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Abstract This paper presents four vision-based tracking
system architectures for marine surface objects using a
fixed-wing unmanned aerial vehicle (UAV) with a thermal
camera mounted in a pan/tilt gimbal. The tracking systems
estimate the position and velocity of an object in the North-
East (NE) plane, and differ in how the measurement models
are defined. The first tracking system measures the position
and velocity of the target with georeferencing and optical
flow. The states are estimated in a Kalman filter. A Kalman
filter is also utilized in the second architecture, but only
the georeferenced position is used as a measurement. A
bearing-only measurement model is the basis for the third
tracking system, and because the measurement model is
nonlinear, an extended Kalman filter is used for state esti-
mation. The fourth tracking system extends the bearing-only
tracking system to let navigation uncertainty in the UAV
position affect the target estimates in a Schmidt-Kalman fil-
ter. All tracking architectures are evaluated on data gathered
at a flight experiment near the Azores islands outside of Por-
tugal. The results show that various marine vessels can be
tracked quite accurately.
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1 Introduction

The use of unmanned aerial vehicles is increasing rapidly
and a lot of research is directed toward UAVs. Visual sen-
sors, such as infrared and visual spectrum cameras, are often
a part of UAV operations today, and can be useful for nav-
igation [13, 14, 20, 21, 43], search and rescue applications
[8, 37], sense and avoid technology [42], horizon detection
[9, 19], inspection [36], and obviously also in many other
applications.

An application where UAVs equipped with a visual sen-
sor can be of use is autonomous ship control. Autonomous
ships need to obey the International Regulations for Prevent-
ing Collisions at Sea (COLREGS) [1]. The main challenge
related to COLREGS is collision avoidance. Therefore, a
system for detecting and keeping track of obstacles near the
planned path of the ship is required. On-board sensors such
as a radar, LIDAR and camera can be used to detect objects
in the environment of the ship [11, 22, 39]. However, in
order to have a robust system it might not be sufficient to
only place sensors on-board the ship. Limited range and res-
olution as well as objects floating in the water-line can make
it challenging to detect objects. UAVs can be used to over-
come some of the challenges and make a robust system in
combination with sensors on-board the ship. By monitor-
ing the planned path of the ship with a UAV, objects that
are difficult to find with ship sensors can be located [25].
It is necessary to keep track of the objects for a certain
time period to make decisions that obey COLREGS. This is
where object detection and tracking become important.

Object detection is the process of detecting objects
of importance with respect to some predefined criterion.
Tracking is the task of generating a time-dependent posi-
tion (often also velocity) trajectory for objects detected in
a sequence of images. Object detection and tracking have
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been studied thoroughly and the research on the topics
is mature [41]. However, the focus has traditionally been
directed toward applications where the sensor is at rest or
moving slowly. This is especially the case for segmenta-
tion techniques used to find moving objects. Fixed-wing
UAVs operate at relatively high velocity, which causes the
images captured on-board to be more contaminated by blur
than images captured at rest. Moreover, the scene changes
rapidly, which makes many conventional detection methods
inappropriate for UAVs. Since the UAV may move signifi-
cantly faster than tracked objects, the accuracy of the UAV
navigation system must be carefully considered. Therefore,
suitable tracking systems utilizing images captured from a
fixed-wing UAV operating at high speed is an interesting
research area.

A tracking strategy for vision-based applications on-
board UAVs is described in [33], and a correlation method
for ship detection with a visual sensor mounted in a UAV is
presented in [26]. However, a visual spectrum sensor might
not necessarily be the best option for object detection at sea.
A thermal camera is a more attractive option since the tem-
perature or emissivity difference between the sea surface
and surface objects (such as a marine vessel) is often sig-
nificant. A thermal camera has successfully been utilized to
detect and track objects at sea in [28].

Inspired by the relationship between optical flow and the
velocity of a camera mounted in a fixed-wing UAV [13, 32],
a vision-based tracking system for marine surface objects
utilizing thermal images was presented in [16]. The naviga-
tion states of the UAV were used to acquire the NE positions
of marine surface objects with a georeferencing technique
[29]. Moreover, optical flow was used with the navigation
data to recover the NE velocities of the objects. A Kalman
filter was utilized to track the objects in the NE plane.

A drawback of the strategy in [16] is that the tracking sys-
tem depends on accurate measurements (or estimates) of the
UAV pose without looking into the navigation uncertainty
of the UAV. Thus, the navigation data from the autopi-
lot were assumed to reflect the true states perfectly. This
will obviously affect the performance and robustness of
the tracking system in situations where the navigation data
are unreliable. Another issue is the fact that visual sensors
are bearing-only sensors that cannot measure range. This
originates from the fact that only two coordinates in the
North-East-Down (NED) reference frame can be acquired
with two image coordinates. Therefore, [16] solves this by
making the flat-earth assumption, which theoretically makes it
possible to compute the range as a function of the UAV atti-
tude and altitude. However, the calculated range is fragile
for errors in the navigation states. Moreover, it is a con-
verted measurement approach, which theoretically forces
the covariance of the measurements to go through the same
transformation. A tracking system without the converted

measurement approach is a viable alternative and leads to
the use of a nonlinear tracking filter, such as the extended
Kalman filter (EKF).

The complete solution for handling navigation uncer-
tainty and track objects at the same time is equivalent to
simultaneous localization and mapping (SLAM) with mov-
ing landmarks. Airborne SLAM is discussed in [27] and
bearing-only airborne SLAM is the topic in [7] and [6]. In
the SLAM context, the target position and velocity are used
to correct the navigation states of the UAV. This is useful
if absolute sensors, such as GPS, are unavailable. How-
ever, erroneous data association or landmark motion that
deviates from the motion model (maneuvering targets) can
wrongly adjust the UAV navigation states. This is obviously
not desired in situations where the navigation states are reli-
able. Thus, it can be beneficial to only let the uncertainty
of the UAV pose affect the target and not the other way
around. This mindset leads to the Schmidt-Kalman filter.
Target tracking with a Schmidt-Kalman filter is described in
[35, 38, 40].

1.1 Main Contribution of this Paper

This paper looks into the problem of tracking a single tar-
get at sea in thermal images captured with a fixed-wing
UAV with a pan/tilt gimbal. The tracking system in [16] is
compared with three other alternatives. The first alternative
removes the velocity measurement from the tracking system
in [16] to investigate its usefulness. A bearing-only mea-
surement model is the foundation for the second alternative,
and removes the need to convert the measurement. The third
alternative extends this system to let navigation uncertainty
in the UAV NED positions affect the target estimates in
a Schmidt-Kalman filter. The methods are compared thor-
oughly on data gathered at a flight experiment near the
Azores outside of Portugal.

1.2 Organization of this Paper

The remainder of this paper is divided into six sections.
Section 2 defines the notations for the derivations in the
rest of this paper. Section 3 derives the relationship between
optical flow and the NE velocities of a moving target at
sea and is based on the work in [16]. The tracking systems
are presented in Section 4. Section 5 describes the experi-
ments carried out to gather data. The results are presented
in Section 6, before the paper is concluded in Section 7.

2 Notation and Preliminaries

Vectors and matrices are represented by lowercase and
uppercase bold letters, respectively. X−1 denotes the inverse
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of a matrix and X� the transpose of a matrix or vector.
A vector x = [x1, x2, x3]� is represented in homogeneous
coordinates as x = [x1, x2, x3, 1]�. The operator S(x)
transforms the vector x into the skew-symmetric matrix

S(x) =
⎡
⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦

and 0m×n is a matrix of zeros with dimension m × n.
Several reference frames are considered in this paper, but

the three most important are: the body-fixed frame {B}, the
North-East-Down frame {N} (Earth-fixed, considered iner-
tial) and the camera-fixed frame {C}. The rotation from {N}
to {B} is represented by the matrix Rn

b ∈ SO(3), with
SO(3) representing the Special Orthogonal group. Similar
transformations exist between the other reference frames.

A vector decomposed in {B}, {N} and {C} has super-
script b, n and c, respectively. A point in the environment
decomposed in {N} is tn = [xn, yn, zn]�: note that a point
located at sea level corresponds to zn = 0. The same point
decomposed in {B} is tb = [xb, yb, zb]�.

The Greek letters φ, θ , and ψ represent the roll, pitch,
and yaw angles, respectively, defined according to the zyx

convention for principal rotations [12]. ψgb and θgb are the
gimbal pan and tilt angles, which correspond to a rotation
about the body z- and y-axis, respectively. A 2-dimensional
camera image has coordinates (r, s) in the image plane. The
derivative [ṙ , ṡ]� of the image plane coordinates is called
optical flow. sθ and cθ denote the sine and cosine func-
tions with θ as input. The subscript f is used to indicate that
the corresponding parameter is related to a feature (land-
mark) detected in the image. It should not be mixed with
the letter f , which will be used for the focal length of the
lens.

3 Machine Vision

This section presents the machine vision system neces-
sary for detecting objects at the sea surface and obtaining
measurements that can be used in a tracking system. The
first part focuses on optical flow (OF) and how objects are
detected in the images. The second part explains how the
NED positions of a pixel in the image can be recovered
by georeferencing. The third part derives the relationship
between OF and the NE velocities of detected objects.

3.1 Optical Flow and Object Detection

Optical flow can be defined as a velocity field that trans-
forms one image into the next in a sequence of images

[32] [4]. A single OF vector can be understood as the 2-
dimensional displacement (in the image plane) of a feature
detected in two consecutive images.

SIFT [31] is a method that can be used to calculate OF
by locating scale and rotation invariant features (keypoints)
within an image. In practice, it means that features, which
change in size and/or orientation with respect to the cam-
era (between two images), can be detected in both images.
This is a significant advantage in images captured from a
UAV since the scale and rotation of objects change rapidly
with the attitude and altitude of the UAV. Another advantage
with SIFT (and other point detectors), is the fact that only
the current image is used to find features. Thus, a change
in background, which must be expected to occur in images
captured from a UAV, will not necessarily affect the detec-
tion rate. This is not the case for methods relying on some
sort of background subtraction/modeling.

Each detected feature gets a descriptor, which is a vector
consisting of properties related to the feature. The descrip-
tors are used to find common features in different images
through a FLANN nearest neighbor search [34]. OF vectors
are calculated as the displacement of common features in
two consecutive images.

In this paper, it is assumed that features are only located
on the target, such that the mean position and velocity of
the features are measures of the position and velocity of
the target. This assumption is rarely violated for the images
captured in the experiment because objects at sea usually
have a strong thermal signature. Moreover, since the sea
temperature is constant (homogeneous) it is not likely that
features will appear on the sea surface in thermal images,
unless an object is present. It is also important to emphasize
that the issue is less salient in situations where the number
of features on the target significantly exceeds the number
of features at other locations. Nevertheless, it is obviously
something to be aware of in cases where features are located
at other locations or when multiple targets can be present
in the images. In these situations, it is necessary to com-
bine SIFT with a method that can locate the area of a target
so that only the features of interest are used. A method for
extracting the area of a target is presented in [28] and [17].

3.2 Recovering the NED Positions of a Pixel

This section seeks to explain how it is possible to acquire
NED coordinates of a pixel in the image plane, normally
referred to as georeferencing in the literature. Georeferenc-
ing is described in [3, 18, 44]. The method derived in this
paper will be based on [16, 29] because a similar payload
setup is utilized.

The pinhole camera model [23] relates a point in the
image plane with coordinates decomposed in a camera-fixed
coordinate frame {C}. The relationship between the frames
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Fig. 1 Illustration of the pinhole camera model. The letter p marks
the feature position in NED

is displayed in Fig. 1 and can be described mathematically
as⎡
⎣

r

s

1

⎤
⎦ = f

zc

⎡
⎣

xc

yc

zc

f

⎤
⎦ , zc �= 0 (1)

Eq. 1 describes the connection between the pixel (r, s) and
the camera-fixed coordinates (xc, yc, zc). zc is the distance
between the lens aperture and the plane the captured pixel is
located in (range), and f is the focal length of the lens.

Equation 1 can be expressed in matrix form as

zc

⎡
⎣

r

s

1

⎤
⎦ =

⎡
⎣

f 0 0
0 f 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣

xc

yc

zc

⎤
⎦

︸ ︷︷ ︸
pc

= Apc (2)

where the pixel position (r, s) should be represented in
meters for Eq. 2 to be valid. It is more useful to decompose
pc in {N} since the origin of {C} moves with the UAV. It can
be achieved by utilizing a transformation Gc

n between {C}
and {N} [29]

zc

⎡
⎣

r

s

1

⎤
⎦ = AGc

np
n (3)

where pn is the homogeneous coordinate vector of the pixel
decomposed in {N}. Gc

n is defined as

Gc
n := [

Rc
n −Rc

nr
n
nc

] = [
r1 r2 r3 −Rc

nr
n
nc

]

where Rc
n is the rotation matrix between {C} and {N}, with

column vectors r1, r2 and r3, and rn
nc is the position of the

origin of {C} relative to {N} decomposed in {N}.
The rotation matrix Rc

n can be expressed as

Rc
n = (Rn

bR
b
c)

−1 = (Rn
b(R

c
mR

m
b )−1)−1 (4)

where {m} is referred to as the mounted frame. Rn
b is the

well known rotation matrix between {N} and {B}, defined
according to the zyx convention and specified in terms of
the Euler angles (roll (φ), pitch (θ ), yaw (ψ)) [12]. The rota-
tion between {B} and {m} is given by the gimbal orientation.

{B} is aligned with {m} when the gimbal has zero pan (ψgb)
and tilt (θgb). In the body-fixed frame, the pan and tilt move-
ment correspond to a rotation along the body z- and y-axis,
respectively. Hence, the rotation is defined as

Rm
b = (Rz(ψgb)Ry(θgb))

� = R�
y (θgb)R�

z (ψgb)

=
⎡
⎣

cos ψgb cos θgb sin ψgb cos θgb − sin θgb

− sin ψgb cos ψgb 0
cos ψgb sin θgb sin ψgb sin θgb cos θgb

⎤
⎦ (5)

where Rz(α) and Ry(α) are principle rotations about the z-
and y-axis (by an angle α), respectively [12]. Since the x-
axis of {C} should be aligned with the horizontal direction
in the image plane (r) and not the body x-axis (Fig. 1), the
rotation from {C} to {m} is a rotation of -90 degrees about
the camera z-axis:

Rc
m = Rz(−90o) =

⎡
⎣

0 1 0
−1 0 0
0 0 1

⎤
⎦ (6)

By assuming that the origin of {C} coincides with the ori-
gin of {B}, rn

nc can be simplified as the NED coordinates
of the UAV. In practice, for the experiment described in
Section 5, the origin of {C} is located within centimeters of
the origin of {B}. Therefore, the assumption is reasonable
for a UAV at more than tens of meters altitude.

Only two coordinates of the NED positions can be recov-
ered by the pixel coordinates (r, s). However, since objects
at the sea surface are of interest, the down position of pix-
els in the image is close to zero as long as the origin of
{N} is placed at sea level. Consequently, one can identify
the NE coordinates with the two image coordinates and use
zero as the down position. For this to be valid, it is nec-
essary to assume that all pixels in the image are located at
sea level (unless a digital elevation map is available) and
have a limited height compared to the altitude of the UAV.
This is normally referred to as the flat-earth assumption in
the literature. In practice, an object height of 10 meters did
not degrade the results significantly when the UAV oper-
ated at an altitude of 100 meters, but the accuracy obviously
decreases with the height of the object.

The NE coordinates of the pixel (r, s) are given by Eq. 3
as⎡
⎣

Nobj

Eobj

1

⎤
⎦ = zcG−1

NEA
−1

⎡
⎣

r

s

1

⎤
⎦ (7)

where GNE is defined as

GNE := [
r1 r2 −Rc

nr
n
nc

]

The range zc can be computed with an altitude measure-
ment. When deriving the relationship between OF and
velocity, it will also be necessary to calculate xc and
yc. These coordinates can be expressed as a function of
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the UAV navigation states and gimbal orientation. This is
explained in the Appendix.

The georeferencing algorithm depends on measurements
(or estimates) of the UAV NED positions, the Euler angles
(roll, pitch and yaw), the gimbal orientation (pan and tilt
angles), the focal length of the lens and the pixel position
in the image plane. The accuracy depends on the sensors
used to measure or estimate these parameters. The NED
positions of the UAV can be measured by GPS, but the
down position is not very accurate with single frequency
GPS receivers without differential correction. Therefore, an
altimeter might be useful in low-altitude applications. The
Euler angles can be estimated with an inertial measurement
unit (IMU) and some heading reference. The gimbal orien-
tation cannot necessarily be measured, but a set-point should
be available. The focal length of the lens is given in the
lens specification, but a more accurate estimate of the focal
length is obtained with camera calibration [29]. The pixel
position is known from the feature extraction.

3.3 Transformation Between Optical Flow and Velocity

This section derives the relationship between OF and veloc-
ity. Assume that a feature at pixel position (r, s) is of
interest. Differentiation of the pinhole camera model (1)
yields

[
ṙ

ṡ

]
= 1

zc
f

⎡
⎢⎣

f 0 −f
xc
f

zc
f

0 f −f
yc
f

zc
f

⎤
⎥⎦

⎡
⎢⎣

ẋc
f

ẏc
f

żc
f

⎤
⎥⎦ (8)

where [ṙ , ṡ]� is the OF vector of the feature. The vector
[ẋc

f , ẏc
f , żc

f ]� on the right-hand side is recognized as [32]

ṗc
f =

⎡
⎢⎣

ẋc
f

ẏc
f

żc
f

⎤
⎥⎦ = vc

f/c + ωc
f/c × (pc

f − oc
f ) (9)

where vc
f/c and ωc

f/c are the linear and angular veloci-
ties of the feature with respect to {C} decomposed in {C},
respectively. pc

f = [xc
f , yc

f , zc
f ]� is the position of the fea-

ture decomposed in {C}. oc
f is the feature point of rotation

decomposed in {C}, such that (pc
f − oc

f ) is the arm of rota-
tion. All rotations seen in the image are rotations about the
camera center, hence the rotation point oc

f coincides with
the origin of {C}. Since it is also assumed that the origin of
{C} coincides with {B}, the rotation of features caused by
the UAV motion will be about the camera center. Thus, oc

f is
simply the zero vector.

The assumption of {C} coinciding with {B} has been
tested experimentally. It was not possible to find an increase
in accuracy when the distance between the origins was
accounted for (when the true distance is limited to a few
centimeters). Therefore, since the following derivation is

simplified with the assumption, it is not accounted for in this
paper. In situations where the origin of {C} is far from the
origin of {B} one should be aware of the simplification.

Equation 8 might be rewritten by inserting (9):
[

ṙ

ṡ

]
= 1

zc
f

[
B B

] [
vc
f/c

ωc
f/c × pc

f

]
(10)

B =
⎡
⎢⎣

f 0 −f
xc
f

zc
f

0 f −f
yc
f

zc
f

⎤
⎥⎦

By the properties of the crossproduct [16], and using the
skew-symmetric matrix S (defined in Section 2), it is pos-
sible to rewrite (10) and establish the relationship between
OF and the linear and angular velocities as
[

ṙ

ṡ

]
= 1

zc
f

[
B −B · S(pc

f )
]

︸ ︷︷ ︸
M(f,pc

f )

[
vc
f/c

ωc
f/c

]
(11)

where

M(f, pc
f ) = 1

zc
f

·
⎡
⎢⎣

f, 0, −f
xc
f

zc
f
, −f

xc
f

zc
f
yc
f , f zc

f + f
xc
f

zc
f
xc
f , −f yc

f

0, f, −f
yc
f

zc
f
, −f zc

f − f
yc
f

zc
f
yc
f , f

yc
f

zc
f
xc
f , f xc

f

⎤
⎥⎦

If the velocities of the UAV decomposed in {B} are known,
it is possible to find the OF caused by the camera (UAV)
motion. It will from now on be referred to as the theoretical
flow [ṙt , ṡt ]�, which is defined as
[

ṙt
ṡt

]
:= M(f,pc

f )

[
vc
n/c

ωc
n/c

]
(12)

where vc
n/c and ωc

n/c are the linear and angular velocities of
the sea surface (NED) with respect to {C} decomposed in
{C}. Waves are not considered as a part of the velocity and
act like a disturbance to the system. Since the origin of {C}
coincides with {B}, both {B} and {C} have the same linear
velocity with respect to {N}. Therefore, it can be rewritten
as

vc
n/c = Rc

bv
b
n/c = Rc

bv
b
n/b = −Rc

bv
b
b/n

where vb
b/n is the body-fixed linear velocity of the UAV with

respect to {N} decomposed in {B}.
The angular velocity can be rewritten as

ωc
n/c = ωc

n/b + ωc
b/c

= Rc
b(ω

b
n/b + ωb

b/c)

= −Rc
b(ω

b
b/n + ωb

c/b)



780 J Intell Robot Syst (2018) 91:775–793

where ωb
b/n is the angular velocity of {B} with respect to {N}

decomposed in {B}. ωb
c/b is the angular velocity of {C} with

respect to {B} decomposed in {B}. It is given by the gimbal
motion and should be accounted for. A pan/tilt gimbal can
only rotate about the body z- and y-axis. Thus, ωb

c/b can be
approximated as [10]

ωb
c/b = ωz(ψ̇gb) + Rz(ψgb)ωy(θ̇gb)

=
⎡
⎣

0
0
ψ̇gb

⎤
⎦ + Rz(ψgb)

⎡
⎣

0
θ̇gb

0

⎤
⎦

where ψ̇gb and θ̇gb are the derivatives of the pan and tilt
angles, respectively. They need to be measured or approx-
imated by e.g. a Taylor-series approximation. A first-order
Taylor-series approximation is utilized in this paper.

The theoretical flow can now be calculated with Eq. 12.
It is still, however, some work needed before the velocity of
the feature itself is identified. The OF is a sum of the camera
and feature motion with respect to {N}:
[
vc
f/c

ωc
f/c

]
=

[
vc
f/n + vc

n/c

ωc
f/n + ωc

n/c

]
(13)

Eq. 13 can be inserted into Eq. 11 where ṙm and ṡm now
are defined as the measured OF, obtained with e.g. SIFT.
Consequently,

[
ṙm
ṡm

]
= M(f,pc

f )

[
vc
f/n

ωc
f/n

]
+ M(f,pc

f )

[
vc
n/c

ωc
n/c

]
(14)

where the second term is recognized as the theoretical flow.
Thus, it is possible to rewrite (14) as

[
ṙm − ṙt
ṡm − ṡt

]
= M(f,pc

f )

[
Rc

nv
n
f/n

Rc
nω

n
f/n

]
(15)

Eq. 15 only has two terms on the left side and six
unknown velocity parameters on the right side. However,
since the main motivation is to locate surface objects at sea,
the angular velocity of the features located on the objects
is assumed to be zero (constant object heading between
successive images). Therefore, the final three columns of
M(f,pc

f ) disappears and Eq. 15 can be further simplified.
Consequently,

[
ṙm − ṙt
ṡm − ṡt

]
= 1

zc
f

⎡
⎢⎣

f 0 −f
xc
f

zc
f

0 f −f
yc
f

zc
f

⎤
⎥⎦Rc

nv
n
f/n (16)

In addition, since the down velocity is expected to be zero,
the third column of Rc

n can be discarded in Eq. 16 and

the NE velocities (vN
f/n and vE

f/n) of the feature can be
calculated as

[
vN
f/n

vE
f/n

]
=

⎛
⎜⎝ 1

zc
f

⎡
⎢⎣

f 0 −f
xc
f

zc
f

0 f −f
yc
f

zc
f

⎤
⎥⎦[

r1 r2
]
⎞
⎟⎠

−1 [
ṙm − ṙt
ṡm − ṡt

]

(17)

The NE velocities of the feature are now identified.
The velocity calculation depends on measurements of the
parameters described at the end of Section 3.2 (for georef-
erencing). Additionally, the body-fixed linear and angular
velocities of the UAV and an approximation of the pan and
tilt angle derivatives need to be obtained. The linear velocity
can be measured by GPS (when the attitude is known) and
the angular velocity can be measured by gyros. The pan and
tilt angles are approximated with a first-order Taylor-series
approximation.

4 Target Tracking

This section presents four different architectures for track-
ing of marine surface objects. A single target is of interest
and problems related to multiple target tracking, such as
data association, are not within the scope of this paper. Mea-
surements of the object position in the image plane and OF
vectors are assumed available, and this section looks into
how these measurements can be utilized in a tracking sys-
tem. The first part presents the motion model. The rest of
this section describes the tracking architectures.

4.1 Target Motion Model

The goal in target tracking is to estimate the position and
velocity of an object of interest. A motion model for the tar-
get is required in order to use e.g. a Kalman filter for state
estimation. How to choose a motion model is described in
[30]. In this paper, a constant velocity model (white noise
acceleration) is chosen. This is because the dynamics of typ-
ical surface objects are assumed to be slow. The position and
velocity in the NE plane are of interest. The discrete time
constant velocity motion model at time step [k] is defined as

xt [k + 1] = Ftxt [k] + Etvt [k] (18)

where xt = [pN
t , pE

t , vN
t , vE

t ]� is the state vector consist-
ing of the target position and velocity, and vt = [vN

v , vE
v ]�

is assumed to be zero-mean Gaussian white noise with
covariance Q. Ft and Et are the system matrices defined as

Ft =

⎡
⎢⎢⎣

1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Et =

⎡
⎢⎢⎣

1
2T 2 0
0 1

2T 2

T 0
0 T

⎤
⎥⎥⎦
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where T is the sampling period of the camera. The down
position is zero for surface objects at sea (given that the ori-
gin of NED is placed at sea level) and not a part of the state
vector. Note that the motion model is linear.

4.2 Tracking System based on Georeferencing
and Optical Flow

The first tracking architecture is based on the work con-
ducted in Section 3 and [16]. Georeferencing is used
to obtain measurements of the NE positions for features
detected on the object. Moreover, OF is used to obtain mea-
surements of the NE velocities for the features. The mean
position and velocity of every feature on the target are used
as measurements in the tracking system. A Kalman filter
can be used since the measurements are equal to the states.
The measurement model is

zt [k] = xt [k] + wt [k] (19)

where wt is zero-mean Gaussian white noise with covari-
ance R.

The main advantage with this architecture is that lin-
earization is avoided and that velocity information can be
acquired directly. This is usually not the case for tracking
systems with a single camera. Furthermore, the approach
leads to a completely observable system.

The main drawback is that this is a converted measure-
ment approach with a complex relationship between the real
measurements (pixel position and OF) and the converted
measurements (NE positions and velocities). Additionally,
the NED positions and the attitude of the UAV and gim-
bal orientation have to be accurately known in order for this
transformation to be trustworthy. An error of just a couple
of degrees in roll or pitch will increase the error in posi-
tion and velocity significantly, especially at larger altitudes.
This is because the calculated position strongly depend on
the attitude. Moreover, it is not straightforward to describe
the noise related to the converted measurements since the
real measurements are used in a nonlinear transformation to
obtain NE positions and velocities. The nonlinear transfor-
mation depends on states that are assumed perfectly known,
but in practice all of these quantities will be somewhat
uncertain. Thus, it is necessary to make a qualified guess
for the uncertainty of the measurements since little is known
about the real uncertainty of the parameters in the nonlin-
ear transformation. In other words, this approach sacrifices
some robustness in order to make the system linear.

No correlation between the target estimates and the nav-
igation states of the UAV is maintained. In practice, this
means that the tracking system works as a standalone sys-
tem and trusts that the UAV pose is known accurately at all
times. This is a major difference compared to the SLAM
approach. A sketch of the system is displayed in Fig. 2.

Fig. 2 A sketch of the tracking architecture based on georeferencing
and optical flow

4.3 Tracking System based on Georeferencing

The second tracking system is almost equal to the track-
ing system based on georeferencing and OF. However, the
velocity measurement is removed and only the position
of the target is used in the Kalman filter. Therefore, the
measurement model can be written as

zt [k] =
[

1 0 0 0
0 1 0 0

]

︸ ︷︷ ︸
H

xt [k] + wt [k] (20)

where wt is zero-mean Gaussian white noise with covari-
ance R. The main motivation behind this architecture is to
evaluate the usefulness of the velocity measurement. This
architecture shares the strengths and weaknesses with the
tracking system in Section 4.2.

4.4 Tracking System based on Bearing-only
Measurements

A camera makes relative bearing observations to the object
in the image [7]. Therefore, it is possible to use the pixel
location in the image directly instead of converting the pixel
coordinates to NED. Remember that the pinhole camera
model (1) relates pixel coordinates to coordinates in {C}.
The position of the object decomposed in {C} (pc

f/c) is
related to the UAV position (pn

uav) and object position (pn
f )

decomposed in {N}, and the attitude of the UAV through the
following model:

pc
f/c =

⎡
⎢⎣

xc
f

yc
f

zc
f

⎤
⎥⎦ = Rc

n(p
n
f − pn

uav) (21)
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Since the pixel coordinates of a feature can be measured by
the object detection algorithm, the measurement model can
be defined as

zt [k] =
[

z1

z2

]
=

[
r

s

]

= f

zc
f

[
xc
f

yc
f

]

︸ ︷︷ ︸
Insert (21)

≡ ht (pn
uav[k],Rc

n[k],pn
f [k], k) + w[k]

(22)

where w is zero-mean Gaussian white noise with covariance
R. Equation 21 is inserted to get a model depending on the
UAV attitude, gimbal orientation, UAV NED positions, and
the NED positions of the target. This is beneficial because
the measurement model now directly depends on the states,
and not the camera-fixed coordinates of the target.

The measurement model is nonlinear and the most com-
mon solution then is to use an Extended Kalman filter
(EKF). In this tracking architecture, as for the tracking
systems in Sections 4.2 and 4.3, the UAV NED posi-
tions, attitude and gimbal orientation are assumed perfectly
known. However, the need to calculate the range explicitly
is removed and, thus, a weakness for the tracking system in
Sections 4.2 and 4.3 is eliminated. In order to use the EKF,
it is necessary to find the Jacobian of zt with respect to the
states. The equations for the Jacobian gets the form

∂ht

∂xt
=

⎡
⎣

∂z1
∂xn

f
|x̂t

k|k−1

∂z1
∂yn

f
|x̂t

k|k−1
0 0

∂z2
∂xn

f
|x̂t

k|k−1

∂z2
∂yn

f
|x̂t

k|k−1
0 0

⎤
⎦ (23)

where x̂t
k|k−1 is the predicted state x at the current time step.

The last two columns of the Jacobian are zero because the
measurement model not depends on the target velocities.
Note that the motion model for the target is still linear.

The tracking system based on bearing-only measure-
ments is somewhat less intuitive than the tracking system
based on georeferencing since it is nonlinear. The problems
with linearization and initialization follow with the EKF and
the measurements (pixel coordinates) might in many cases
be less informative than the NE positions (for humans).
However, [24] demonstrates a way to handle the lack of
global stability for the EKF with a Double Kalman filter.
This solution is especially interesting in applications where
initialization and the stability of the EKF are troublesome.

An advantage with this tracking system is that this is not
a converted measurement approach. Therefore, the covari-
ance of the measurement noise is much easier represented.
It can be directly related to the accuracy of the camera sen-
sor and designed as a diagonal matrix with a chosen pixel
uncertainty related to each measurement.

The velocity of the object is not measured in this tracking
system because it is impossible to calculate the NE veloci-
ties of the object without computing the range. Avoiding the
range calculation is one motivation behind this tracking sys-
tem, and, therefore, it is not an option to calculate the range
in order to find the object velocity. Moreover, the velocity
measurement is a differentiation of the georeferenced posi-
tion measurement, which means that you in practice do not
provide the tracking filter with more information. Thus, one
could argue that the velocity calculation is more interesting
as a measure of the velocity at one time instant and not that
useful for estimation.

This architecture may be less computationally compli-
cated since the georeferencing operation is not conducted,
especially if the Jacobian is evaluated numerically. Corre-
lation between the navigation system of the UAV and the
tracking system is not maintained in this architecture either.
The tracking system is displayed in Fig. 3.

4.5 Tracking System based on a Schmidt-Kalman Filter

The final target tracking architecture studied in this paper is
based on a Schmidt-Kalman filter. A Schmidt-Kalman filter
is used to maintain correlations between the uncertainty of
the target estimates and the uncertainty related to the navi-
gation states of the UAV (without letting the target influence
the UAV navigation system). In the SLAM framework, the
target could influence the UAV pose, but this is not desired
in situations where the UAV pose can be estimated relatively
accurately by itself. Therefore, the goal with this tracking
filter is to let the uncertainty in the UAV navigation system
affect the tracking system and not the other way around.

In this paper, a simplified version of the Schmidt-Kalman
filter will be investigated. The bearing-only measurement
model depends on the UAV attitude and NED positions, and
the gimbal orientation. The attitude and the gimbal orientation

Fig. 3 A sketch of the tracking architecture based on bearing-only
measurements
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will still be assumed perfectly known, but the error in the
UAV position will be a part of the state-vector. The true
NED positions xo of the UAV can be written as

xo = x̂o + δxo (24)

where x̂o is the nominal state (given by the estimate from the
navigation system) and δxo is the error between the nomi-
nal state and the true state. In situations where the nominal
state is unbiased, δx will be a zero-mean random variable
with uncertainty equal to the uncertainty of the estimate x̂o.
x̂o is not considered as a random variable, but rather a true
measure of the state xo. Correlation between the target and
the UAV is achieved by augmenting the system (18) with
the error state of the UAV NED positions:
[
xt [k + 1]
δxo[k + 1]

]
=

[
Ft 0
0 I3×3

] [
xt [k]
δxo[k]

]
+

[
Etvt [k]
vo[k]

]
(25)

where I3×3 is the identity matrix of dimension 3×3 and vo is
white noise affecting the error state with known covariance.
Ideally, one should estimate the error-state in an error-state
Kalman filter as in [38] and use the corresponding state
space model and estimated covariance in Eq. 25. However,
since inertial sensor data (IMU) are unavailable, the error-
state are in this case considered to be constant with a time-
invariant known covariance. Therefore, vo[k] is assumed to
be zero. This is in correspondence with the case described
in [35]. The main difference between the structure in this
case and [38] is the fact that the covariance increases at each
time update until a correction is available in [38]. This is
more in line with navigation systems because the covari-
ance of the position estimates is time-variant, and increases
when the states are predicted with inertial sensors until the
estimates are corrected by e.g. GPS measurements. Never-
theless, a constant covariance is also assessed to accentuate
the advantage with the Schmidt-Kalman architecture.

The measurement model is still given by Eq. 22, but it
is now necessary to evaluate the Jacobian with respect to
the UAV NED positions in addition. The new measurement
Jacobian gets the form

∂ht

∂x
=

⎡
⎣

∂z1
∂xn

f

∂z1
∂yn

f
0 0 ∂z1

∂xn
uav

∂z1
∂yn

uav

∂z1
∂zn

uav

∂z2
∂xn

f

∂z2
∂yn

f
0 0 ∂z2

∂yn
uav

∂z2
∂yn

uav

∂z2
∂zn

uav

⎤
⎦ (26)

where the partial derivatives are evaluated at the current
best estimate for xt and x̂o. The covariance matrix for the
augmented system gets the form

P =
[
Pt Pto

(Pto)� Po

]
(27)

where Pto is the cross-covariance between the target and
UAV NED positions, and Po is the covariance for the UAV
NED positions. The equations for the Schmidt-Kalman filter

are described thoroughly in [35] and will not be explained
further here. It is important, however, to point out that you
don’t want to estimate or predict the state δxo, but rather
account for the uncertainty. Therefore, the Schmidt-Kalman
filter forces the corresponding elements in the Kalman gain
to zero. Both the Kalman gain and covariance for the target
are influenced by Pto and Po. The tracking architecture is
displayed in Fig. 4.

This architecture shares the strengths and weaknesses
with the tracking system based on bearing-only measure-
ments. However, the main advantage with this architecture
is that the estimated covariance for the target states accounts
for uncertainty in the UAV NED positions. Hence, the esti-
mated covariance is expected to reflect the true uncertainty
more accurately so that the estimates are more consis-
tent. That can for example be crucial for data association
purposes in multiple target tracking.

This approach is obviously not useful in situations where
the sensor position and orientation are known perfectly.
Moreover, it complicates the system slightly since a direct
link between the target tracking system and the UAV navi-
gation system is created. The Schmidt-Kalman filter is also
a suboptimal approach since information only are allowed to
flow from the UAV navigation system to the tracking system,
and not the other way around (as in the SLAM approach).

5 Experimental Setup

A flight experiment consisting of several flights has been
conducted near the Azores outside of Portugal. The X8 Sky-
walker fixed-wing UAV interfaced with a retractable pan/tilt
gimbal was used to gather data. A light-weight payload [29],
with a FLIR Tau2 640 thermal camera with a focal length
of 19mm and resolution of 640 × 480 pixels, was used to
capture images from the flights. The thermal camera has a
frame rate of 7.5 frames per second, and has been calibrated

Fig. 4 A sketch of the tracking architecture based on a Schmidt-
Kalman filter
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Fig. 5 A thermal image captured at the flight experiment. A small
boat is present in the image

with the method proposed in [29] to increase the accuracy of
the camera intrinsic matrix. The experiment was conducted
at sea with marine vessels operating in the area. An image
captured at the experiment is displayed in Fig. 5.

The images and the navigation data gathered at the
experiment have been processed off-line. The Open Source
Computer Vision Library (OpenCV) [5] has been used
to implement SIFT, which is used for feature extraction
and OF calculation. Matched features between successive
images are assigned a value indicating the uncertainty of the
match. Matches with more than twice the uncertainty of the
best match have been removed to increase the reliability of
the OF vectors. Figure 6 displays a single image captured in
the experiment with OF vectors acquired by SIFT.

The data used to evaluate the tracking systems consist
of thermal images with the target (the vessels displayed in
Figs. 5 and 6), GPS measured position and speed for the ves-
sels (used as a reference for validation) and navigation data
for the UAV (estimated by the autopilot). The navigation
data are stored with a frequency of 10Hz. The GPS mea-
surements for position and speed of the vessels (target) are
stored with a frequency of 2Hz. The mean pixel position for
the features is used as a measurement of the target position
in the image plane for the tracking systems in Sections 4.4

Fig. 6 Optical flow vectors acquired by SIFT on an image captured at
the flight experiment

and 4.5. The mean pixel position for all features is used for
georeferencing in the tracking system in Section 4.3. Each
feature on the target is treated independently for the track-
ing system in Section 4.2 because the magnitude of optical
and theoretical flow varies with the pixel position. The NE
positions and velocities of each feature are calculated, and
the mean position and velocity for all features are used as
measurements in the tracking system.

The gimbal was controlled with a simple controller that
tried to point the camera toward the center of a loiter motion.
It was assumed that the UAV would follow a circular path.
Therefore, the gimbal compensated for changes in roll along
the circular path. It was not connected to the target track-
ing system so the gimbal was not able to follow the target
directly, but the target was known to be inside the circle. An
issue with the gimbal is that the pan and tilt angles cannot
be measured directly and only the commanded set-point is
available. Therefore, a possible source of uncertainty in the
results is the accuracy of the pan and tilt angles. How this is
handled in practice is described more carefully in [16].

The measurement models require time-synchronized
data. The images, navigation data and gimbal orientation are
stored by the on-board computer. The data are not synchro-
nized in hardware, and thus the time stamp is given by the
on-board computer software. Hence, the time stamps can be
somewhat uncertain when the on-board computer has a lot
of tasks. This is because a delay will be added to when a sen-
sor actually obtained the measurement. Moreover, the GPS
receiver and serial communication have a typical delay of
100-200 ms [15]. To reduce the impact of uncertainty in the
time stamps, the images have been synchronized off-line by
adjusting the time stamp for images where the time between
subsequent images differs substantially from the frame rate.
Furthermore, the mean time between consecutive images
(without any adjustment) was in accordance with the frame
rate of the camera. This was also the case for the navigation
and gimbal data. Moreover, since it is less time consuming
to store navigation data (compared to an image), the time
stamps for the navigation and gimbal data were accepted
without adjustment between samples.

The tracking systems are implemented in Matlab. Predic-
tion is performed for every received image. Measurements
are used to correct the prediction whenever the target is
detected in the images. One of the main challenges in target
tracking is to be able to predict the trajectory of the target
when measurements are unavailable. Therefore, the experi-
ment contains longer periods where the target is outside of
the field of view of the camera. The tracking systems are
able to run in real-time on a MacBook Pro (2015 version)
with an Intel dual core i7 processor when images arrive at
a frequency of 7.5 Hz. A non-optimized implementation of
SIFT in OpenCV is used, and it can process more than 13
images each second.
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6 Results

This section presents the results obtained by (post) process-
ing the data gathered at the flight experiment. The results
are divided into seven parts. The first part seeks to verify
the relationship between OF and velocity. The second part
describes the flight used to evaluate the different tracking
system architectures. The latter parts of this section present
the results for the tracking systems and an evaluation of the
consistency of the estimates.

6.1 Flight 1 - Finding the Position and Velocity
of a Marine Vessel at Rest

The first test is based on images with the large marine vessel
displayed in Fig. 6, which is located in the camera field of
view for a short period on two separate occasions. The main
motivation behind this test is to extract measurements for
the position and velocity of the vessel, as described more
closely in Section 3. The vessel is approximately 70 meters
long and has a width of 13 meters. Figure 7 shows the UAV
path (estimated by the navigation system) and the path of
the vessel (measured by GPS) for a period of 80 seconds.
Figure 8 shows the gimbal orientation in the same time span.
The vessel has almost zero speed, but the system has no
knowledge about the motion of the vessel.

The vessel is not in the camera field of view in the the
time intervals [20, 50] and [72, 80]. Furthermore, SIFT is
not able to find features on the ship in some images. 600
images were captured in the time period and features were
detected on the vessel in 250 images. A part of the vessel
is visible in approximately 400 images. However, 100 of
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Fig. 7 Position in the NE plane for the UAV and the ship in the first
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Fig. 8 Gimbal orientation in the first test

these images only contain a very small part of the vessel.
The whole vessel is visible in 200 images.

Figures 9 and 10 show the theoretical flow and OF mea-
sured by SIFT in horizontal (r) and vertical (s) direction
in the image plane. Since the vessel is at rest, the theoret-
ical flow is expected to be equal to the measured OF. The
noise level is fairly large in s and the accuracy is better in r ,
but you can clearly see that the theoretical flow and OF are
correlated. Considering the uncertainty related to synchro-
nization of data and taking the accuracy of the sensors [29]
into account, the results look reasonable.
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rest
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Fig. 10 Comparison of theoretical and measured optical flow in vertical
direction (s). They should, in theory, be equal for objects at rest

Figure 11 shows the georeferenced position of the vessel
together with the position measured by GPS and the posi-
tion of the UAV. The georeferenced position does not vary
significantly, which is the expected behavior for a target
at rest. However, the georeferenced position of the vessel
seems to be correlated with the navigation states of the UAV
since it varies with where the UAV is located on the path in
Fig. 7. This is e.g. visible in the beginning and at 55 sec-
onds since the georeferenced position is correlated at these
time instants, and the UAV is located at approximately the
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Fig. 11 Measured position of ship obtained with georeferencing
together with UAV position and the ship position measured by GPS.
The ship was not in the field of view of the camera in the time interval
[20, 50] and [72, 80]

same place on both occasions. Moreover, the georeferenced
North and East positions decrease as the UAV moves on
the trajectory in Fig. 7. Ideally, the georeferenced position
should be constant with small oscillations (because of mea-
surement noise) about this value. Nevertheless, considering
the issue with synchronization, the accuracy of the georef-
erenced position is not too troublesome. It should also be
emphasized that, as shown in Fig. 6, features are not neces-
sarily uniformly distributed on the target. Hence, the mean
position of features can be quite far from the center of the
vessel, which is were the GPS was located. This will obvi-
ously also affect the accuracy, especially with length of the
vessel in mind.

Figure 12 shows the velocity of the ship obtained by
OF. The noise level is quite large, but the mean error is
within 1m/s in both the North and East velocities. The cal-
culated velocity is particularly vulnerable for the issues with
synchronization of data since it is important to know the
exact attitude, velocity and position of the UAV when two
consecutive images are captured. This is somewhat prob-
lematic since the sampling rate of the UAV navigation states
just slightly exceeds the frame rate of the camera. Thus,
it would be more beneficial to estimate the states of the
UAV at a much higher frequency to minimize the impact of
synchronization.

6.2 Flight 2 - Description

This section describes the flight data used to evaluate the
tracking architectures in Section 4. The results are based
on images with the small marine vessel displayed in Fig. 5.
Figure 13 shows the UAV path estimated by the navigation
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Fig. 13 Position in the NE plane for the UAV and the vessel in the
second flight

system together with the path of the vessel (measured by
GPS) for approximately 55 seconds, which is the track-
ing period. Figure 14 shows the gimbal orientation in the
tracking period.

The vessel is only in the field of view of the camera in
the time intervals [0, 5] and [37, 48]. Thus, the estimates are
in a very large part of the tracking period solely based on
prediction. 420 images were captured in the tracking period
and features were detected on the vessel in 97 images. The
initial covariance for the target states was chosen to be a
diagonal matrix with a variance of 36m2 for the NE posi-
tions and 10(m/s)2 for the NE velocities. The process noise
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Fig. 14 Gimbal orientation during the tracking period in the second flight

covariance (in continuous time) Q was designed as a diag-
onal matrix with a variance of (3m/s)2, although smaller
accelerations are expected in practice. The estimated posi-
tion and velocity are initialized with the position obtained
by georeferencing in the first image and zero, respectively.
Details related to each tracking system are described more
closely in the relevant section.

6.3 Flight 2 - Tracking System based on Georeferencing
and Optical Flow

The tracking system based on georeferencing and OF
(referred to as the first tracking system) uses measurements
of both position and velocity. The covariance of the mea-
surement noise was designed as a diagonal matrix with a
variance (in continuous time) of (12m)2 for the position
measurements and (6m/s)2 for the velocity measurements.

Figures 15 and 16 display the estimated position and
speed. The estimated position is quite close to the refer-
ence. Obviously, the estimates are slightly more accurate in
the time intervals when measurements are available. Nev-
ertheless, the predicted position is quite reasonable in both
North and East when measurements are unavailable, espe-
cially since the target operates outside the field of view of
the camera for 30 seconds and the vessel is maneuvering
in that period. The estimated speed is also quite accurate.
It is slightly above the GPS measured speed in the first
part of the tracking period. This is most likely because the
set of measurements are so limited in the beginning, and
thus it is challenging for the estimates to converge before
measurements are unavailable.

It is important to point out that the whiteness of the mea-
surement noise is somewhat questionable. This is because

0 10 20 30 40 50 60
time [s]

-100

-50

0

50

100

150

200

250

po
si

tio
n 

[m
]

Estimated Ship Position

Estimate N
GPS N
Estimate E
GPS E

Fig. 15 Estimated position compared with the GPS measured position
for the tracking system based on georeferencing and optical flow
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Fig. 16 Estimated speed compared with the GPS measured speed for
the tracking system based on georeferencing and optical flow

the measurements strongly depend on the UAV naviga-
tion data, and thus, it is likely that subsequent measure-
ments are correlated. If this is the case, it is also a vio-
lation of the conditions related to the optimality of the
Kalman filter, which explains why the estimates are some-
what inaccurate at times. This is discussed more closely in
Section 6.7.

6.4 Flight 2 - Tracking System based on Georeferencing

The tracking system based on georeferencing (second track-
ing system) uses measurements of position. The covariance
of the measurement noise was designed as a diagonal matrix
with a variance (in continuous time) of (12m)2. This is in
line with the chosen covariance for the measurement noise
in the first tracking system.

Figures 17 and 18 display the estimated position and
speed. The estimated position is more accurate than for
the tracking system based on georeferencing and OF. An
increase in accuracy is especially visible in the time period
where only prediction is used (measurements not available).
This is mainly because the estimated speed is more accu-
rate when the target moves outside the field of view of the
camera (at approximately 5 seconds).

These results indicate that the velocity measurement
degrades the accuracy in the beginning of the tracking
period. However, it is important to emphasize that the accu-
racy of the first tracking system is comparable to the second
system near the end of the tracking period. Therefore,
one cannot claim that the velocity measurement is useless.
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Fig. 17 Estimated position compared with the GPS measured position
for the tracking system based on georeferencing

Moreover, the comparable accuracy in the end may indicate
that the last couple of velocity measurements (before the
target leaves the field of view in the beginning) are inaccu-
rate, and perhaps the main reason for the error in estimated
speed. Nevertheless, the results indicate that the reward for
using the velocity measurements not compensates for the
growth in complexity in this case. One cannot rule out that
it would be different in other scenarios, for example if the
synchronization of data had been better.
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Fig. 18 Estimated speed compared with the GPS measured speed for
the tracking system based on georeferencing
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6.5 Flight 2 - Tracking System based on Bearing-only
Measurements

The tracking system based on bearing-only measurements
(third tracking system) uses measurements of the tar-
get position in the image plane. The measurement noise
was designed as a diagonal matrix with a variance of
(75 pixels)2 and (60 pixels)2 for the horizontal and vertical
dimension, respectively (converted to meters). Figures 19
and 20 display the estimated position and speed. The esti-
mated position is quite accurate. Moreover, it has slightly
less drift than the tracking systems in Sections 6.3 and 6.4
in the period without measurements. The estimated speed
is also more accurate than for the tracking system based
on georeferencing and OF. The increased accuracy is most
likely because the system is less affected by uncertainties
in synchronization of data than the system in Section 6.3.
Additionally, it is not necessary to calculate the range explicitly.

The estimates from this tracking system are quite trust-
worthy, but it is very challenging to increase the accuracy
when the set of available measurements are so limited.
This is because measurements that are received just before
the target disappears from the field of view, get a large
influence on how the states are predicted when measure-
ments are unavailable. This problem is enhanced when you
have a small set of measurements because the tracking
filter not necessarily converges with a small set of consecu-
tive measurements. It is also worth noticing that the vessel
is maneuvering (see Fig. 13), and not behaves in accor-
dance with the constant-velocity motion model. Therefore,
increased accuracy would have been expected if the set of
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Fig. 19 Estimated position compared with the GPS measured position
for the tracking system based on bearing-only measurements
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Fig. 20 Estimated speed compared with the GPS measured speed for
the tracking system based on bearing-only measurements

measurements had been larger. This is obviously something
that are relevant for the other tracking architectures as well.

6.6 Flight 2 - Tracking System based
on a Schmidt-Kalman Filter

The tracking system based on a Schmidt-Kalman filter
(fourth tracking system) has the same measurements and
measurement noise covariance as the bearing-only track-
ing system (Section 6.5). Because measurements of spe-
cific force were unavailable, the UAV NED positions were
extracted from the autopilot and not estimated in an error-
state Kalman filter. In order to use a Schmidt-Kalman filter,
a constant covariance was designed to represent the effect
of uncertainty in the UAV NED positions. The variance was
chosen to be 10m2 for the North and East positions and
50m2 for the down position. Figures 21 and 22 display the
estimated position and speed, which are comparable to the
results in Section 6.5. There is no obvious increase in accu-
racy for the estimates when accounting for uncertainty in the
UAV NED positions. The factors discussed in Section 6.5
are also highly relevant for this tracking architecture. The
benefit of using the Schmidt-Kalman filter is highlighted in
the next section.

6.7 Flight 2 - Consistency Analysis

This section discusses the consistency [2] of the estimates
from the different tracking systems. The normalized inno-
vation squared (NIS) for the tracking systems is displayed
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Fig. 21 Estimated position compared with the GPS measured position
for the tracking system with a Schmidt-Kalman filter

in Fig. 23. The NIS is almost equal for the third and fourth
tracking system, and thus only visible as one curve. All
tracking systems have innovations within the 95 % confi-
dence interval. The second, third and fourth tracking system
have two measurements and, therefore, two degrees of
freedom (DOF). The first tracking system has four measure-
ments and 4 DOF. Figure 23 clearly shows that the velocity
measurement from OF increases the NIS significantly (com-
pare the NIS for the first and second tracking system).
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Fig. 22 Estimated speed compared with the GPS measured speed for
the tracking system with a Schmidt-Kalman filter
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Fig. 23 Normalized innovation squared for all tracking systems. The
black lines indicates the 95% confidence intervals with 2 and 4 degrees
of freedom

This indicates that the velocity measurements are far away
from the predicted measurements at several samples. Com-
parable NIS is achieved for the other tracking systems.
Nevertheless, all tracking systems have NIS within the con-
fidence bounds, and therefore, the first part of consistency
is fulfilled.

The second part of the consistency analysis is the white-
ness test for the innovations [2]. The autocorrelation of
the innovations shows that the innovations in velocity can
be considered white (95% confidence interval) for the first
tracking system. The innovations for the rest of the mea-
surements are on the other hand not white for any tracking
system. Hence, the measurement noise is correlated for con-
secutive time-steps and this violates the assumptions of the
Kalman filter. Thus, one cannot conclude that either of the
tracking systems are consistent, solely based on the defi-
nition of consistency [2]. This is most likely because the
attitude of the UAV seems to influence the measurement
noises more than the pixel and UAV position. Nevertheless,
in a scenario where one only wants to track a single target,
it is reasonable to claim that consistency is less important
than the accuracy of the estimates.

In order to clarify the effect of the uncertainty in the UAV
NED positions, the norm of the covariance matrix is investi-
gated. Figure 24 shows the norm of the covariance matrices
in the time interval [38,52] for all tracking systems. The
estimates in the Schmidt-Kalman filter have a more rapid
increase in covariance when measurements are unavailable.
This is in compliance with the expected behavior because
the uncertainty of the UAV NED positions is accounted for.
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Fig. 24 Norm of covariance matrix for all tracking systems

Moreover, since the measurements are affected by the UAV
position, the norm of the covariance in the Schmidt-Kalman
filter decreases slower than for the other architectures when
measurements are available. Notice that the covariance of
the linear architectures have a slightly slower increase in
covariance when measurements are unavailable (after 48
seconds).

7 Conclusions

This paper presented four vision-based tracking systems for
marine surface objects utilizing thermal images captured
in a fixed-wing unmanned aerial vehicle with a retractable
pan/tilt gimbal and a thermal camera. Experimental results
show that it is possible to estimate the position and velocity
of a vessel with thermal images captured from a fixed-wing
UAV operating at high speed. More importantly, the sys-
tems are able to predict the position of the vessel quite well
when it operates outside the field of view of the camera. The
results indicate that measurement errors in the UAV NED
positions do not influence the performance significantly,
and it is suspected that measurement errors in attitude have
a much larger influence.
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Appendix: A Calculating Camera-fixed
Coordinates in terms of the UAV Navigation States

This appendix seeks to explain how the camera-fixed coor-
dinates of a feature at pixel (r, s) can be computed as a
function of UAV navigation states and gimbal orientation.
Let the homogeneous coordinates of the feature be written
as tn = [xn

f , yn
f , zn

f , 1]� and tc = [xc
f , yc

f , zc
f , 1]� decom-

posed in {N} and {C}, respectively. The relationship between
the coordinates is

tc = Tc
nt

n (28)

where Tc
n is the homogeneous transformation between {C}

and {N} defined as

Tc
n :=

[
Rc

n −Rc
nr

n
nc

01×3 1

]

By inserting (28) into the pinhole camera model (1) the
equation can be solved with respect to xn

f and yn
f by assum-

ing that zn
f is known (zn

f is zero in this case). The solution
decomposed in {C} is calculated with Eq. 28 and given as

tc∗ =
⎡
⎢⎣

xc
f

yc
f

zc
f

⎤
⎥⎦ = 1

r ′sψgbsθ + f cθgbcφcθ + s′cψgbcθgbsθ−

f cψgbsθgbsθ + r ′cψgbcθsφ + s′cφcθsθgb−

s′cθgbcθsψgbsφ + f cθsψgbsθgbsφ

⎡
⎢⎣

−r ′(zn
uav − zn

f )

−s′(zn
uav − zn

f )

−f (zn
uav − zn

f )

⎤
⎥⎦

where r ′ and s′ are the pixel coordinates and s and c are
the sine and cosine functions. zn

uav is the down position of
the UAV. tc∗ only depends on known parameters, and thus
the camera-fixed coordinates of features are known as long
as all features are located at sea level, which is a sensible
assumption in this case.
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