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Abstract The current research topic on modeling contin-
uum manipulators are shifting toward the development of
accurate dynamic models by considering more specifici-
ties and mechanical properties. In this paper, we present
a dynamic modeling of a class of continuum manipulators
namely driving-cables robots based on the Euler-Lagrange
method. The dynamic model is developed based on the kine-
matic equations of inextensible bending section with zero
torsion and by using the constant curvature assumption.
Taylor expansion has been applied to the geometric model
in order to avoid singularities and reduce the complexity of
the mathematical expressions. At the end, some simulation
results are presented showing the static equilibrium as well
as the dynamic behavior. In addition, a classic Proportional-
Integrated-Derivative (PID) controller is proposed to ensure
tracking trajectories using the point-to-point technique.
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1 Introduction

Continuummanipulators have a complex structure and theo-
retically infinite degrees of freedom. They are inspired from
biologic systems found in nature [1–3]. Their actuations are
carried out by cables, tendons or pneumatic sources instead
of mechanical actuators [4–8]. These manipulators are par-
ticularly adapted for exploration and inspection of very
confines environments [9, 10], and are most suitable for
handling specific applications such as medical and surgical
applications [11].

Concerning the kinematic modeling, continuum manipu-
lators are often kinematically redundant and expressed with
highly nonlinear terms. These facts make their modeling
and control more difficult. However, these manipulators
can be modeled and practically controlled only by con-
sidering a finite number of degrees of freedom [1]. The
most adapted kinematic approaches consider the whole
of continuum manipulator as a real or virtual backbone
curve depending on the considered robot structure [12].
Some recent contributions and approaches have been pro-
posed to solve kinematics modeling for both single bending
section and multi -bending sections of continuum manipu-
lator based on reasonable kinematics assumptions and using
some approximations [12–18].

Concerning the dynamic modeling of continuum manip-
ulators, in order to obtain more realistic comportment, the
most adapted approaches attempt to include as much as pos-
sible more specificities and mechanical properties. To the
best of our knowledge, the first research in this field has been
introduced in [19], which has considered an approximation
of the dynamics of hyper-redundant manipulator as contin-
uum arcs using the modal approach. This model has been
calculated by three different methods such as Lagrange and
Newton-Euler. Generally, there are a considerable number
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of researches on dynamic modeling of these manipulators
[20–24]. In reference [20], the authors have formulated an
approximation of the dynamics of hyper-redundant manip-
ulator as a continuum mechanics problem. This model is
based on the geometric model of extensible continuum robot
manipulator with zero torsion. Another dynamic model for
spatial multiple sections continuum manipulators has been
presented in [21]. This model is based on some assump-
tions such as constant curvature and concentrated masses.
Another dynamic model of a class of continuum manipula-
tors, called Bionic Handling Assistant, is presented in [22].
This model is developed by using the Euler-Lagrange for-
malism and is based on some assumptions such as constant
curvature kinematics and concentrated masses situated on
the head coordinate frame of each bending section. Again,
another dynamic model of variable length multi-section
continuum arms is presented in [23]. This later model
is based on circular arc deformation assumption without
torsion.

According to the reviewing of the state of the art, we will
focus on a specific continuum manipulator called driving-
cable robot which will be the topic of our research contri-
bution. The particular constitution of this kind of continuum
manipulators is its elastic backbone structure with disks and
cables or tendons. To our best knowledge, there are very few
work approaches concerning the dynamic modeling com-
pared to its kinematics modeling [24–27]. In reference [24],
the authors have presented the dynamic model of a single
section for a cable driven continuum manipulator using the
Kane’s method. This model is derived to account a sev-
eral parameters such as friction. The same authors extended
this model for multi-segment rod-driven continuum robots
[25]. Nevertheless, we consider that the resulting models are
numerically complex and more difficult to be implemented
for control purposes. In reference [26], the authors have
presented a dynamic model of a specified continuum robot
with single section by using Lagrange method. We have
noticed that this model is specified for a robot with only
one bending section and therefore cannot be extended to
multi-bending sections robot. The dynamic model presented
in [27] was derived by Hamilton’s principle and based
on an appropriate planar large-deflection, but the resulting
dynamic model cannot be generalized in three-dimensional
case.

Concerning the topic of continuum manipulators con-
trol depending on the developed dynamical models, it is
a complex research topic but that attracts actually many
researchers. Although, the field of manipulators control is
in general a very rich topic and presents various control
techniques adapted to different structures, but there are
few contributions in the field of continuum manipulators.
Many contributions have been made on rigid and continuum
manipulators including adaptive Neural Networks (NNs),

fuzzy, etc; which can be suitable for nonlinear, complex,
unknown models under uncertainties and disturbances [28–
37]. In reference [28], the authors used an adaptive NN
controller allowing accurate tracking of trajectories inside
the identified workspace. In reference [29], the authors have
proposed an adaptive NN control for parallel manipulators.
In references [30–32], composite learning control schemes
for flexible-link manipulators have been proposed. In ref-
erence [30], firstly, the PD control has been used for the
internal dynamics with pole assignment; secondly, a com-
posite learning control using neural modeling error has been
applied to the unknown dynamics. In reference [31], the
NNs have been used to compensate for system uncertainty
approximation and the DOB has been used for compound
disturbance estimation. In reference [32], the authors have
proposed a sliding mode control with NN and DOB for a
flexible-link manipulator with uncertainty. According to the
simulations performed by the authors, this control scheme
has shown a greater performance for trajectory tracking. In
reference [33], the authors study the adaptive NN control
for an uncertain robot with unknown dynamics. In reference
[34], adaptive neural impedance control has been used for
robot-environment interaction. In reference [35], the authors
have used NN controllers to suppress the vibration of a flex-
ible robotic manipulator with unknown input dead-zone in
the actuators. In reference [36], the authors have used neu-
ral network controllers to control the balancing and posture
of a biped robot.

Concerning continuum manipulators, two examples of
controller are proposed [37, 38]. In reference [37], the
path tracking control of the Compact Bionic Handling Arm
end-effector is performed using an adaptive kinematic con-
trol without physical interactions with the environment.
In reference [38], the authors have presented a controller
designed for continuum robots, which utilizes a neural net-
work feed-forward component to compensate for dynamic
uncertainties.

In this paper, we propose the dynamic model of a multi-
bending section continuum manipulator, namely driving
-cables robot, in a specific orientation. The main first con-
tribution of this paper is the expansion of the geometric
model expressions by means of Taylor series. This tech-
nique has enabled the avoidance of singularities, leading
to the reduction of the dynamic model complexity which
becomes easily useable for control. In order to test our pro-
posed dynamic model, a second main contribution has been
performed. It consists on the implementation of a PID con-
troller used for tracking trajectories via the point-to-point
technique.

The organization of this paper is as follows: in Section 1,
an introduction synthesizes the state of the art related to this
research topic including kinematics, dynamics modeling
and control of continuum manipulators. Then, in Section 2,



J Intell Robot Syst (2018) 91:413–424 415

a description of the considered continuum manipulator is
presented. In Section 3, the proposed geometric and kine-
matic descriptions are developed. Section 4 describes the
proposed dynamic model in more details. Simulation results
on static equilibrium, dynamics and control that validate the
proposed model are presented and discussed in Section 5.
Finally the conclusion and some research perspectives are
given in Section 6.

2 Description of the Continuum Manipulator

The continuum manipulator under consideration which cor-
responds to the scheme design shown in Fig. 1 is composed
of two bending sections. Each bending section with two
degrees of freedom is composed of three principal ele-
ments: elastic backbone, three driving cables and three
spacer disks. The spatial motion of each bending section is
governed by deflection of the elastic backbone by applying
adequate electrical voltages to one or two motors at the same
time in order to generate tensions on the cables. The attach-
ment points of three driving cables are situated at equal
angle of 120◦ on all disks, as shown in Fig. 2.

In order to model the continuum manipulator under con-
sideration, the profile of the whole robot is assimilated to
a backbone curve which represents the central axis of the
manipulator. The backbone curve of each bending section is
modeled by an inextensible arc of circle, oriented in space,
and parameterized by an arc length Lk , a curvature κk , and
an orientation angle ϕk . The bending angle θk is measured

Fig. 1 3D Continuum manipulator design

Fig. 2 Circle arc parameters

in curvature plane which is always perpendicular to the
Xk−1Yk−1 plane and rotates around Zk−1 axis.

3 Kinematics Analysis

To develop the dynamic model of the continuum manipu-
lator under consideration, the kinematic analyzes, including
positions and velocities, are needed and they developed
under some assumptions described below:

– The kinematic modeling is based on the constant curva-
ture assumption [3];

– The elastic backbone has a uniform mass distribution
along its length;

– The only external force acting on the continuum manip-
ulator is the controlling forces from the cables;

– The elastic backbone is made of materials that possess a
high stiffness to avoid possible twisting motions about
its axial axis;

– The elastic backbone is assumed to have linear relation
between strain and stress [39, 40];

– Each bending section is individually controlled.

Based on the constant curvature assumption, three spaces
are used to describe the bending section states. Cables
length Qk = [li li+1 li+2]T , arc parameters Kk =
[κk θk ϕk]T and position/orientation Xk = [xp,k xo,k]T
representing respectively actuator states, configuration state
and task variables. Where xp,k = [Xk Yk Zk]T represents
the Cartesian position coordinates, and xo,k = [θk ϕk]T
represents the orientation coordinates, with bending section
index k = 1, 2. For simplicity reasons, the index i which
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refers to ith cable is assumed that i = 1 when k = 1 and
i = 4 when k = 2.

The actuator space and the configuration space are asso-
ciated with a specific transformation to the manipulator
robot while transformation from configuration space to task
space is independent of the manipulator configuration that
focuses mainly on its shape. The global view of kinematics
modeling for each bending section is shown in Fig. 3.

3.1 Local Coordinates

In this subsection, the local coordinates, including linear
position, orientation, linear velocity and angular velocity,
for each bending section are first derived, and the global
coordinates are derived thereafter.

The position vector of the endpoint O0 in the task
space Xk which represents the origin of the frame Rk can
be expressed as a function of configuration space Kk as
follows:

rk =

⎧
⎪⎨

⎪⎩

xk = Lk

θk
(1 − cos(θk)) cos(ϕk)

yk = Lk

θk
(1 − cos(θk)) sin(ϕk)

zk = Lk

θk
sin(θk)

(1)

We notice that when θk is close to zero, all expres-
sions in Eq. 1 and such equations provided by derivation of
this equation become zero divided by zero which leads to
numerical singularities. In order to avoid such singularities
throughout the analysis, we can use a substitution values
when θk is close to zero or use other technique such as
Taylor expansion.

Here, we will expand the 5th order Taylor expansion with
respect to the bending angle θk . Thus, Eq. 1 becomes:

rk =

⎧
⎪⎨

⎪⎩

xk = Lk

24 (−θ3k + 12θk) cos(ϕk)

yk = Lk

24 (−θ3k + 12θk) sin(ϕk)

zk = Lk

120 (θ
4
k − 20θ2k + 120)

(2)

Since the bending angle θk is limited to a small range
for this class of continuum manipulators. Then, the bending

angle θk belongs to the interval
[−3π

5 ; 3π
5

]
, the estimated

mean error of the approximation by 5th order of Taylor
expansions is less than 1.4%.

Fig. 3 Global view of the bending section modeling

The orientation of the frame Rk with respect to frame
Rk−1 can be defined by three sequential rotations [13]:
rotating ϕk around the Zk−1 axis, rotating θk around the
Yk−1 axis, and rotating −ϕk around the Zk−1 axis. The last
rotation ensures that the bending section is not subjected to
a torsion effect. Thus, the final transformation matrix can be
expressed by a rotation matrix Rk−1

k , as follows:

Rk−1
k =rot(zk−1, ϕk) rot(yk−1, θk) rot(zk, −ϕk)

=
⎛

⎝
c2ϕkcθk+s2ϕk cϕkcθksϕk−cϕksϕk cϕksθk

cϕkcθksϕk−cϕksϕk s2ϕkcθk+c2ϕk sϕksθk

−cϕksθk −sϕksθk cθk

⎞

⎠

(3)

where, for instance, the expression rot(zk, ϕk) means the
rotation of the frame Rk around the Zk−1 axis by the angle
ϕk , and cθk = cos(θk), sθk = sin(θk), cϕk = cos(ϕk) and
sϕk = sin(ϕk).

In order to simplify the calculations, the matrix Rk−1
k is

written as a function of unit vectors, as follows:

Rk−1
k = [nk−1

k bk−1
k tk−1

k ] (4)

where nk−1
k , bk−1

k and tk−1
k are the normal vector, the

binormal vector and the tangent vector respectively.
The linear velocity vk for the endpoint Ok can be derived

by direct differentiation of Eq. 2 with respect to time as
follows:

vk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋk = Lk

8 (−θ2k + 4)θ̇kcϕk

−Lk

24 (−θ3k + 12θk)ϕ̇ksϕk

ẏk = Lk

8 (−θ2k + 4)θ̇k sϕk

+Lk

24 (−θ3k + 12θk)ϕ̇kcϕk

żk = Lk

30 (θ3k − 10θk)θ̇k

(5)

Based on the motion of the tangent vector of the matrix
Rk−1

k , the angular velocity ωk can be defined as follows:

ωk = t̂k−1
k ṫk−1

k (6)

where ṫk−1
k is the derivation vector with respect to time, and

t̂k−1
k is the skew matrix associated with the vector tk−1

k

given by the following matrix:

t̂k−1
k =

⎛

⎝
0 −cθk sϕksθk

cθk 0 −cϕksθk

−sϕksθk cϕksθk 0

⎞

⎠ (7)

3.2 Global Coordinates

The vector position of any endpoint O0 and the rotation
matrix of any reference frame Rk with respect to reference
frame R0 can be calculated recursively as follows:

rk =
{
r1, k = 1
r1 + R0

1 r2, k = 2
(8)

R0
2 = R0

1 R
1
2 (9)
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The linear velocity vk for any endpoint can be derived
by direct differentiation of Eq. 8 with respect to time as
follows:

vk =
{
ṙ1, k = 1
ṙ1 + Ṙ0

1 r2 + R0
1 ṙ2, k = 2

(10)

Also, the angular velocity can be calculated recursively
as follows:

ωk =
{

ω1, k = 1
ω1 + R0

1 ω2, k = 2
(11)

4 Dynamics Analysis

The results of the previous section are used here to calculate
terms involved in the dynamic model namely the kinetic and
potential energies. In the following analysis, the orientation
angle ϕk is considered constant (i.e. in fixed orientation).

4.1 Total Kinetic Energy

As mentioned before, the continuum manipulator is com-
posed of elastic backbone, rigid disks and cables. In this
study, the masses of elastic backbone, cables and the inter-
mediate disks are neglected. Thus, the total kinetic energy
is the sum of translational and rotational energies of the end
disks of each bending section, calculated as follows:

T =
2∑

k=1

(Tmk
+ TIk ) (12)

where the translational and rotational energies of each disk
can be calculated respectively, as follows:

Tmk
= 1

2
vT
k m vk (13)

TIk = 1

2
ωT

k I ωk (14)

where m is the disk’s mass, I is the disk’s moment of inertia
expressed in the reference frame R0 which depends on the
disk’s orientation and local moments of inertia Ixx , Iyy and
Izz. This moment of inertia can be expressed as follows:

I = (R0
k) I

k
k (R0

k)
T (15)

Ikk =
⎛

⎝
Ixx 0 0
0 Iyy 0
0 0 Izz

⎞

⎠ (16)

4.2 Total Potential Energy

The total potential energy for the continuum manipulator is
consisting of two parts: the gravitational energy UG and the

elastic potential energy UE . Thus, the total potential energy
is the sum of these terms given as follows:

U = UG + UE (17)

The gravitational energy of the continuum manipulator
depends on the each disk’s mass, and can be calculated as
follows:

UG = −
2∑

k=1

m rT
k g (18)

where g is the gravitational constant.
For simplicity reasons, the lengths of two bending sec-

tions are equal and they are noted byL. The potential energy
of elastic backbones can be calculated as follows [41]:

UG =
2∑

k=1

EIbθ2k
2L

(19)

where E is the module of elasticity and Ib is the second
moment of cross-sectional area of each elastic backbone.

4.3 Actuation Forces

For the continuum manipulator under consideration, there
are two categories of forces acting on it. One is the control-
ling force from the cables, and the other is the contact forces
between cables and disks resulting in friction forces. In this
study the friction forces are neglected.

As mentioned above, the actuation of the continuum
manipulator is achieved by pulling one or two cables at
the same time for each bending section. Thus, for a spatial
motion we can explain tension variations in three cables as
a function of orientation angle as presented in Fig. 4.

Fig. 4 Scheme showing the tension variations in cables for the first
bending section according to the change of the orientation angle
ϕ1
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For instance, let Q1 be the generalized force acting in the
curvature plane of the first bending section in the range as:
ϕ1 ∈ [0 ; 2π

3 ], (see Fig. 4). The relationships between the
generalized forceQ1 and cable tensions F1 and F2 are given
as follows [26]:

{
Q1 = F1 d cos(ϕ1) + F2 d cos( 2π3 − ϕ1)

−F1 sin(ϕ1) + F2 sin( 2π3 − ϕ1) = 0
(20)

where d is the radial distance between cables and the neutral
axis of the continuum manipulator.

With all terms such that the total kinetic energy, the total
potential energy and the actuation forces being defined,
equations of motion or the dynamic model will be derived
in the following.

4.4 Equations of Motion

The second-order partial differential equations in the con-
figuration space are derived using the Euler-Lagrange equa-
tions. The motion equations for the continuum manipulator
under consideration are given as follows:

d

dt

∂T

∂θ̇k

− ∂T
∂θk

+ ∂U
∂θk

= Qk, k = 1, 2. (21)

After developing Eq. 21, the motion equations can be
written in the compact form as follows:

[
M11 M12

M21 M22

]{
θ̈1

θ̈2

}

+
[

C11 C12 C13

C21 C22 C23

]
⎧
⎨

⎩

θ̇21
θ̇1θ̇2

θ̇22

⎫
⎬

⎭
+

{
K1

K2

}

=
{

Q1

Q2

}

(22)

The elements of matrices described in Eq. 22 are defined
in the appendix.

4.5 State Space Representation of the Dynamical Model

To simulate the input-output behavior of the continuum
manipulator under consideration, the 4th order Runge-Kutta
method is used as a numerical solution. For this, we intro-
duce the state variables as follows:

⎧
⎪⎪⎨

⎪⎪⎩

u1 = θ1(t)

u2 = θ̇1(t)

u3 = θ2(t)

u4 = θ̇2(t)

(23)

Therefore, by introducing the state variables, Eq. 22 can
be written in the general form as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1 = u2

u̇2 = 1
M11

(Q1 − K1 − C13u
2
4 − C12u2u4 − C11u

2
2

− M12
M12M21−M11M22

(Q1M21 + K2M11 − Q2M11

−K1M21 − (C13M21 − C23M11)u
2
4 − (C11M21

−C21M11)u
2
2 − C13M21u2u4))

u̇3 = u4

u̇4 = 1
M12M21−M11M22

(Q1M21 − K2M11 − Q2M11

−K1M21 − (C13M21 − C23M11)u
2
4 − (C11M21

−C21M11)u
2
2 − C13M21u2u4))

(24)

Finally, Eq. 24 can be written in the general form as
follows:

U̇ (t) = f (U, t) + g(U, t)H(t) (25)

where U(t) represents state variable vector, f (U, t) and
g(U, t) are nonlinear functions, and H(t) represents the
command vector.

5 Simulation Studies

To simulate the continuum manipulator behavior with two
bending sections, the static and the dynamics models have
been implemented in MATLAB 7.1. The material and
geometric properties of the continuum manipulator under
consideration is given in Table 1.

5.1 Simulation of Static Analysis

The simulation of the static analysis considers a contin-
uum manipulator constituted of two bending sections. It is
illustrated by an example where the static equilibrium is
ensured with zero tensions in the six cables. For this static

Table 1 Parameters of the continuum manipulator

Parameters Designation Value

L bending section length 0.3 m

m disk mass 0.01 kg

g gravity constant 9.81 m/s2

E Young’s modulus 2.1 . 1011 Pa

Ib inertia moment of disk 3.97 . 10−12 m4

Ixx inertia moment of elastic backbone 3.06 . 10−7 m4
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model, two cases are analyzed depending on assumed initial
conditions of the bending angle θk with k = 1, 2. For the
first case, the initial conditions are θ1 = π

12 and θ2 = 0;
whereas for the second one, the initial conditions are θ1 = 0
and θ2 = π

12 .
The performed simulations of the two cases have pro-

vided the corresponding dynamic responses for the bending
angles θk of the continuum manipulator with zero tension in
the six cables as shown on the left-hand side of Fig. 5. It can
be seen that each bending section of the continuum manip-
ulator presents oscillations around an equilibrium position
(Zk-axis). For these two cases, the continuum manipula-
tor begins to stabilize after 45 sec and 28 sec, respectively,
with a sampling interval of 0.045 sec. For both cases, after

(a) Case 1: initial conditions are: 1 = 12 and 2 0

(b) Case 2: initial conditions are: 1 = 0 and 2 = 12

Fig. 5 Zero actuation response for the bending angle θk with k = 1, 2

release, the starting oscillations of the central axis of the
continuum manipulator are shown on the right-hand side of
Fig. 5 (blue color for the first bending section and the red
color for the second one).

5.2 Simulation of the Dynamic Behavior

In this subsection, we present, through two examples, the
results of the performed simulations for the dynamic model
of the considered continuum manipulator

In Fig. 6, we present the dynamic responses for the bend-
ing angles θk in response to a step input of 2 N as a tension in
the cable 1 of the first bending section. From the analysis of
this figure, it can be seen that the backbone of the continuum
manipulator oscillates around a stable position which is dif-
ferent from the vertical initial position of equilibrium. For
the first bending section, the stable position is θ1 = 30.66◦;
whereas for the second one it stabilizes at θ2 = 2.44◦. The
stable position of the second bending angle results due only
to the gravitational loading.

In the second example, we applied tensions on the two
first cables for both bending sections (see Figs. 1 and 2).
The step inputs of generalized forces are Q1 = 0.4 t and
Q2 = 0.8 t , respectively, which are acting in the curvature
planes oriented by ϕ1 = ϕ2 = π

6 where t is the time variable.
By considering these generalized forces, the tensions on

the cables are given as presented in Fig. 7. The dynamic sim-
ulation of the considered continuum manipulator behavior
is shown in Fig. 8. We noted that these configurations of the
continuum manipulator are performed after stabilization of
the dynamic model simulation. Figure 9 presents the varia-
tion of cable lengths obtained from the performed kinematic
simulation.

Fig. 6 Dynamic responses for the bending angles θk with k = 1, 2
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Fig. 7 Temporal evolutions of
cable tensions

5.3 Simulation of the PID Controller

After simulation of the proposed dynamic model, we con-
sider two simulation examples of a classical Proportional-
Integral-Derivative (PID) controller in order to test the
control of the considered continuum manipulator.

The first example represents the response of the proposed
PID controller. The resulting value of the dynamic simula-
tion of example 1 is used as input for a PID controller to
command the first bending section. The selected parameters
of the PID controller which offer an acceptable compromise
on performance are: KP = 0.1, Ki = 2.7 and Kd = 0.3.
Figure 10 presents the dynamic response in closed-loop with
the PID controller. The observation of the graphical results

Fig. 8 Some configurations of the continuum manipulator

confirms the possibility to use successfully the proposed
controller.

The second example considers the tracking of a circular
trajectory in the curvature planes ϕ1 = ϕ2 = 0. Figure 11
shows the tracking of a circular trajectory with PID con-
troller. The analysis of this figure shows the tracking of
a trajectory with acceptable errors. These Euclidean errors
are shown on the right-hand side of Fig. 11. The required
tensions and cable lengths for the tracking of a circular
trajectory are presented in Figs. 12 and 13 respectively.

5.4 Discussion

Although, there is no much works in this particular topic
presenting practical results, nevertheless, we have compared
our simulation results with references [24] and [26] both to
simulations as well as to experiments.

Fig. 9 Temporal evolutions of cable lengths
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Fig. 10 Dynamic response for the bending angles θk(k = 1, 2) with
PID controller and its tension

The obtained simulation results for the static and dynamic
models show some similarity for dynamic responses of
the continuum manipulator behavior when compared to
works developed in [24] and [26] despite the differences
of initial assumptions, modeling approaches and specifici-
ties of the considered continuummanipulators. For instance,
our static model and the static model presented in [24]
present almost similar results in the case of planar con-
figurations. We observe a very similar shape and behavior
between them. In addition, the comparison of our dynam-
ical model with that of [24] shows also some similarities
despite the differences in modeling and assumptions since
authors have taken into account the friction and the torsion
effects.

Concerning the work presented in [26], we notice that
their dynamical model outputs some applied forces on

Fig. 11 Tracking of a circular trajectory with PID controller (view in
curvature plane)

Fig. 12 Evolution of cable tensions

the structure which are almost similar to the forces that
serve as inputs for our dynamic model. This proves some
equivalence between the compared models in terms input-
output.

As a general conclusion to our analysis, the compar-
ison of our simulation results to the previous simula-
tion and experimental results leads to validate the pro-
posed dynamic model. Moreover, despite the complexity of
our dynamic model due to strong nonlinearities, to some
assumed assumptions, and to neglecting the environment
perturbations, a classical PID can be fruitfully used for
basically testing our model and its control. The obtained
results from the performed simulations enable to conclude

Fig. 13 Evolution of cable lengths
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that our dynamic model can be useful for research and
implementation purposes.

6 Conclusion

This paper has presented a dynamic model for a class
of multi-section continuum manipulators, namely driving-
cables robots, in fixed orientation using the Euler-Lagrange
method. Firstly, we have exploited Taylor expansion to
approximate the geometric model. Deriving the kinematic
and dynamic models based on this approximation, we have
got two main advantages. The first advantage is the com-
plexity reduction of the mathematical expressions which
has enabled an easier analysis and simulation of the sys-
tem behavior. Moreover, this approach has enabled to avoid
some singularities which are initially involved in the geo-
metric model. Under our hypothesis and approximation, the
estimation of the error between the initial geometric model
and the approximated geometric model by Taylor expansion
is less than 1.4 %. Then, we have developed a mathematical
formulation defining the bending section kinematics. The
dynamical model is derived from the kinematic equations of
inextensible bending section with zero torsion. Some simu-
lation examples have been performed for static and dynamic
models for the considered continuum manipulator.

Despite the differences of initial assumptions, modeling
approaches and specificities of the considered continuum
robots, the examination of our simulation results with some
simulation and experimental results presented by other
authors lead globally to comparable results validating to
some extend our dynamic model.

A classic PID controller has been implemented in order
to test the proposed dynamic model for controlling the
considered continuum manipulator by means of the point-
to-point technique. Interesting and coherent results have
been obtained even for circular trajectories.

As a perspective, we intend to extend our dynamic model
for 3-D space configurations. In will be worthy to take into
account the torsion, friction and all gravitational effects in
order to approximate the behavior of real continuum manip-
ulators. In addition, the robot control has to be addressed by
testing more adapted controllers than the PID one.

Beside basic PID controllers, to expect more efficient
control performances while taking into account the com-
plexity, the non linearity, the uncertainties and the pertur-
bations concerning continuum manipulators; it is worthy
to implement more advanced and adapted control schemes
such as neural networks, sliding mode, fuzzy techniques and
eventually their combinations.

Appendix

A Nomenclature

dk radial distance between cables and the neutral
axis of the bending section

E Young’s modulus
Fi tension in cable i

g gravitational constant
i index of the cable, i = 1, 2, 3.
I disk’s moment of inertia expressed in the

reference frame
Ib inertia moment of elastic backbone
Ixx disk’s moment of inertia aligned with x axis
Iyy disk’s moment of inertia aligned with y axis
Izz disk’s moment of inertia aligned with y axis
k index of the bending section
li length of the cable i

Lk length of the center of the bending section k

m disk mass
nk, bk, tk unit vectors of matrix Rk−1

k defining the frame
k − 1 in frame k

Qk generalized forces
rk position vector of disk k with respect to

reference frame
t time variable
vk linear velocity of disk k

κk curvature of the bending section k

ϕk orientation angle of the curvature plane of the
bending section k

θk bending angle in the curvature plane of the
bending section k

ωk angular velocity of disk k

˙ denoted first derivative with respect to time
ˆ denoted skew matrix

B Appendix

Elements of matrices involved in Eq.22.

M11 = 4Ixx + L2

(
θ41 θ42

21600
− θ41 θ22

1080
− θ31 θ32

720
+ θ31 θ2

60

−θ21 θ42

720
+ θ21 θ22

36
+ θ1θ

3
2

36
− θ1θ2

3
+ θ41

144
− 2θ21

9

− θ42

45
− θ22

2
+ 5

)
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M12 = M21 = 2Ixx + L2

(
θ41 θ42

51840
− θ41 θ22

2880
− θ31 θ32

1800

+θ31 θ2

180
− θ21 θ42

1728
+ θ21 θ22

96
+ θ1θ

3
2

90
− θ1θ2

9

+ θ41

720
− θ21

24
+ 7θ42

720
− 5θ22

24
+ 3

2

)

M22 = 2Ixx + L2

(
θ42

1440
− θ22

36
+ 1

2

)

C11 = L2

(
θ31 θ42

16200
− θ31 θ32

800
− θ31 θ22

1880
+ θ21 θ2

120
− θ1θ

4
2

1080

+θ1θ
2
2

72
− θ31

360
+ θ1

18
+ θ32

120
− θ2

18

)

C12 = L2

(
θ41 θ32

6480
− θ41 θ2

720
− θ31 θ22

300
− θ21 θ32

216
+ θ21 θ2

24

+θ1θ
2
2

15
+ θ31

90
− 2θ1

9
+ 7θ32

90
− 5θ2

6

)

C13 = 1

2
C12

C21 = L2

(

− θ41 θ32

10800
+ θ41 θ2

1080
+ θ31 θ42

12960
+ θ31 θ22

1440
+ θ21 θ32

900

−θ1θ
4
2

864
− θ21 θ2

90
− θ1θ

2
2

48
− θ31

360
+ θ1

12
− θ32

30
− 7θ2

18

)

C22 = 0

C23 = L2

(
θ32

720
− θ2

36

)

K1 = E Ibθ1
L

+ m L g

(

−θ31 θ42

720
+ θ31 θ22

36
+ θ21 θ32

48
− θ21 θ2

4

+θ1θ
4
2

120
− θ1θ

2
2

6
− 7θ31

30
+ 5θ1

3
− θ32

24
+ θ2

2

)

K2 = E Ibθ2
L

+m L g

(

−θ41 θ32

720
+ θ41 θ2

72
+ θ31 θ22

48
+ θ21 θ32

60

−θ21 θ2

6
− θ1θ

2
2

8
− θ31

12
+ θ1

2
− θ32

30
+ θ2

3

)
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