledge in the form of
previously encountered paths from the library instead of
planning paths from scratch as done by most contemporary

Fig. 5 Paths obtained for different source task obstacle patterns using Informed RRT*. The green contour represents the obstacle. The blue starred
edges represents the paths generated by Informed RRT* and the red edges represents the final paths obtained for the specified goal around the obstacles

J Intell Robot Syst (2018) 92:545–564 557

Fig. 6 Paths obtained for different source task obstacle patterns using Informed RRT*. The green contour represents the obstacle. The blue starred
edges represents the paths generated by Informed RRT* and the red edges represents the final paths obtained for the specified goal around the
obstacles

sampling-based planners like Informed RRT*. The total
time covers the time taken by LearnerRRT to iteratively plan
the paths for the robot once it encounters an obstacle as well
as the navigation time taken by the robot to follow the plan
and ultimately reach the goal. This means that both plan-
ning time and navigation time approximately contributes for
50 percent of the total time taken by the robot. From our
results it can be seen that the maximum planning time and
total time taken by LearnerRRT is approximately 6 minutes
and 4.65 minutes respectively. Considering the approximate
separation distance between the start and goal locations to
be 15 − 20 meters, the environmental dimensions to be 22
by 22 meters, the presence of obstacles for considerable por-
tions of the environment, the laser range of the robot to be
2 meters and the robot not being maintaining any partial
map of the environment, we believe that our LearnerRRT

algorithm illustrates significant amount of efficiency in
enabling the robot to achieve its task in a time effective man-
ner. Both the maximum planning times and total times are
recorded while the robot tries to solve test case 4 in Envi-
ronment 4. In general, it can be observed that LearnerRRT
takes relatively more time to solve test cases in Environ-
ment 4 which we believe is the most complicated among
the 4 of our environments. This is because it involves obsta-
cles with varying scales and irregular alignments as well
as multiple cave like patterns which is the most compli-
cated pattern encoded in our library. It is important to note
that the approximate planning time and navigation times
taken by Informed RRT* to solve the same test cases is
approximately 31.60 minutes and 32.71 minutes which is
much higher than the corresponding time taken by our
LearnerRRT algorithm. These times also turn out to be the

558 J Intell Robot Syst (2018) 92:545–564

Fig. 7 Planning time and total
time for the test cases for
environments 1 − 4

P
la

n
n
in

g
 T

im
e
 (

m
in

s
)

P
la

n
n

in
g

 T
im

e
 (

m
in

s
)

T
o
ta

l
T

im
e
 (

m
in

s
)

T
o

ta
l
T

im
e

 (
m

in
s
)

P
la

n
n

in
g

 T
im

e
 (

m
in

s
)

T
o
ta

l
T

im
e
 (

m
in

s
)

P
la

n
n

in
g

 T
im

e
 (

m
in

s
)

T
o
ta

l
T

im
e
 (

m
in

s
)

Environment 1 Environment 1

Environment 2 Environment 2

Environment 3 Environment 3

Environment 4 Environment 4

maximum times taken by Informed RRT* to solve the test
cases.

We would like to mention that the lesser improvement
for LearnerRRT in terms of total time taken is because our
algorithm cannot always reach the exact optimal path which
is achieved by Informed RRT*. Figure 8 illustrates the com-
parative total distances traveled by the robot to solve the test
cases by following both LearnerRRT and Informed RRT*.
When compared to the mean of the distances traveled for
all the test cases across all environments, LearnerRRT was
found to travel an approximate distances of 38 meters and
Informed RRT* travels for an approximate distance of 31.65
meters. Hence, LearnerRRT on average covers about 20 per-
cent more distance in comparison to Informed RRT*. From

our results, it can also be observed that for the majority of
the test cases (16 out of 18), the differences of mean dis-
tance between LearnerRRT and Informed RRT* lies in the
approximate range of 8 - 10 meters. Considering the signifi-
cant improvements in terms of planning time and total time,
it can be claimed that this difference in total distance trav-
eled is trivial. In effect we can say that the robot is expected
to be more energy-efficient if it adopts LearnerRRT as it will
lead to lower battery consumption by the robot.

In order to measure the learning performance of our
LearnerRRT algorithm, we have allowed the robot to solve
a navigation task in a carefully constructed test environ-
ment which involves all the patterns included in our library.
We have created the test case for assessing the learning

J Intell Robot Syst (2018) 92:545–564 559

Fig. 8 Distances traveled for the
test cases for environments 1 − 4

D
is

ta
n
c
e
 T

r
a
v
e
le

d
 (

m
)

Environment 1 Environment 2

Environment 3 Environment 4

D
is

ta
n

c
e

 T
r
a

v
e

le
d

 (
m

)

D
is

ta
n

c
e

 T
r
a

v
e

le
d

 (
m

)

D
is

ta
n

c
e

 T
r
a

v
e

le
d

 (
m

)

performance in such a manner that the straight line connect-
ing the start and goal positions intersects through all the
obstacles in the environment. This essentially means that
to reach the goal, the robot has to avoid each of the obsta-
cles in its direct path. Figure 9a illustrates the environment
used for assessing the learning performance of LearnerRRT.
Although there is no explicit block like pattern present in
this environment, the passage-like pattern serves as both
block as well as passage depending on the robot’s relative
position to the specific obstacle. For solving the test case for
learning, the robot starts from near the leftmost corner of the
environment and needs to reach its goal which is located dia-
metrically opposite to its starting location near the rightmost
corner of the environment. We allowed the robot to solve
the same task using Informed RRT* multiple times and
adopted the path from the run which attained the minimum
total distance as the baseline for measuring the learning

performance. We also allowed the robot to solve the test case
by incrementally adding patterns to its library and increas-
ing the library size from no pattern to 4 patterns. For each
of the library sizes, we have evaluated the discrete fréchet
distance FD [1] between the path generated and adopted by
LearnerRRT and the baseline path generated by Informed
RRT*. The Discrete fréchet distance is a standard metric
to compare the distance between polygonal curves. In rela-
tion to measuring the learning performance, we have also
measured the success ratio SR of LearnerRRT with respect
to this test case. The success ratio expresses the number of
times a known pattern is matched from the library as a ratio
of the total number of obstacles and is given by Eq. 9.

SR = No. of matched obstacle patterns

T otal no. of encountered obstacles
(9)

Fig. 9 a Environment used for
testing learning performance of
LearnerRRT algorithm. (0, 0)

and (22, 22) correspond to the
bottom right and top left corners
of each environment. The black
line illustrates the path followed
by the robot and the start and
goal denotes the start and goal
locations given to the robot. b
Success ratio and learning rate
varying with library size

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Test Cases

S
u

c
c
e

s
s
 R

a
ti
o

0.5 1 1.5 2.5 3.5
0

0.2

0.4

0.6

0.8

1

L
e

a
r
n

in
g

 R
a

te

Success Ratio

Learning Rate

(b)(a)

560 J Intell Robot Syst (2018) 92:545–564

We measure the learning rate LR by following Eq. 10.

LR =
(

1 − FD

DisBest

)
SR (10)

where DisBest is the total distance of the path generated by
Informed RRT*.
We have interpreted and adapted the idea of learning rate
to be suitable in our navigation domain. Learning rate in
our case gives a comparative measure of the quality of
the path constructed by LearnerRRT in comparison to the
perfect path generated by InformedRRT* in relation to
success ratio. In other words, learning rate gives the nor-
malized error between the path adopted by LearnerRRT and
InformedRRT* as the evaluated Frechet distance. From Fig.
9b, it can be seen that the value of success ratio increases
as the size of the library increases and eventually reaches a
value of 1. As the environment consists of our considered

patterns only, the value eventually reaches 1 when all 4 pat-
terns are propagated to the library. From the graph it can be
observed that similar to the success ratio, the learning rate
also increases with the increasing size of the library and the
ultimate learning rate achieved by LearnerRRT correspond-
ing to the maximum size of the library is approximately 88
percent. This graph thus illustrates that the learning perfor-
mance of LearnerRRT increases with increased size of its
library as can be expected in any learning based algorithm.
It can be said that with the limited variation and restricted
size of the library, LearnerRRT achieves a reasonably good
learning performance.

5.2 Hardware Results

We have performed hardware experiments with a real
Coroware Corobot robot. The Corobot is a 4-wheel
30cm × 30cm, skid-steer robot which is controlled in a

Fig. 10 Test environments used
for hardware experiments

Environment 1 Enviromnment 2 Environment 3

Environment 4 Environment 5 Environment 6

Environment 7 Environment 8 Environment 9

Environment 10

J Intell Robot Syst (2018) 92:545–564 561

differential wheel manner. It contains an indoor Hagisonic
Stargazer localization system which provides 2D location
and heading, a Hokuyo laser distance sensor which provides
a 270◦ range up to 5m in distance at a resolution of 1

3
◦
,

and wireless communications. The on-board computer has
an 1.6GHz Intel Atom 330 processor with 4GB of RAM. A
photograph of the Corobot robot is shown in Fig. 2a.

The hardware experiments were performed in 10 dif-
ferent test environments which are illustrated in Fig. 10.
Figure 10 also shows the initial and the goal positions of
the robot for each of the tests. We have varied our test
environments by using combinations of the basic obstacles
in different orientations and distributions in the hardware
environments. The hardware experiments were performed
in an arena with dimensions of 3 × 5 sq. meters. Similar
to the simulation tests, we have compared the performance
of LearnerRRT with Informed RRT* with respect to the
three previously discussed metrics- planning time, total time
and total distance covered to finish the navigation tests. In
order to handle the randomness in both the algorithms, we
have performed each of the tests for both the algorithms

over 5 runs making a total of 50 runs for each of the algo-
rithms. Figure 11 demonstrates the comparative results of
our algorithm. For the purpose of clearer illustration, we
have divided the environments into two sets each consisting
of 5 environments. The hardware results are similar to our
simulation results. It can be observed from the results that
LearnerRRT takes much lesser planning time and total time
compared to Informed RRT* in majority of the tests. When
we compare the performance according to our third metric-
total distance covered, LearnerRRT is found to cover more
distance compared to Informed RRT* in 50% of the tests.
However, compared to significant time benefits that Learn-
erRRT offers for real-time navigation, the excess distance
covered by it is nominal. From our comparative analysis of
the hardware performance we found out that LearnerRRT
on average takes only 33% of the planning time, 46% of
the total time and 95% of the total distance compared to
Informed RRT*. Hence, hardware results also follow the
trend set by the simulation results. The comparative lower
time benefits of LearnerRRT over Informed RRT* is a direct
consequence of a much smaller environment size (3 × 5

Fig. 11 Planning time and total
time taken a-b for test cases in
environments 1 − 5, c-d for test
cases in environments 6 − 10.
Total distances traveled e for test
cases in environments 1 − 5 f for
test cases in environments 5−10

Test Cases

Test Cases

Test Cases

12

10

14

Pl
an

ni
ng

 T
im

e
(m

in
s)

Pl
an

ni
ng

 T
im

e
(m

in
s)

Pl
an

ni
ng

 T
im

e
(m

in
s)

En
v.

 1

En
v.

 2

En
v.

 3

En
v.

 4

En
v.

 5

10
12
14
16
18

To
ta

l T
im

e
(m

in
s)

To
ta

l T
im

e
(m

in
s)

Test Cases

En
v.

 1

En
v.

 2

En
v.

 3

En
v.

 4

En
v.

 5

10

En
v.

 6 En
v.

 7

En
v.

 8

En
v.

 9

En
v.

15

20

25

30

En
v.

 6 En
v.

 7 En
v.

 8

En
v.

 9

En
v.

 1
0

Test Cases

En
v.

 1 En
v.

 2

En
v.

 3

En
v.

 4

En
v.

 5

10
12
14
16
18

To
ta

l T
im

e
(m

in
s)

Test Cases

En
v.

 1

En
v.

 2

En
v.

 3

En
v.

 4

En
v.

 5

(a) (b)

(c) (d)

(e) (f)

562 J Intell Robot Syst (2018) 92:545–564

sq.meters) in comparison to the dimensions of the sim-
ulation environments (22 × 22 sq.meters), lower number
of obstacles(maximum of 2 obstacles) and lower separa-
tion distances between the start and the goal(approximately
4 meters). These factors helped sampling based planner
Informed RRT* to find paths to the goal in a relatively
shorter amount of time. The real advantages of LearnerRRT
will be evident when the robot is allowed to autonomously
perform navigation tasks in large environments densely
populated with complicated obstacles. However, we want
to emphasize that even with these favourable factors on
part of Informed RRT*, our algorithm offered significant
competitive advantage over Informed RRT*.

6 Discussion

From the extensive experimental results above both from
the simulations as well as hardware, it can be observed that
LearnerRRT performs better than Informed RRT* in terms
of planning time and total time. We have selected Informed
RRT* as our local planner during the training phase and
also as the comparative algorithm instead of any other RRT
variants because InformedRRT* is proved to produce more
optimized paths compared to RRT* in lesser amount of
time. Our proposed algorithm LearnerRRT tries to achieve
the virtues of Informed RRT* by using it as the base plan-
ner during training. However, it improves significantly on
the time requirements by accessing previously recorded
information corresponding to the learned basic obstacle pat-
terns. The long planning times required by Informed RRT*
especially in the simulation results are the direct conse-
quences of having a large environment of 22 × 22 sq.meters
and having several complex obstacles directly aligned along
the robot’s path to the goal. InformedRRT* takes much
lesser time for the hardware experiments where we have
used an environment having dimensions of 3 × 5 sq.meters.
For both the simulation and the hardware results an impor-
tant point to note is that unlike most of the conventionally
used path planners which are provided with at least an initial
rough map of the environment, here the comparison algo-
rithm InformedRRT* has not been provided with any map
of the environment. Thus, InformedRRT* can only create
an initial plan based on just a small part of the environment
that it perceives and has to replan every time the robot’s
sensors captures other obstacles while navigating to other
parts of the environment. It is also important to mention
in this regard that LearnerRRT at present works with only
four basic patterns. However, it can be extended to include
more number of patterns if the other associated scalabil-
ity factors can be efficiently handled. Also presently our
algorithm relies on a manual labeling of the obstacle pat-
terns during the training phase. However, this algorithm can

be extended to autonomously determine new patterns and
extend the library when and where necessary.

7 Conclusions and Future Work

This is our first step to solve the problem of real-time nav-
igation with the help of experiences coded in the form of
paths across most commonly observed sample patterns like
caves, corners, passages and blocks. To the best of our
knowledge this work is the first which uses learning expe-
riences from past navigation as sample paths to solve path
planning locally. One of the insights that is dominant behind
this work is that it is not required to generate an entire path
from the start to the goal for the robot to successfully reach
its goal. In our work we illustrate that the task of navigation
can be effectively solved even if the robot is provided with a
local plan which helps it to avoid an obstacle in its path and
when possible follow the direct path to the goal.

There are many possible future directions of this work
which we plan to explore in the future. We plan to gen-
eralize our algorithm to varied obstacle geometry patterns
which can be used to expand our library and enable the robot
to explore random environments with previously unseen
obstacle patterns including those formed by combining rudi-
mentary obstacle patterns. Of course with greater number
of obstacle patterns in the robot’s library there can be
scalability issues which need to be addressed as well. In
order to overcome the expected scalability challenges posed
by increased number of obstacle patterns, we plan to use
real-time advanced variants of clustering techniques that
will result in faster obstacle recognition during the pattern
matching phase of our algorithm.

Another future direction that we plan to explore is the
autonomous expansion of the robot’s library as the robot
encounters previously unseen obstacle patterns anytime dur-
ing its navigation after the training phase. In order to address
this objective, there should be advanced decision making on
the part of the robot to determine if a particular obstacle
pattern should be included in the library. We aim to inves-
tigate techniques that will allow the robot to autonomously
determine a feasible path for the novel obstacle pattern by
combining paths from different known patterns stored in the
robot’s library.

In future we also plan to work in partially observable
obstacle settings where due to the nature of the obstacle,
the robot cannot perceive the entire obstacle boundary. We
envision solving this problem by the integration of this expe-
riential learning technique with a formal learning technique
like reinforcement learning to elicit intra domain learn-
ing in addition to inter domain learning. In this work our
robots perceived obstacle through the laser and infra-red
sensors which generate clean obstacle boundaries. In future

J Intell Robot Syst (2018) 92:545–564 563

we also plan to investigate the applicability of our pro-
posed approach on relatively irregular data that emerges
from other types of sensors like the kinect sensors.

References

1. Alt, H., Buchin, M.: Can we compute the similarity between
surfaces? Discret Comput Geom 43(1), 78–99 (2010)

2. Amato, N.M., Bayazit, O.B., Dale, L.K.: Obprm: An obstacle-
based prm for 3d workspaces. In: 3rd International Workshop
on Algorithmic Foundations of Robotics (WAFR), pp. 155–168
(1998)

3. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-
based algorithms for optimal motion planning. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA), p. 2013.
IEEE (2013)

4. Berenson, D., Abbeel, P.: A robot path planning framework that
learns from experience. In: IEEE International Conference on
Robotics and Automation (ICRA) A robot path planning, p. 2012.
IEEE (2012)

5. Bohlin, R., Kavraki, L.E.: Path planning using lazy prm. In:
2000. Proceedings. ICRA’00. IEEE International Conference on
Robotics and Automation, vol. 1, pp. 521–528. IEEE (2000)

6. Bruce, J., Veloso, M.: Real-time randomized path planning for
robot navigation, vol. 3, pp. 2383–2388. IEEE (2002)

7. Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki,
L.E., Lynch, K., Thrun, S.: Principles of robot motion: theory,
algorithms, and implementation. MIT Press, Cambridge (2005)

8. Coleman, D., Sucan, I.A., Moll, M., Okada, K., Correll,
N.: Experience-based planning with sparse roadmap spanners.
arXiv:1410.1950 (2014)

9. Cui, R., Gao, B., Guo, J.: Pareto-optimal coordination of multi-
ple robots with safety guarantees. Auton. Robots. 32(3), 189–205
(2012)

10. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-auv path
planning for scalar field sampling using multidimensional RRT.
IEEE Trans. Syst. Man Cybern. Syst. 46(7), 993–1004 (2016)

11. Da Silva, B.N., Mackworth, A.: Using spatial hints to improve pol-
icy reuse in a reinforcement learning agent. In: Proceedings of the
9th International Conference on Autonomous Agents and Multi-
agent Systems: Volume 1, pp. 317–324. International Foundation
for Autonomous Agents and Multiagent Systems (2010)

12. D’Andrea, R.: Guest editorial: A revolution in the warehouse:
A retrospective on kiva systems and the grand challenges ahead.
IEEE Trans. Autom. Sci. Eng. 9(4), 638–639 (Oct 2012)

13. Elbanhawi, M., Simic, M.: Sampling-based robot motion plan-
ning: A review. IEEE Access 2, 56–77 (2014)

14. Elgamal, T., Hefeeda, M.: Analysis of pca algorithms in dis-
tributed environments. arXiv:1503.05214 (2015)

15. Ferguson, D., Kalra, N., Stentz, A.: Replanning with rrts. In: Pro-
ceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006, pp. 1243–1248. IEEE (2006)

16. Fernández, F., Veloso, M.: Probabilistic policy reuse in a rein-
forcement learning agent. In: Proceedings of the fifth international
joint conference on Autonomous Agents and Multiagent Systems,
pp. 720–727. ACM (2006)

17. Gammell, J., Srinivasa, S., Barfoot, T.: Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic. In: 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2014),
pp. 2997–3004 (2014)

18. Gayle, R., Klingler, K.R., Xavier, P.G.: Lazy reconfiguration for-
est (lrf)-an approach for motion planning with multiple tasks in
dynamic environments. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation, pp. 1316–1323. IEEE
(2007)

19. Hwang, V., Phillips, M., Srinivasa, S., Likhachev, M.: Lazy vali-
dation of experience graphs. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 912–919. IEEE (2015)

20. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal
motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

21. Kavraki, L.E., Latombe, J.-C.: Probabilistic roadmaps for robot
path planning (1998)

22. Kuffner, J.J., LaValle, S.M.: Rrt-connect: An efficient approach
to single-query path planning. In: 2000. Proceedings. ICRA’00.
IEEE International Conference on Robotics and Automation,
vol. 2, pp. 995–1001. IEEE (2000)

23. LaValle, S.M.: Rapidly-exploring random trees: A new tool for
path planning (1998)

24. Lien, J.-M., Lu, Y.: Planning motion in environments with similar
obstacles. In: Robotics: Science and Systems. Citeseer (2009)

25. Menon, A., Cohen, B., Likhachev, M.: Motion planning for
smooth pickup of moving objects. In: Robotics and Automation
(ICRA) IEEE International Conference on, pp. 453–460. IEEE
(2014)

26. Otte, M., Frazzoli, E.: Rrtx: Real-time motion planning/replanning
for environments with unpredictable obstacles. In: Algorithmic
Foundations of Robotics XI, pp. 461–478. Springer (2015)

27. Paden, B., Ċáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey
of motion planning and control techniques for self-driving urban
vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

28. Phillips, M., Cohen, B.J., Chitta, S., Likhachev, M.: E-graphs:
Bootstrapping planning with experience graphs. In: Robotics:
Science and Systems (2012)

29. Phillips, M., Likhachev, M.: Speeding up heuristic computation
in planning with experience graphs. In: IEEE International Con-
ference on Robotics and Automation (ICRA), p. 2015. IEEE
(2015)

30. Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms
(fpfh) for 3d registration. In: 2009. ICRA ’09. IEEE International
Conference on Robotics and Automation, pp. 3212–3217 (2009)

31. Rusu, R.B., Bradski, G.R., Thibaux, R., Hsu, J.M.: Fast 3d recog-
nition and pose using the viewpoint feature histogram. In: 2010
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2155–2162, Taipei (2010)

32. Saha, O., Dasgupta, P.: Fast path planning using experience learn-
ing from obstacle patterns. AAAI Spring Symposium Series. https://
www.aaai.org/ocs/index.php/SSS/SSS16/paper/view/12725 (2016)

33. Saha, O., Dasgupta, P.: Real-time robot path planning using expe-
rience learning from common obstacle patterns. In: Proceedings
of the 2016 International Conference on Autonomous Agents &
Multiagent Systems, pp. 1339–1340. International Foundation for
Autonomous Agents and Multiagent Systems (2016)

34. Sherwood, R., Mishkin, A., Chien, S., Estlin, T., Backes, P.,
Cooper, B., Rabideau, G., Engelhardt, B.: An integrated planning
and scheduling prototype for automated mars rover command
generation. In: Sixth European Conference on Planning (2014)

35. Shi, K., Denny, J., Amato, N.M.: Spark prm: Using rrts within
prms to efficiently explore narrow passages. In: 2014 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 4659–4666. IEEE (2014)

36. Song, B.D., Kim, J., Morrison, J.R.: Rolling horizon path planning
of an autonomous system of uavs for persistent cooperative ser-
vice: MILP formulation and efficient heuristics. J. Intell. Robot.
Syst. 84(1-4), 241–258 (2016)

http://arXiv.org/abs/1410.1950
http://arXiv.org/abs/1503.05214
https://www.aaai.org/ocs/index.php/SSS/SSS16/paper/view/12725
https://www.aaai.org/ocs/index.php/SSS/SSS16/paper/view/12725

564 J Intell Robot Syst (2018) 92:545–564

37. Stolle, M., Atkeson, C.G.: Policies based on trajectory libraries.
In: Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006, pp. 3344–3349. IEEE (2006)

38. Stolle, M., Tappeiner, H., Chestnutt, J., Atkeson, C.G.: Transfer of
policies based on trajectory libraries. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2981–2986.
IEEE (2007)

39. Strandberg, M.: Augmenting rrt-planners with local trees. In:
2004. Proceedings. ICRA’04. 2004 IEEE International Conference
on Robotics and Automation, vol. 4, pp. 3258–3262. IEEE (2004)

40. Talvitie, E., Singh, S.P.: An experts algorithm for transfer learning.
In: IJCAI, pp. 1065–1070 (2007)

41. Taylor, M.E., Kuhlmann, G., Stone, P.: Accelerating search with
transferred heuristics. In: ICAPS Workshop on AI Planning and
Learning (2007)

42. Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for
reinforcement learning. In: Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems-
Volume 1, pp. 283–290. International Foundation for Autonomous
Agents and Multiagent Systems (2008)

43. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learn-
ing domains A survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

44. Torrey, L., Shavlik, J.: Policy transfer via markov logic networks.
In: Inductive Logic Programming, pp. 234–248. Springer (2010)

45. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill acquisition via
transfer learning and advice taking. In: Machine Learning: ECML
2006, pp. 425–436. Springer (2006)

46. Tsardoulias, E., Iliakopoulou, A., Kargakos, A., Petrou, L.: A
review of global path planning methods for occupancy grid maps
regardless of obstacle density. J. Intell. Robot. Syst. 84(1-4),
829–858 (2016)

47. Yeh, H.-Y., Thomas, S., Eppstein, D., Amato, N.M.: Uobprm:
A uniformly distributed obstacle-based prm. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pp. 2655–2662. IEEE (2012)

48. Zucker, M., Kuffner, J., Branicky, M.: Multipartite rrts for rapid
replanning in dynamic environments. In: Proceedings IEEE Inter-
national Conference on Robotics and Automation, p. 2007. IEEE
(2007)

Olimpiya Saha is a doctoral candidate in the Computer Science
Department at the University of Nebraska at Omaha. Her research
interest encompasses the applications of machine learning techniques
for improved robot navigation and path planning in complicated,
unknown environments. She has published her research in multi-
ple conferences and workshops in robotics and machine learning.
She received her undergraduate degree in Computer Science and
Engineering from West Bengal University of Technology, India.

Prithviraj Dasgupta is the Union Pacific Endowed Professor in the
Computer Science Department at the University of Nebraska, Omaha
and the director of the CMANTIC Robotics Lab at his university.
His research interests are in the area of multi-robot systems, artifi-
cial intelligence and game theory. He has authored over 140 journal
and conference publications and led several large, federally-funded
projects in his research area. He received his Ph.D. and M.S. from
University of California, Santa Barbara.

	Experience Learning From Basic Patterns for Efficient Robot Navigation in Indoor Environments
	Abstract
	Introduction
	Related Work
	Problem Formulation
	Library Creation
	Obstacle Avoidance Using Learned Navigation Actions

	Analysis
	Experimental Setup and Results
	Simulation Results
	Hardware Results

	Discussion
	Conclusions and Future Work
	References

