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Abstract Reinforcement Learning (RL) is a well-known
technique for learning the solutions of control problems
from the interactions of an agent in its domain. However,
RL is known to be inefficient in problems of the real-
world where the state space and the set of actions grow
up fast. Recently, heuristics, case-based reasoning (CBR)
and transfer learning have been used as tools to accel-
erate the RL process. This paper investigates a class of
algorithms called Transfer Learning Heuristically Acceler-
ated Reinforcement Learning (TLHARL) that uses CBR as
heuristics within a transfer learning setting to accelerate RL.
The main contributions of this work are the proposal of a
new TLHARL algorithm based on the traditional RL algo-
rithm Q(λ) and the application of TLHARL on two distinct
real-robot domains: a robot soccer with small-scale robots
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and the humanoid-robot stability learning. Experimental
results show that our proposed method led to a significant
improvement of the learning rate in both domains.
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1 Introduction

Reinforcement Learning (RL) [43, 51] is a machine learning
method that exploits the interactions of an agent in its envi-
ronment when searching for a solution of a given problem,
in order to maximise the agent’s cumulative reward. How-
ever, to achieve convergence, RL algorithms typically need
a large number of iterations, thus implying on a slow learn-
ing rate in continuous state, high-dimensional, tasks. One
of the causes for the lack of performance of most RL algo-
rithms is their assumption that no knowledge of the problem
is available beforehand.

The acceleration of the RL process has been attempted
by means of transferring learnt knowledge from one source
task to another (related) task, in what is currently known
as transfer learning [46], by the use of heuristics [9], by
means of case-based reasoning [19, 54], or by a combination
of CBR, heuristics and transfer learning [8, 14, 15], called
Transfer Learning Heuristically Accelerated Reinforcement
Learning algorithms (TLHARL).

This paper investigates TLHARL algorithms, extending
our previous work [14] in three ways: first, it introduces
a new algorithm, the TLHAQ(λ); second, this paper pro-
vides a more complete description of the tests conducted
on the robot-soccer domain described in [14]; and, third,
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it introduces novel results on applying TLHARL to the
challenging domain of humanoid-robot stability learning.

Transfer learning (TL) [46, 47, 52] is a technique “that
aims at reusing the knowledge accumulated in a solution of
a previous (source) task to speed up the solution of a distinct
(but related) target task” [45]. TL can be understood as a
technique to speed up the acquisition of skills in a task as
a result of previous training. For example, the knowledge
acquired whilst learning to play a musical instrument, say
a violin, could be used to speed up the process of learning
to play the cello. I.e., the years spent in learning to hold the
violin bow, and producing a proper sound with it, could be
used to condense into weeks the learning of a cello bow.

A case-based reasoning method (summarised in
Section 2.2) aims at using a base of pre-existing solutions
(cases) of problems in order to solve new problems. The
algorithms investigated in this work, presented in Section 4,
use Reinforcement Learning to learn a task on a source
domain, storing the knowledge thus obtained in a case
base; and then use this case base as heuristics to speed
up the learning process in the target domain. This paper
considers the application of TLHARL in two domains with
real robots: robot soccer (Section 5.1) and humanoid-robot
stability learning (Section 5.2). The experimental results
show that TLHARL led to a significant improvement in the
learning rate in both domains, in contrast to the base RL
algorithms.

2 Background

Reinforcement Learning (RL), Case-Based Reasoning and
Transfer Learning, constitute the basis of the Transfer
Learning Heuristically Accelerated Reinforcement Learn-
ing algorithms investigated in this paper, where reinforce-
ment learning is used in the source domain to create a case
base that could be transfered to a target domain. Below
we introduce in more details the foundations of RL and
Case-base reasoning.

Algorithm 1 Q-learning [43].

Initialise Q̂t (s, a) arbitrarily.
Repeat (for each episode):
Initialise s.
Repeat (for each step):

Select an action α using a pre-defined policy
(such as an ε-greedy one).
Execute the action α, observe r(s, a), s′.
Update the values ofQ(s, a) according to equation 2.
s ← s′.

Until s is terminal.
Until some stopping criterior is reached.

2.1 Reinforcement Learning

A Reinforcement Learning (RL) [43, 51] problem is tradi-
tionally defined as a finite Markov Decision Process (MDP)
with the 4-tuple 〈S,A, T ,R〉, where:
– S: is a finite set of states.
– A: is a finite set of actions.
– T : S × A → �(S): is a state transition function.
– R : S × A → R: is a reward function.

The optimal behaviour of an agent that learns using RL
is called the optimal policy π∗ : S → A, which returns the
action that is the best one to be executed by the agent. A
common way of obtaining π∗ is by learning the action-value
function Q : S × A → R. Sutton and Barto [43] defines
this function as “the value of taking action a in state s under
a policy π , i.e., the expected return starting from s, taking
the action a, and thereafter following policy π” [43, Section
3.7]. This can be formulated as:

Qπ(s, a) = Eπ {Rt |st = s, at = a}

= Eπ

{ ∞∑
k=0

γ krt + k + 1|st = s, at = a

}
(1)

where s is the current state, a is the action performed in s, r
is the reward received and γ is the discount factor (0 ≤ γ <

1).
Q–learning algorithm [51] (Algorithm 1) learns an opti-

mal policy π∗ using the action-values by iteratively approx-
imating the Q function, using the following update rule:

Q̂(s, a) ← Q̂(s, a)+α ·
[
r + γ max

a′ Q̂(s′, a′) − Q̂(s, a)

]
,

(2)

where s, a, r , and γ are the same as in Eq.1, α is the learning
rate and s′ is the resulting next state.

Q-Learning is considered one of the most important, and
the most widely used, RL algorithm due to its power to
solve problems that can be modelled as an MDP and have
bounded rewards. One of the criticisms of Q-Learning is
that, in order to converge to the optimal policy, it needs to
explore the states and actions in the domain many times,
making it ill suited for solving large-scale problems.

According to Sutton and Barto [43], one of the basic
mechanisms to speed up RL are the eligibility traces, which
can be combined with almost any algorithm leading to gen-
eral and efficient learning methods. Eligibility traces [37,
41] speed up the learning process by recording each state
visited during an episode, whilst associating to each of these
states some of the reward received at the end of the episode.
In this way, in each iteration, all visited state-action pairs
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are updated, facilitating temporal generalisation. Success-
ful applications of eligibility traces date back to 1990’s (e.g.
Araujo and Grupen [2]).

The Q(λ) algorithm is proposed by Watkins [51] to
implement eligibility traces in Q-Learning. In this algo-
rithm, at each time step, the eligibility trace is updated
according to Eq. 3.

e(u, v) =
{

e(u, v) + 1 if u = st and v = at

λ · e(u, v) otherwise
(3)

By using Eq. 3, the eligibility of one pair state-action is
increased by 1 every time it is visited, and is decreased by a
factor of λ (0 ≤ λ ≤ 1) at any other time step. Finally, Q(λ)

updates all state-action pair rule at each time step using
Eq. 4.

Q̂(s, a)←Q̂(s, a)+α · e(s, a) ·
[
r+γ max

a′ Q̂(s′, a′)−Q̂(s, a)

]
,

(4)

where the parameters are as described in Eq. 2.
The convergence of RL algorithms can also be acceler-

ated by means of an heuristic function in a way similar to
that used in informed search algorithms. The Heuristically
Accelerated Q–Learning (HAQL) [10] is an extension of the
Q–Learning algorithm that includes an heuristic function in
the Q-learning action choice rule (Eq. 5) in order to speed
up the learning process:

π(s) =
{
argmaxa

[
Q̂(s, a) + ξH(s, a)

]
if q ≤ p,

arandom Otherwise,
(5)

where ξ is a parameter that weights the effects of the
heuristic function, q is a random value and p defines the
tradeoff between exploration and exploitation: during the
action selection, if q is larger than p, a randomly chosen
action arandom is used to explore the problem domain.

To make sure that the action πH (s) is executed after
being selected, the value ofH(s, πH (s))must be larger than
the variation of the H(s, a) values, for a given s ∈ S and
for all a ∈ A. The values of the heuristic function can be
computed using Eq. 6 below:

H(s, a) =
{
max

i
Q̂(s, i) − Q̂(s, a) + η if a = πH (s),

0 otherwise.

(6)

where η is a small real number. By computing H in this
way, Eq. 5 selects the action suggested by the heuristic in all
greedy steps. HAQL is presented in Algorithm 2.

Q-learning, Q(λ) and HAQL are used in this paper as
base algorithms whose performances are compared with
the TLHARL algorithms on the two robotic domains
considered.

Algorithm 2 Heuristically Accelerated Q–Learning
(HAQL) [10].

Initialise Q̂t (s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):
Initialise s.
Repeat (for each step):

Update the values of Ht(s, a) as desired
Select an action a using equation 5.
Execute the action α, observe r(s, a), s′.
Update the values ofQ(s, a) according to equation 2.
s ← s′.

Until s is terminal.
Until some stopping criterior is reached.

2.2 Case-Based Reasoning

Case-based reasoning (CBR) [28] is a subfield of AI that
aims at developing algorithms capable of using a case-base
that contains pre-existing solutions of a problem for solving
new problems that are similar to the ones described in the
known cases.

According to Lopez de Mántaras et al [28], CBR begins
with a problem description, which is matched with cases
stored in a case base using some pre-defined similarity mea-
sure; if similar cases are found, they are retrieved, adapted
and reused in the problem at hand.

In general, in CBR a case is composed of two parts: the
problem description (P ) and the solution description (A).
The problem description P is a representation of the situ-
ation in which the case can be used, and is similar to the
definition of state in the set of states S in RL. The solution
description A stores the sequence of actions that an agent
has to perform in order to solve the problem P . This concept
is related to the optimal policy π∗ in RL, that maps states
into the most desirable actions a to be performed.

The case retrieval process computes the similarity
between the current problem and the cases in the base in
order to find the most similar case to be retrieved. Sim-
ilarity is defined by means of a function on the distance
between agents and objects in the problem and in the case
in consideration.

There is no guarantee that the retrieved case is an exact
solution to the problem at hand. When the most similar case
is not an exact solution, it is necessary to adapt the retrieved
case to solve the problem at hand before reusing it. This is
done by modifying the case, usually by adding steps to the
solution, or by rotating or translating it.

3 Related Work

Transfer Learning has been studied since the beginning
of the 20th century, with the work of Thorndike and



304 J Intell Robot Syst (2018) 91:301–312

Woodworth [49] considering the influence of one mental
function to enhance the efficiency of other functions. In
the field of Artificial Intelligence, transfer learning inherits
ideas from several subfields of machine learning, such as
inductive transfer [30], metalearning [26], multi-task learn-
ing [12, 13, 50], imitation learning [3] and human advice
[21]. The first example of an algorithm that uses the trans-
ference of knowledge from one task to another to accelerate
a reinforcement learning procedure was proposed in [16].
Since then, there has been an increasing interest in applying
transfer learning to RL [1, 6, 18, 24, 47]. The work reported
by Patricia and Caputo [34] extends the idea of TL to use
prior knowledge from any source domain independently of
the origin of the distribution mismatch between source and
target domains, resulting in a class of algorithms applicable
in any binary or multi-class transfer learning with single or
multiple source domain adaptation settings. The work pre-
sented in this paper differs from these early approaches by
using a case-base, and case-based reasoning techniques, to
transfer knowledge across domains.

There has been an increasing interest in applications of
transfer learning combined with RL. For instance, Zhang
et al. [55] applies this combination on the optimisation of
large-scale power systems where a matrix is used to store
state-action pairs that are, then, transfered to distinct opti-
misation tasks. Zhang et al. [56] applies the transference of
knowledge, allied with Q-learning, in the development of an
optimal controller for the automatic generation control of
highly interconnected power grids. Tan et al. [44] propose
a combination of TL with transitive inference that allows
the transference of knowledge across unrelated domains by
selecting intermediate domains to act as a bridge connecting
source and target. Gupta et al. [22] examine how reinforce-
ment learning algorithms can transfer knowledge between
different agents, by training invariant feature spaces that can
then be used to transfer skills from one agent to another.
This work is interesting, as it transfers knowledge between
morphologically different robots, in simulation. Recent sur-
veys on TL can be found in [32, 52].

The present paper falls within the context of applications
of transfer learning to RL and, to the best of our knowledge,
this is the first work that investigates the application of these
ideas to accelerate the learning in real robot domains.

We believe that the work proposed here could be further
extended to be used within a Deep Reinforcement Learning
setting. The use of Deep Reinforcement Learning together
with Transfer Learning is very promising, as it allows an
agent to learn its behaviour with respect to a variety of,
possibly simultaneous, tasks, and then to generalise this
behaviour to new domains [33]. One interesting application
of this idea was described by Glatt et al. [20] on the Atari
game playing domain. Similarly, Du et al. [17] applies trans-

fer learning to the Deep Q-network in two different tasks:
Atari game playing and cart-pole balancing. The results
reported show that TL improved the time efficiency of the
Deep Q-network.

The first TLHARL algorithm proposed was the Transfer
Learning Heuristically Accelerated Q–learning (TLHAQL)
[15], which implements the TLHARL concepts using the
Q–learning algorithm. One extension of TLHAQL that
automatically maps the source-domain actions to the target-
domain actions was evaluated in simulated tasks in [8].

The main difference between the work presented here
and our previous work presented in [8] is that in the present
work the focus is on the investigation of algorithms that
can be used within the transfer-learning framework and test-
ing then in real-world, real-robot, domains; whereas, the
focus of our previous work was on evaluating the use of
a neural network for the task of automatic mapping the
source-domain actions to the target-domain actions.

A complete survey (up to 2009) of transfer learning for
reinforcement learning was described in [46]. More recent
surveys related to TL can be found in [25, 27, 32]. Finally,
Bengio [7] presents a survey of deep learning methods and
how they can be used in the transfer-learning scenario.

Algorithm 3 Transfer Learning Heuristically Accelerated
Reinforcement Learning (TLHARL).

1. Use any RL algorith to learn the optimal policy π∗
S for

the source domain.
2. Create a case-base from the π∗

S learned.
3. Use the case-base as heuristics to speed-up the learning

in the target domain, using any HARL algorithm.

The next section introduces the Transfer Learning
Heuristically Accelerated Reinforcement Learning algo-
rithms, that are the main subject of investigation in this
work.

4 Transfer Learning Heuristically Accelerated
Reinforcement Learning

The Transfer Learning Heuristically Accelerated Reinforce-
ment Learning (TLHARL) class of algorithms achieves
the transference of knowledge across domains by com-
bining Reinforcement Learning, Heuristics and Case-based
reasoning.

TLHARL works by, first, applying an RL algorithm to
learn a single task (considered as the source task). When
learning stabilises, i.e., Q̂(s′, a′) − Q̂(s, a) is close to zero,
a case base with a pre-defined number of cases is built.
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After that, this case base is transferred to be used on
another learning task (the target task). During this phase,
cases are retrieved and adapted to the current situation
following CBR ideas. A case is retrieved if a similarity mea-
surement is above a certain threshold. When this happens,
the action suggested by the case is selected and used as
heuristic in a HARL algorithm. The fundamental structure
of a TLHARL algorithm is presented in Algorithm 3.

One of the main advantages of using TLHARL is that, if
a case is not found that is similar to the situation at hand,
the algorithm is reduced to the underlying RL algorithm.
Thus, if the case base contains a case that can be used in
a given situation, the RL process is accelerated using this
case as heuristics. On the other hand, if a similar case is not
found, or even if a misleading case is used as heuristics, the
algorithm still converges to the optimal solution by means
of a basic RL procedure.

The present paper proposes a novel TLHARL algorithm:
TLHAQ(λ), based on the traditional RL algorithm Q(λ)
[51] (described in Section 2.1). The implementation of
TLHAQ(λ) is similar to that of TLHAQL extended with eli-
gibility traces, where at each time step the eligibility trace
is updated according to Eq. 3 and all state-action pair rules
are updated using Eq. 4. The TLHAQ(λ) is presented in
Algorithm 4.

Next section describes the tests conducted to investi-
gate the performances of TLHAQL and TLHAQ(λ) in two
robotic domains.

Algorithm 4 Transfer Learning Heuristically Accelerated
Q(λ).

Initialise Q̂(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode)
Initialise s.
Repeat (for each step):
Compute similarity
If there is a case that can be reused:

Compute Ht(s, a) using equation 6 with the
actions suggested by the case selected.

Select an action a using equation 5.
If not:
Select an action a using an ε-greedy policy.

Execute the action a, observe r(s, a), s′
Update the values of e(u, v) for all u ∈ S and v ∈ A

according to equation 3.
Update the values of allQ(s, a) according to equation4.
s ← s′

Until s terminal.
Until some stopping criteria is reached.

5 Experiments and Results

This section describes experiments of applying the
TLHARL algorithms in two distinct real-robot domains.
The first experiment (Section 5.1) investigates the acceler-
ation gained by using TLHAQL to learn and transfer the
strategy learnt from a simulated multi-robot soccer game to
an equivalent match with a group of real robots. This was the
first experimental evaluation of TLHAQL in a real-robotic
domain, described in Celiberto et al. [14].

The second experiment (Section 5.2) aims at making a
more complete analysis of the two TLHARL algorithms,
comparing TLHAQL and TLHAQ(λ) in the task of trans-
ferring the control policy learnt from a two-link pendulum
operating in a vertical plane (an Acrobot) to speed up the
stability learning of a two-legged humanoid robot.

5.1 Experiment 1: Robot Soccer Using a Team
of Small-Scale Robots

The first experiment investigates the transference of cases
acquired in the RoboCup Soccer 2D simulator [31] (the
source domain, illustrated in Fig. 1) to speed up the learn-
ing of a defence strategy of a group of Kilobot robots [36]
(shown in Fig. 2), which is the target domain for transfer
learning.

The RoboCup Soccer 2D [31] (Fig. 1) is a simulator that
allows soccer matches between pairs of independent agent
teams. The simulator is comprised of a server (that controls
the game and computes the movements of all players and
the ball) and clients, which are autonomous agents that con-
trol each individual player. The communication between the
server and the clients is accomplished via TCP/IP sockets.

Fig. 1 The RoboCup Soccer 2D simulator, source domain.
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Fig. 2 The Kilobot Robots that compose the target domain

The simulation is executed in cycles of approximately 100
milliseconds: in each cycle the server executes the actions
requested by the clients and updates the world state.

In the RoboCup simulator, vision is limited to a 90◦–
wide cone; the maximum distance up to which an object
can be seen is also limited. Only objects within the view
angle, and within visible distance of the viewing agent, can
be picked out by the sensors. These limitations are mutu-
ally related: the wider the cone of view (limited to 90◦),
the shortest is the visible distance. These limitations cre-
ate a number of hidden states (for example, when the ball
is behind the robot), which are not relevant for the learning
process in the target domain. To overcome these limitations,
some of the default settings of the simulation were adapted
in this work, allowing players to have a 360◦ view of the soc-
cer field, without imposing a maximum distance for object
perception.

The target domain is composed of three Kilobot robots
(Fig. 2), that are low-cost small-scale robots suitable for
multiagent experiments [36]. Kilobots are mobile robots
of around 3cm of diameter that move by vibrating stilt-
like legs using two motors. Each robot is controlled by an
ATmega 328 microprocessor, and communicates with the
others by pulsing an infrared LED located underneath it,
whose reflections on the floor are picked out by the other
agents up to a distance of 10cm around the robot [48]. The
robots are powered by a rechargeable battery that enables
experiments lasting about 3 hours.

In the source domain, the case base was learnt by imple-
menting Q − Learning on one of the simulated teams,
whilst the opponent was running the straightforward strat-
egy of kicking the ball forward only.1 The learning proce-
dure considered the following actions for each agent in the
team: hold the ball, pass the ball and kick to goal. Other
actions were allowed in the match (such as search the ball,
intercept the ball or dribble), but not included in the learn-
ing process, since they are not relevant for the learning task
in the target domain.

1We used for the latter the implementation available in [11], used by
the UvA Trilearn 2003 Team.

In this domain, 10 cases were randomly retrieved after
the end of the learning phase. Every retrieved case con-
sists of the problem description P , defined as the distances
between player and ball, that are compatible with the accep-
tance rate of the Kilobot robot (0 ∼ 10 cm), and the action
A taken in this situation. These 10 cases constituted the case
base. No more than 10 cases could be considered here due
to the Kilobot’s limited memory.

The goal of the learning robot in the target domain is to
stay between two other robots: one assuming the role of the
ball and the other assuming the role of an opponent player.
Only the learning robot has the ability to move in the envi-
ronment: the other two robots are used only as beacons,
to send information about distance between them and the
learning robot. The set of possible actions of the learning
agent is: stay in the same position, move forward, turn right
(45◦) and turn left (45◦). The learning environment is com-
posed of a 0,3 × 0,2 metre reflexive surface, where the fixed
robots are separated by 10 cm.

In this experiment, the learning robot uses a simple tabu-
lar Q − Learning algorithm (due to its limited computing
capabilities). At every step, the robot observes its state and
then searches the case base for cases that are similar to
the current state, using the Euclidean distance as similarity
function. If a similar case is found, an heuristic is defined in
the following manner:

H(s, a) =
{
10 if a = πH (s),

−1 otherwise.
(7)

where πH (s) is the action suggested by the case, that leads
the learning agent to the goal position.

The HAQL algorithm used a simple heuristics: turn right
if the robot is further than 6 cm from opponent, and turn left
if it is further than 6 cm from the ball.

The results, presented in Fig. 3, show the performances of
TLHAQL, Heuristically Accelerated Q–learning (HAQL)
and theQ−Learning (QL) algorithms. In the X-axis of this
figure are the episodes, which consist of 3.000 steps taken
by the learning agent. In the Y-axis is shown the number of
times that the learning robot reached the goal, i.e, the num-
ber of times that it placed itself between the opponent and
the ball. From these results it can be seen that the proposed
TLHAQL algorithms present a superior performance when
compared to both Q − Learning and HAQL.

In the experimental sciences it is important to use sta-
tistical tests to validate the hypothesis that two sets of data
are significantly different from each other. These same tests
can be used to verify if a newly proposed algorithm is better
than existing ones.

One statistical hypothesis test that can be used to verify
if a new finding is statistically significant is Student’s t-
Test [38]. The t-statistics was proposed in 1908 by William
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Fig. 3 The learning curves for the Q–learning, HAQL and TLHAQL
algorithms

Gosset, who used the test as a method to monitor que quality
of stout in the Guiness brewing company [40].

To use this test to verify if the performance of two algo-
rithms are statistically different, the value of T is computed
using the following Equation:

T = X̄1 − X̄2√
s21
N1

+ s22
N2

(8)

where X̄1, s1 and N1 are the sample mean, the variance and
the sample size of the first algorithm and X̄2, s2 and N2

are the sample mean, the variance and the sample size of
the second algorithm. This equation is known as Welch’s
unequal variances t-test [53], and is used when the two sam-
ples have distinct variances, as is the case with respect to
results of computer algorithms.

From this equation, it can be seen that the grater the dif-
ference between the results (the difference between the two

mean values), the higher the value of T . As a consequence,
the higher the value of T , the more significantly different
are the results under comparison.

From the Student’s t-distribution table [38], one can
determine the value of T that defines a confidence level
treshold: if the computed value of T is above the confidence
level treshold, then the performance of the algorithms are
statistically different, with the probability that this result is
wrong being less than a pre-defined level. This level, called
statistical significance, is usually set to 5%, 2.5% or 1%.

In this experiment, the t-test is used to verify if the
TLHAQL is statistically better than Q−Learning (Fig. 4a)
and the Heuristically Accelerated Q–learning (Fig. 4b). For
each pair of algorithms, the value of T is computed at each
episode, using the same data presented in Fig. 3. The value
of T for a confidence level with a statistical significance
of 1% are also presented in these Figures, plotted as dot-
ted lines. It is possible to see in both Figures that TLHAQL
is significantly better than Q − Learning from the initial
episodes, and that it is better than HAQL from the 50th

episode onwards, whereas the probability that this result is
wrong falls within less than 1%.

5.2 Experiment 2: RoboCup KidSize Humanoid-Robot
Stabilisation

In the second experiment the Acrobot [39] is used as source
domain for testing the rate of acceleration provided by
TLHAQ(λ) to learn the stabilisation of a humanoid robot
used in the RoboCup Humanoid KidSize League.

The Acrobot is a traditional problem that has been used
as testbed for new robotics, control and learning algorithms
by several researchers [4, 5, 29, 42, 57]. It consists of a ver-
tical, planar, two-link pendulum, where only the second link
has an actuator that can be controlled, i.e, the first link is
passive (Fig. 5). The task, in this problem, is to learn how to
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Fig. 4 Results from Student’s t-Test between Q − Learning and TLHAQL (a) and HAQL and TLHAQL (b)
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Fig. 5 The model of an Acrobot (Figure from Zhang et al. [57]),
source domain

maintain the pendulum in an upward, unstable equilibrium
position, starting from the rest position. The state of this sys-
tem is defined by four continuous variables, θ1, θ2, θ̇1 and
θ̇2, the position and velocity of each joint, respectively. The
actions that can be used in the Acrobot are: to apply a posi-
tive or a negative torque in the second link actuator, or to do
nothing.

In order to test the transfer to the target domain, a
humanoid robot developed to compete in the RoboCup
Humanoid League was used. The robot, shown in Fig. 6, is
a modification of the open source DARwIn-OP robot [23],
which includes the addition of a NUC Intel i5 computer
as main processor, new electronics and new mechanical
parts made by additive manufacturing. The robot, which is
described in more detail in Perico et al. [35], has 6 DOF in

Fig. 6 The humanoid robot used on the target domain

each leg, 3 in each arm and 2 on the head, each one actuated
by a Dynamixel RX-28 motor. The robot’s weight is 3.0 Kg,
its height is 490 millimetres and it can walk 10 cm/s.

The set of states used in the target domain is the posi-
tion of three joints, the Hip, the Knee and the Foot, that can
be moved from −20◦ to +20◦. All other joints in the robot
remain in a fixed position. The set of actions that can be
used by the robot are: +1◦ Hip Pitch, +1◦ Knee Pitch, +1◦
Foot Pitch, −1◦ Hip Pitch, −1◦ Knee Pitch, −1◦ Foot Pitch
or no action. The initial state is a random position in the
−20◦ to +20◦ range, and the final position is with the robot
standing upright.

At the beginning of this experiment, the Q(λ) Algorithm
is used on the source domain to build the case base contain-
ing 500 cases. The case base is built after learning stabilises,
which happens around the 9,000th episode, by sampling the
action-state set, and selecting actions that are the best ones
for the state (the worst action for one state is never selected
to be included in the case base). An episode ends at goal
state, or when a limit of 20,000 steps is reached.

After the case base is built, the TLHAQ(λ) algorithm is
used in the target domain. The similarity between a case in
the case base and the state of the robot in the target domain
is given by the difference between the joint angles in the two
domains.

One decision that had to be made in this experiment is
the selection of the robot’s joint where the knowledge trans-
fer would be more effective. To transfer the learning from
Acrobot to the humanoid robot, three different joints could
be used: the feet joint, the knee joint or the hip joint. In this
experiment, TLHAQ(λ) was used independently in two of
the robots joints: Hip and Ankle. In other words, a learn-
ing session was conducted using the Acrobot’s case base
applied to the humanoid’sHip and another applying the case
base to the humanoid’s Ankle.

The results obtained are presented in Fig. 7, which shows
the number of times per episode taken by the agent to reach
the goal. Both versions of TLHAQ(λ) (applied to the Hip
and to the Ankle) were compared with Q(λ). The results
present the average of thirty training sessions for each of the
algorithms, each of these sessions consists of 400 episodes
of 120 seconds each.

The following parameters were used throughout these
experiments: the learning rate α used was 0.10, the discount
factor γ was 0.9, the exploration versus exploitation rate
was set to 0.15, λ = 0.3 and the Q table was initialised with
zeros. TLHAQ(λ) used η = 1. Both algorithms received a
reward of -1 on all steps that did not lead to the goal, the goal
state was rewarded with +1000 and hitting the final course
of the servomotor was rewarded with -100.

From the results presented we can conclude that
TLHAQ(λ) outperforms Q(λ) in the initial learning phase,
and both algorithms converge to a similar performance
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Fig. 7 The learning curves for Q(λ) and TLHAQ(λ) for the Humanoid
Robot Stabilisation Problem

result in later episodes, as expected. Student’s t-Test was
used again to verify if the performance of the algorithms
are statistically different. The results of the Student’s t-Test,
shown in Fig. 8, show that the performance obtained for
TLHAQ(λ) is statistically superior than the performances of
Q(λ), up to the 200th episode, with a confidence level of
1%. After that, the results are statistically indistinguishable.

The experimental results described above show a signif-
icant improvement of the method proposed in this paper
compared with standard Q(λ) algorithm. To verify that
TLHAQ(λ) improves the learning rate when compared with
the TLHAQL without eligibility traces (described in our
previous work [14]), thirty training sessions were executed,
each of these sessions consists of 100 episodes of 120 sec-
onds using the TLHAQL and the TLHAQ(λ) algorithms.
In the case of the TLHAQ(λ), three different values of λ
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Fig. 9 The learning curves for TLHAQL and TLHAQ(λ), with λ =
0.3, 0.6 and 0.9, for the Humanoid Robot Stabilisation Problem

were considered: 0.3, 0.6 and 0.9. This algorithm used the
Acrobot’s case base applied to the humanoid’sHip only. The
parameters and rewards used in this experiment are the same
as before.

The results obtained are presented in Fig. 9, which shows
the number of times per episode taken by the agent to
reach the goal. This figure clearly shows the positive effect
of using eligibility traces in the TLHAQ(λ) algorithm, as
the greater is the value of the λ, the faster the algorithm
converges to the optimal solution.

The results of the Student’s t-Test are shown in Fig. 10,
where we can see that the performance obtained for
TLHAQ(λ) with λ = 0.6 and 0.9 are statistically better than
the performance of TQHAQL up to the 30th episode, with
the probability that this result is wrong being less than 1%
(a 99% confidence level).
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6 Concluding Remarks

This paper investigated a class of algorithms, called Transfer
Learning Heuristically Accelerated Reinforcement Learn-
ing Algorithms (TLHARL), that combines case-based rea-
soning and transfer learning to speed-up the convergence of
reinforcement learning algorithms. The main contribution
of this work is twofold: first, the introduction of a novel
TLHARL algorithm based on the well-known reinforce-
ment learning algorithm Q(λ) (the TLHAQ(λ) algorithm)
and, second, the evaluation of TLHARL on two real-robot
domains.

The domains considered in this work, upon which
TLHARL was evaluated, consisted of learning the strategy
in multi-robot soccer game and the stabilisation learning of
a humanoide robot. In the first domain, a 2D robot soc-
cer simulation was used as the source from where a set of
heuristics were learnt as a case base to be transfered to a
domain with three small-scale physical robots. The second
domain consisted of a two-link pendulum (an Acrobot) from
where a basic notion of balance was learnt that was trans-
fered to accelerate the stabilisation learning of two joints of
a humanoid robot (one joint at a time).

The results obtained show that the use of a case-base to
transfer learning across domains resulted in algorithms that
outperform other techniques for accelerating reinforcement
learning, such as the use of eligibility traces or heuris-
tics. The fast acceleration performed by TLHAQL and
TLHAQ(λ), in contrast to that obtained by HAQL and
HAQ(λ), can be explained by the fact that cases retrieved
from a case base (built from a related domain) provide a
better estimation of the distance between current and goal
states than the fixed heuristic present in HAQL, reducing
thus the search space.

Future work includes the use of TLHARL on more com-
plex tasks, with larger state spaces, various actions and

multiple tasks, characteristics that will increase the diffi-
culty and complexity of the problem to be solved. Problems
such as the multiobjective, multiparametric optimisation
of robot walking and the solution of higher-level tasks in
the Humanoid Soccer RoboCup domain, drone flight con-
trol and autonomous driving are within our future research
interests.
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São Paulo, Brazil, in 1998 and 2004, respectively. From 2007 to 2009,
he was a Visiting Researcher at the Artificial Intelligence Research
Institute (IIIA-CSIC), Bellaterra, Barcelona, Spain. He is currently
a Full Professor at the Department of Electrical Engineering, Cen-
tro Universitario FEI, São Bernardo do Campo, Brazil. His current
research interests include Robotics, Artificial Intelligence, computer
vision, machine learning and multiagent systems.

Paulo E. Santos Prof. Santos holds a degree in Physics from the Insti-
tute of Physics, University of São Paulo (1995), a Master in Electrical
Engineering from the Polytechnic School, University of São Paulo
(1997), a Master of Logic from the Institute for Logic, Language and
Computation, University of Amsterdam (1998) and a Ph.D. in Arti-
ficial Intelligence from the Imperial College, London (2003). During
2003 and 2004 Prof. Santos was a Research Assistant in the computing
department at University of Leeds (UK), and in 2005 he was appointed
as a full-time lecturer in Artificial Intelligence at the Department of
Electrical Engineering, Centro Universitário da FEI, São Paulo, Brazil,
where he has been conducting high-level research, supervision and
teaching graduate and undergraduate students in Artificial Intelligence
and related areas since then.

Isaac J. da Silva is a PhD student of Electrical Engineering at Cen-
tro Universitario FEI. He holds a bachelor degree and a Master in
Electrical Engineering from Centro Universitario FEI in 2013 and
2015, with research on the field of Artificial Intelligence. Currently,
his research interests include Deep Learning applied to autonomous
robots, Robot Soccer, Mobile Robots, Computer Vision and Humanoid
Robots Control.

Luiz A. Celiberto Jr, Graduate Engineering at FEI (2004), Master
in Electrical Engineering (focus Artificial Intelligence) at FEI (2007),
Ph.D. in Electronic & Computer Engineering at Technological Insti-
tute of Aeronautics (ITA) (2012) and Postdoctoral at FEI (2013) in
Robotics. Since 2014 is professor at Federal University of ABC in
Center of Engineering, Modeling and Applied Social Sciences area
and coordinator of the Robotic Intelligent System Group. The current
focus of study includes: Transfer Learning, Reinforcement Learning,
Multi-Agents System, Robotics and Autonomous Vehicles.

Ramon Lopez de Mantaras Research Professor of the CSIC and
Director of the Artificial Intelligence Research Institute (IIIA). MSc in
Computer Science from the University of California Berkeley, PhD in
Physics from the University of Toulouse, and PhD in Computer Sci-
ence from the Technical University of Barcelona. Author of nearly 300
papers. Editorial board member of several international journals and
former Associate Editor of the Artificial Intelligence Journal. Recip-
ient, among other awards, of the “City of Barcelona” Research Prize
in 1981, the “2011 American Association of Artificial Intelligence
(AAAI) Robert S. Engelmore Memorial Award”, the “2012 Spanish
National Computer Science Award” from the Spanish Computer Soci-
ety, the Distinguished Service Award of the European Association
of Artificial Intelligence (EurAI) in 2016, and the IJCAI Donald E.
Walker Distinguished Service Award in 2017. President of the Board
of Trustees of IJCAI from 2007 to 2009 and EurAI Fellow. He serves
on a variety of panels and advisory committees for public and private
institutions based in the USA and Europe. Presently working on case-
based reasoning, machine learning, and AI applications to music. For
additional information: http://www.iiia.csic.es/∼mantaras.

https://doi.org/10.1109/TSG.2016.2607801
http://www.iiia.csic.es/~mantaras

	Heuristically Accelerated Reinforcement Learning by Means of Case-Based Reasoning and Transfer Learning
	Abstract
	Introduction
	Background
	Reinforcement Learning
	Case-Based Reasoning

	Related Work
	Transfer Learning Heuristically Accelerated Reinforcement Learning
	Experiments and Results
	Experiment 1: Robot Soccer Using a Team of Small-Scale Robots
	Experiment 2: RoboCup KidSize Humanoid-Robot Stabilisation

	Concluding Remarks
	Acknowledgements
	References


