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Abstract Exploration of unknown environments using
autonomous mobile robots is essential in various scenarios
such as, for instance, search and rescue missions following
natural disasters. The task consists essentially in transvers-
ing the environment to build a complete and accurate map of
it, and different applications may demand different explo-
ration strategies. In the literature, the most used strategy
is a simple greedy approach which visits closest unknown
sites first, without considering whether they will likely yield
significant information gain about the environment. In this
paper, we propose a navigation strategy for efficient explo-
ration of unknown environments that, based on local struc-
tures present in the map built so far, uses Shannon entropy
to estimate the expected information gain of exploring each
candidate frontier. A key advantage of our method over the
state of the art is that it allows for the robot to simultane-
ously (i) select a destination likely to be most informative
among all candidate frontiers; and (ii) compute its own path
to that destination. This unified approach balances priority
among candidate frontiers with highly expected informa-
tion gain and those closer to the current position of the
robot. We thoroughly evaluate our methodology in sev-
eral experiments in a simulated environment, showing that
our approach provides faster information gain about the
environment when compared to other exploration strategies.

� Douglas G. Macharet
doug@dcc.ufmg.br

1 Computer Vision and Robotics Laboratory, Department
of Computer Science, Universidade Federal de Minas Gerais,
Belo Horizonte, MG, Brazil

2 Laboratory of Information Security, Cryptography,
Privacy, and Transparency, Universidade Federal de Minas
Gerais, Belo Horizonte, MG, Brazil

Keywords Autonomous exploration · Information
theory · RRT · Mobile robots

1 Introduction

The task of exploring unknown environments using
autonomous mobile robots is essential in many applications.
The task consists essentially in perceiving the environ-
ment with the robot’s sensors and building a complete and
accurate map. However, different applications demand dif-
ferent exploration strategies. For example, rescue robots are
required to act quickly, covering as much of the environment
as possible in a short period of time, while other applica-
tions demand maps with high quality without necessarily
imposing stringent time constraints.

In general, an autonomous exploration strategy can be
divided into three steps: (i) determining a best viewpoint,
(ii) navigating to the defined target, and (iii) updating
the map and localization estimates. Typically a strategy is
characterized by how it performs the first step, which is
responsible for the robot’s decision about where to go next
in order to enhance its knowledge about the environment
(map completeness).

One of the most well-known exploration strategies is
Yamauchi’s Near-Frontier Exploration (NFE) [1], which
always selects for exploration the closest frontier (i.e., a
boundary between known and unknown areas in the map) to
the robot’s position. Despite its simplicity, NFE is often not
adequate in scenarios in which time is critical, as it drives
the robot to new locations without considering whether they
are expected to significantly reduce map uncertainty.

In fact, a critical issue is to, given the current map and
the robot’s position, determine a next destination for explo-
ration that most efficiently leads to an accurate map of
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the environment. Figure 1 illustrates the problem, showing
the paths to three possible frontiers a robot can choose to
explore first.

In recent years, information-based approaches have been
proposed to determine a next best destination for more
efficient exploration [2–4]. Such approaches compute the
(Shannon) entropy [5] of the map at the current time, and
the entropy of the robot’s belief about what the map would
be updated to if the robot were to visit a certain destina-
tion. The difference between these entropy values is called
mutual information, or the information gain [6] of that des-
tination. The higher its value, the more likely it is that a
visit to that destination will improve the accuracy of the map
faster.

However, estimating what the entropy of the map would
be after a potential destination is visited in the future is
not a trivial task, and computing all potential observations
before the robot reaches a candidate location is not feasi-
ble in practice. To make predictions possible, in this work
we consider a simple assumption: most indoor environments
are composed of straight walls with intersections. Under
this assumption, in previous work [7] we proposed a novel
method to anticipate information gain of candidate fron-
tiers by analyzing the local structure around each frontier
and predicting how its walls are expected to propagate into
unknown areas. This strategy makes it viable to estimate the
information gain of the unexplored areas.

In the literature, it is common to use information gain
in order to select among destinations for exploration. Typ-
ically, information gain is combined with other criteria in
order to build a utility function to guide the robot’s decision-
making. In our previous work [7], we estimate information
gain and use it to recurrently select the region with the

Fig. 1 A fundamental problem in exploration is the determination of
a next destination for exploration that is expected to most efficiently
cover the environment

highest associated uncertainty. We then deterministically
calculate a path to the target region using the Wavefront
Propagation algorithm, which can have a high computa-
tional cost depending of the environment size. However, in
that work we do not consider other relevant information
such as the distance from the frontier to the robot’s current
position.

Our main contribution in this work is a novel explo-
ration methodology which uses the previously proposed
estimated information gain to explore relevant regions. We
have improved the robot’s decision-making, as well as its
approach to determining a viable path to reach a chosen
destination. The traditional Rapidly-exploring Random Tree
(RRT) algorithm [8] was modified to expand the tree over
the map with a bias toward frontiers with higher estimated
information gain. As a result, the robot selects a destination
and, at the same time, generates a feasible path to reach it.
Our approach automatically considers a trade-off between
the distance to be traveled and the information gain. Fur-
thermore, the use of a probabilistic path planning algorithm
allows for more efficient navigation in larger environments.

The remainder of this paper is organized as follows: A
discussion on related works regarding autonomous explo-
ration is presented in Section 2. The proposed methodology
is presented in Section 3, and validated by simulated exper-
iments discussed in Section 4. Finally, in Section 5 we draw
the conclusions and discuss paths for future investigation.

2 Related Work

Autonomous exploration is of great importance, and has
been the object of research in several fields, especially in
Robotics. It is a non-trivial task that can be solved with
many distinct approaches. In the following we review work
related to our aim of increasing map completeness (i.e.
reduce uncertainty) in the shortest amount of time.

Among the first autonomous exploration strategies were
those based on fixed and random trajectories [9, 10]. While
offering low complexity, these classical methods were rather
rudimentary, and motivated efforts to improve the robot’s
decision-making. An improved approach takes into account
the cost of reaching candidate destinations [1]. Others
attempt to further reduce exploration time by devising utility
functions that estimate not only the cost of visiting a particular
goal, but also the expected information gain therein [2–4].

Information-based strategies have proved to be a bet-
ter alternative for calculating information gain. A few such
methods guide the robots to frontiers that potentially maxi-
mize the reduction of the map’s uncertainty. One technique
for doing this is to use knowledge of previously seen envi-
ronments to predict and, consequently, to better estimate the
information gain.
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Information Gain [5] has been used in many different
ways, which can be classified into three main categories:
(i) map approaches that use information obtained only from
the map to calculate uncertainty [11, 12]; (ii) geometric
approaches that use the robot’s sensor model and the map
to predict areas beyond the frontiers [13–15]; and (iii) pre-
diction approaches that use the robot’s sensor model, the
map, and sometimes environment knowledge to predict
information beyond the frontiers [16, 17].

In the work of Ström et al. [17], it is presented a method
that tries to match the area beyond the frontiers with local
known maps. The best match indicates the best predic-
tion. As mentioned by the authors, this approach seeks to
find similarities between the current surroundings of the
robot and previously acquired maps stored in a database in
order to predict how the environment may expand in the
unknown area. This method yields good results for areas
with repetitive structure but can suffer in more unstructured
environments. Alternatively, in the work of Oßwald et al.
[18] background information is considered in the form of a
topo-metric graph to improve the task performance. Based
on a rough structure of the environment, the robot exploits
this information to cover the environment faster.

There are other approaches that also incorporate environ-
mental knowledge in the robot’s decision-making in order to
speed up the exploration task. For example, Stachniss et al.
[19] use knowledge about the structure of the environment
and enhance exploration by identifying corridors and giv-
ing them higher utility values. This encourages the robot to
move through corridors first, and only then into adjoining
rooms. Wurm et al. [20] use knowledge about the environ-
ment to coordinate a group of robots during exploration.
However, these techniques do not use information gain for
its utility function.

For a more in depth discussion related to different
autonomous exploration strategies we refer the reader to
Juliá et al. [21], which presents a recent overview of the
main challenges and existing techniques to the problem.

The main contribution of this work is a complete explo-
ration methodology built upon an adapted version of the
Rapidly-exploring Random Tree (RRT) algorithm [8]. The
tree is expanded from the robot’s current position through-
out the environment biased by a simple yet novel technique
to predict the uncertainty beyond the frontiers presented in our
previous work [7]. We focus on the uncertainty terms but other
criteria such as travel distance and frontier size are analyzed
indirectly. Further details are presented in the next sections.

3 Methodology

In this section, we present our information-based approach
to autonomous exploration. We start by formalizing the

problem, describing the robotic system used, the exploration
objectives, and the environmental constraints. We, then,
present techniques to: (i) predict the information gain of
each destination potentially chosen by the robot for explo-
ration; and (ii) generate paths to navigate to the selected
destination.

3.1 Problem Statement

The problem of autonomous exploration can be described
as follows. Given a robot’s current pose in a (partially)
unknown environment, and the information collected by the
robot about the environment so far, the goal is to produce a
map of the environment that is as informative as possible.
The robot’s main task at each step is to determine a next
most informative destination in the environment to move to
in order to build the map. In this work we focus on instances
of the problem with critical time constraints, such as rescue
missions.

We consider a single autonomous mobile robot, which
is equipped with a limited-visibility range scanner, and can
move in an arbitrary continuous two-dimensional bounded
environment ξ ⊂ R

2 of interest. Time is measured in dis-
crete steps t ∈ {1, 2, 3, . . . , n}, starting from the moment
the robot begins the exploration (t = 1), and finishing when
the robot completes it (t = n). We assume no object is
moving through the environment except for the robot itself,
whose location is represented at any instant t as a point Rt ∈ ξ .

Within its visibility range, the robot’s scanner can dis-
tinguish free spaces and the outer boundary of obsta-
cles. At each time t , the location of the surfaces scanned
by the robot’s sensor are represented by a set Ot =
{ot,0, ot,1, . . . , ot,ut } of points in ξ . More precisely, a point
ot,i belongs to Ot if at time t the robot’s sensor determines
that the particular physical location 0 ≤ i ≤ ut contains an
obstacle that should be avoided by the robot during naviga-
tion (e.g., a wall or piece of furniture). We assume that the
sensor model interprets as free space all points between the
robot’s position Rt and those in Ot . In particular, if there are
no obstacles detected (i.e., Ot = ∅), the whole area scanned
by the sensor at that time is interpreted as free space. Points
lying beyond the area between the robot’s location Rt and
the set Ot are ignored at time t , and may be evaluated as free
or occupied in future time steps.

During exploration, the robot keeps a representation of
all the information about the environment acquired so far.
We translate from the continuous environment to a discrete
space by using an Occupancy Grid model [22], which con-
sists in a discrete spatial grid that reflects the occupancy
of the environment as a matrix M in which each cell mij

represents a discrete portion of the space ξ . Each mij is
filled with one of three possible values, indicating whether
the corresponding points in environment ξ are considered
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occupied (represented by the value “1”, or the color black),
free (value “0”, or the color white), or unknown (value “-
1”, or the color gray). All cells are initialized as unknown
at time t = 1, and their values are updated by the algo-
rithm responsible for generating the map and updating the
robot’ pose (Simultaneous Localization and Mapping prob-
lem). We use the Rao-Blackwellized particle filter to learn
grid maps from laser range data [23].

During exploration the robot must decide which des-
tinations to visit. In our work, the robot considers as a
candidate destination every frontier, a concept introduced
by Yamauchi [1], which corresponds to all cells in M that
are on the boundary between free and unknown cells.

We denote by Ft the set of all frontiers at time t . Both
the distance between the robot and the frontier, and the esti-
mated information gain of the frontier, are considered for
choosing destinations.

We now define at high-level the exploration problem; we
will make it mathematically precise in the next section.

Problem 1 (Information-driven Single-robot Efficient
Autonomous Exploration) Consider a robot with a limited
visibility-range scanner, an occupancy grid M representing
the robot’s knowledge about an environment ξ , a discrete
time interval t = {1, 2, . . . , n}, and an initial pose R1 ∈ ξ for
the robot. Assuming that at time t each frontier f ∈ Ft can
be identified by the robot, find a sequence of destinations
D = d1, d2, . . . , dn in ξ , such that each dt :

a) belongs to a free area close to a frontier f ∈ Ft , and
b) is expected to have maximum information gain at time t

for the map M .

3.2 Information-Theoretic Approach

During exploration the robot can perform actions (e.g.,
move in a certain direction at a certain speed, turn around
itself by a certain angle, come to a complete stop, etc.) from
a set X . In general, actions are taken to make the robot
move to a desired location. We let xt ∈ X denote the robot’s
action at time t . We assume that the action xt and the obser-
vations Ot of the robot at any given time t are executed
with minimal error, so the robot always knows its position
perfectly.

At any time t , we are interested in determining which
robot’s actions will most reduce the map’s uncertainty,
given all observations O1, . . . , Ot collected and all actions
x1, . . . , xn taken by the robot so far. For that, we esti-
mate the information gain of each frontier in Ft , under
the assumption that those yielding highest expected value
of information gain are more likely to aggregate more
information to the map M if scanned by the robot.

We denote by zt = (Ot , xt ) the probe realized by the
robot at time t , which is the ordered pair of the observations

Ot made and the action xt taken by the robot at that time. We
denote by Zt the random variable associated with a probe
at time t , and by z1:t = z1, z2, . . . zt the sequence of probes
between instants 1 and t . The estimated information gain,
also called mutual information, of a predicted probe Zt+1

at time t + 1 with respect to the map M at time t , given all
probes z1:t realized so far, is defined as:

I (M; Zt+1|z1:t ) = H(M|z1:t ) − H(M|Zt+1, z1:t ), (1)

where H(M|z1:t ) is the current entropy of the map at
time t given all probes from times 1 through t , and
H(M|Zt+1, z1:t ) is the posterior entropy of the map at time
t + 1 conditioned on all past probes from times 1 through
t and the probe Zt+1 projected to be made at time t + 1.
To calculate the current entropy of the map conditioned on all
sensor readings it is necessary to adapt the values from the
occupancy grid map to apply on the following equation [24]:

H(M|z1:t ) = −
∑

i,j

pij log pij +(1−pij ) log(1−pij ), (2)

where pij is the probability of cell mij in M being occupied,
defined as: pij = 0 if mij = 0 (the cell is for certain free),
pij = 1 if mij = 1 (the cell is for certain occupied), and
pij = 0.5 if mij = −1 (the state of the cell is undetermined,
and it considered occupied with probability 50%).

Unfortunately, it is not feasible to calculate the poste-
rior entropy H(M|Zt+1, z1:t ) without making an adaptation
or prediction [17]. This is expected since there exists a
vast number of potential measurements for the probe Zt+1,
which grows exponentially over time with the size of the
environment.

In this work, we propose a suitable approximation that
depends only on the current map. With carefully made
predictions, it becomes possible to calculate the posterior
entropy and then generate the paths.

The methodology can be represented by a diagram with
an exploration cycle, as illustrated in Fig. 2.

3.3 Prediction of Unvisited Areas

In this section, we review the approach introduced in our
previous work [7] for predicting areas beyond frontiers, and
which will be used to guide the robot to locations with the
highest information gain.

The posterior entropy H(M|Zt+1, z1:t ) is a key value in
determining a next best destination to be explored by the
robot. To compute its value precisely, however, it would be
necessary that the robot knew the contents of areas beyond
each candidate frontier, and for that the robot would have had
to move to those frontiers to collect data in the first place.
Since we want the robot to use the posterior entropy to
decide the best location to explore before moving there, the
robot must somehow predict the expected changes in the
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Fig. 2 Diagram that represents
the exploration cycle proposed
by our methodology

map caused by the robot eventually reaching each candi-
date frontier and collecting data. Posterior entropy is, then,
estimated using these predictions.

In this work, we make predictions by extrapolating the
local structure of the occupancy grid around each frontier to
the area beyond it.

The key insight is that indoor environments are typi-
cally regular and can be characterized by straight walls and
their intersections (e.g., corridors and rooms). Based on this
observation, we consider that there are two main ways walls
can be expected to propagate beyond a frontier: in a straight
line, or in a straight-angle corner, as illustrated in Fig. 3.

Our predictions of what lies beyond frontiers is made
using these considerations. It is important to note, how-
ever, that as the distance beyond frontiers increases, the
number of possible combinations of straight segments and
corners dramatically increases, and it becomes less likely
that our predictions would actually resemble the true state
of the environment ξ . In other words, predictions can not be
reliably extended to large areas beyond frontiers.

To avoid inaccurate predictions, we use a prediction zone
φi ⊆ ξ around each frontier fi ∈ F . Our method extrapo-
lates the information of a frontier only to the corresponding
prediction zone. To determine the size of each φi we use the
minimum-perimeter bounding box technique to build a geo-
metric structure designed as the smallest bounding which
lies within all the frontier’s cells. Then we expand it to incor-
porate the walls that restrain the frontier. In other words, the
area φi covered by the predicted propagation of wall seg-
ments is proportional to the size of the frontier fi , as Fig. 4
illustrates.

Finally, to determine the direction in which the wall is
most likely to propagate, the local area around the frontier

is analyzed. First each occupied cell is classified as part
of a wall, and then walls bordering unknown territory are
extended. If during propagation a wall meets cells known to
be free, the wall bends perpendicularly to the direction of
the unknown area. Next, cells of unknown status are updated
to free cells using a wave propagation method [25], and so
are cells in contact with the frontier. Then, the cells most
recently updated to free become the new frontier, and the

(a) (b)

(c) (d)

Fig. 3 Two different ways to propagate walls beyond a frontier. a and
c are maps with their detected frontiers; whereas b and d are the corre-
sponding predictions of what lies beyond those frontiers according to
our assumptions about walls propagation. In b the walls propagate in
straight lines, whereas in d they turn in a straight angle because they
cannot propagate through a free area
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Fig. 4 Design of a prediction
zone φi based on the
corresponding frontier fi ’s size.
a Portion of the map with a
detected frontier. b Creation of a
minimum-perimeter bounding
box by exploiting the two
extremes of the frontier’s cells. c
Expansion of this box adding an
extra fixed value represented by
the green line. d Prediction zone
designed for the detected frontier

(a) (b)

(c) (d)

process is repeated until the new frontier cells reach the lim-
its of the prediction zone. The predictions are made with
a linear reduction of the certainty to avoid big propagation
in big zones. Figure 5 shows a few examples of predictions
during exploration.

As it can be seen in Fig. 5, prediction zones are larger
when the size of the frontiers are larger. In Fig. 5a, one wall
propagates straight, hits a free cell, and turns right, while the
others walls propagate in a straight line until the limit of the
prediction zone. In a second step, Fig. 5b, the difference in
size of the frontiers and subsequently the prediction zones
can clearly be seen. In the same step, the reduction in the
certainty of the prediction can also be clearly seen. Finally,
in the last step, Fig. 5c, demonstrates the fact that even when
there exists a cluster of frontiers in a small area, the method
can still predict the behavior of the walls and select the
frontier with the highest estimate information gain. This is
possible because each prediction is executed separately, and
one does not interfere with the other. The filling of a pre-
diction zone corresponds to the estimation of probe Zt+1 on
the map, which is then used to estimate posterior entropy.

Algorithm 1 describes the steps of estimating the infor-
mation gain for each frontier detected on map. First, it needs
to adapt the map transforming the occupied cells in line
segments (line 4). To do that, it is employed the Hough
Line Transform [26] with some adjustments to acquire these
lines. Then, it calculates the current entropy of the map (line
6) using Eq. 2 necessary to estimate information gain of
each frontier further. For each frontier, it designs the pre-
diction zone (lines 10 and 11), detects the walls (line 13)

and initiates the prediction within the prediction zone (lines
15 and 16). With the prediction completed, the posterior
entropy is estimated (line 18) using the same Eq. 2 but
the map already updated with the prediction. Based on the

Fig. 5 Examples of predictions [7]. The left column represents the
candidate map frontiers, while the right column shows the predictions
based on the structure of the walls around each frontier. The squares
covering the frontier indicate the extents of the prediction zones
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values for both entropies, the information gain is obtained
(line 20) using Eq. 1. After applying repeatedly this process
for all frontiers, we obtain the estimated information gain
values necessary to bias the tree expansion until it selects a
new destination and generates a new path. It technique will
be better explained in the next section.

Algorithm 1 CalculateIG(F,M)

1: // Initiate IG vector for each frontier
2: IG ← ∅
3: // Apply Hough Line Transform [26]
4: S ← identifyLineSegment(M)
5: // Calculate the current entropy of the map
6: e ← calculateEntropy(M) � Eq. 2
7: // For each frontier
8: for i = 0 to size(F ) do
9: // Create a prediction zone

10: hi ← sizeFrontier(F [i], M)
11: li ← createPredictionZone(F [i], hi, M)
12: // Detect the walls connected to frontier
13: W ← identifyWalls(F [i], S, M)
14: // Initiate the prediction propagation
15: M̂ ← expandWalls(li , W, M)
16: M̂ ← expandFreeCells(li , F [i],M̂)
17: // Calculate estimated entropy
18: ê ← calculateEntropy(M̂) � Eq. 2
19: // Calculate estimated information gain
20: ig ← informationGain(e,ê) � Eq. 1
21: IG[i] ← ig

22: end for
23: return IG

3.4 Decision-Maker and Navigation Approach

In this section, we describe the novel combined technique
to select the most relevant destinations and generate feasi-
ble paths for the robot’s navigation in order to efficiently
explore the environment.

After calculating the potential information gain given by
each frontier at a time t , a destination needs to be selected
and then explored by the robot. In the literature, a util-
ity function is often used to guide the robots’ decisions.
The utility function traditionally ranks actions according to
reduction on uncertainty they would cause (the more uncer-
tainty is reduced, the higher the utility of an action), and
the action with best expected utility is picked by the robot.
Although such an approach can generate good results, in this
work we plan the robot’s destinations in a different manner.
More precisely, we combine in a same algorithm both steps
of choosing a destination and how to navigate to it. This
novel approach allows for the selection of best destinations

at the same time it creates routes free of obstacles from the
robot to these destinations.

To implement our approach, we adapted the common
Rapidly-Exploring Random Tree (RRT) algorithm [8] for
the decision-making of the robot. It is a sample-based
method and can be classified as probabilistically complete,
which means that the chances of finding a path in a map
increases when more effort is applied. For the RRT algo-
rithm, if a path exists, it will be eventually found as the
number of samples increases.

The original RRT algorithm, Algorithm 2, generates a
path from the robot’s location into a unknown area. The
algorithm generates a tree T rooted at the robot’s position
(xinit ) and incrementally increases this tree iteratively. At
each iteration, a new configuration (xrand ) is sampled uni-
formly where mij = 0. A nearest configuration (xnear ) to
xrand in T is selected, and it is attempted to make progress
from xnear toward xrand . Usually this entails moving xnear

a distance in the straight line defined by xnear and xrand . If
it is collision-free, this newly generated configuration, xnew,
is then added to the vertices of T and the edge (xnear , xnew)
is added to the edges of T .

Algorithm 2 RRT(xinit , K, �t) [8]

1: T .init(xinit );
2: for k = 1 to K do
3: xrand ←RANDOM State();
4: xnear ←NEAREST NEIGHBOR(xrand, xinit );
5: u ←SELECT INPUT(xrand, xnear );
6: xnew ←NEW State(xnear , u, �t);
7: T .add vertex(xnew);
8: T .add edge(xnear , xnew, u);
9: end for

10: return T

The main difference between the traditional RRT and
our proposed method is the function employed to gener-
ate the new points xrand that might be appended to the tree
T . More precisely, we introduce a decision-maker method
based on the Genetic Algorithm known as Roulette Wheel
Selection. Figure 6 demonstrates this sample function. For
each frontier detected on map, a section of the wheel will
be configured based on the estimated information gain pre-
viously calculated and normalized. We used a simple linear
normalization where we could transform the data to a spe-
cific range (0 to 100%). Larger frontiers will be assigned
larger sections of the wheel, and hence will have higher
probability to be selected.

In our algorithm, the function receives as arguments the
destinations followed by their weights (IG). The probabil-
ity of selecting a specific destination is proportional with its
weight. For the RRT algorithm, it is important to add some
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Fig. 6 Decision-maker function based on the Genetic Algorithm
Roulette Wheel Selection. The candidate destinations are set as
weighted sections of the wheel (Section 1 = 40%, Section 2 = 30%,
Section 3 = 19%, Section 4 = 11%). The element selected will be used
as bias on a RRT expansion. In this example wheel there is no section
for a random destination

weight to a random destination to turn possible some obsta-
cles to be circumvent avoiding some Local Minima issue.
The size of the random destination section is set based on
the number of candidates frontiers. If there is only 1 frontier
then the size will be 25% of the wheel, if there is 5 frontiers
it will be 10% of the wheel and with 10 or more frontiers it
will get closer to 1% of the wheel.

The proposed approach to select the samples for the RRT
algorithm is presented on Algorithm 3.

Algorithm 3 SelectSamples(F,IG)

1: // Set the size of the random section
2: a ← randomSection(size(F ))
3: // Set the size of the shares section
4: c ← 100 − a

5: // Normalize the values (Shared Section)
6: W ← normalizeValues(IG, c)
7: v ← selectRandomValue(0,100)
8: // Identify sample to be used as bias on the RRT
9: b ← identifySection(W, v, a)

10: return b

In this way, the samples might expand the tree into
regions with the highest estimated information gain because
the probability of these sections being selected is higher.
However, it is still possible to expand the tree to frontiers
that yield lower information gain. When there is more than
one frontier with a high probability to be select as a bias
on our approach, the tree might expand into different direc-
tions. Consequently, frontiers close to the robot have also

good chances to be reached and explored. As it can be
noticed, the process to select a next best destination and the
planning to create a path free of obstacles becomes as an
unique process. At the same time the algorithm chooses a
next best destination it completely generates a path toward
it.

3.5 Environment Exploration

Algorithm 4 presents a pseudo code of the complete pro-
posed methodology for the exploration process.

Algorithm 4 AutonomousExporation(n)

1: // Iniciate vector: path to be navigated
2: C ← ∅
3: // For each cicle of time
4: for timestep t do
5: d ← checkDestination()
6: M ← updateMap()
7: r ← checkRobotPose()
8: if reachedGoal(r, d) then
9: F ← identifyFrontiers(M)

10: if size(F ) == 0 then
11: endExploration()
12: end if
13: IG ← CalculateIG(F,M) � Alg. (1)
14: C ← RRT(IG, r, M, n) � Alg. (2)
15: else
16: navigate(C)
17: end if
18: end for

At each time step, the robot checks if the current goal
has been reached (line 8). If it has, the robot calculates
a next best destination (lines 9–14); otherwise the robot
keeps navigating until arriving at the desired location (line
16). To calculate the new target, it is necessary to select
each frontier from the map and evaluate them by the cri-
teria previously determined (lines 9 and 13). In this work,
we defined as main criteria the Information Gain, being the
travel cost (distance) analyzed indirectly. Afterwards, a path
will be generated selecting samples in the environment from
the robot’s pose until a new sample reaches an unknown area
on map (line 14). Finally, when there are no more frontiers
to be explored, the algorithm is interrupted (line 11).

4 Experiments

In this section, we present an experimental evaluation of
the methodology in order to assess the benefits of our com-
bined predictive exploration and path planning approach.
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Consequently, we support our claim that by estimating the
information gain for each candidate destination it is possi-
ble to cover an unknown environment faster than traditional
approaches.

We performed a series of experiments in two simulated
scenarios, an office and a cave-like environment, similar
to those used by other works in the literature [24]. These
environments are an interesting choice since they have dif-
ferent properties. The exploration framework was written in
C++ using ROS (Robot Operating System) and executed on
a computer running 64-bit Ubuntu 14.04 with an Intel i7
processor and 8GB of RAM.

As mentioned earlier, in this work, we mainly focus on
the robot’s decision-making and navigation process, leaving
aside the localization and map generation problems. There-
fore, we decided to use the ROS gmapping SLAM package
to provide the robot’s localization and to generate the maps
during the experiments. This is a well-known package pro-
viding a high efficient Rao-Blackwellized particle filter to
learn grid maps from laser range data [27]. In this way, it is
possible to build accurate maps by setting the parameters of
the sensors to minimum error.

The agent model applied on the simulation is a nonholo-
nomic differential robot. However, it moves through the
environment only in straight lines. Then, in order to change
directions it needs to turn around by its own axis and then
keep moving. The robot is attached with a laser sensor with
a standard 5 m range and an opening of approximately 60°.
The navigation of the agent uses an dynamic control system
(PID) that allows the robot to move trough the path gener-
ated by the RRT algorithm. By the end of the navigation, the
robot needs to turn around and face the unexplored region.
Otherwise, it will not be able to update and expand the map.

4.1 Experimental Procedure

To evaluate the proposed algorithm through simulation, three
trials are run in each environment with the robot’s initial

position being randomly chosen for each trial. Figure 7
presents the ground-truth maps, as well as the initial posi-
tions (marked as A, B and C). The left side shows an office
with some rooms and corridors and the right side shows
a cave with large open areas containing some rocks and
columns.

To better evaluate the proposed approach, we compared
the results with three different and common methods. All
these techniques were used in the decision-making step
about where to go. In this way, we considered methods that
always reach and explore the

– Nearest frontiers (NFE): based on the euclidean dis-
tance between the robot’s location with the frontiers
center of mass, ignoring the existence of obstacles and
unknown areas;

– Biggest frontiers (BF): based on the number of cells
that belongs to each frontier;

– Highest estimated information gain frontiers (HIG):
based on the approach presented in the paper to calcu-
late the estimated information gain using the predictions
of areas beyond frontiers.

These three strategies can be classified as greedy because
they are used to optimize the exploration problem always
selecting the destinies that might be better than the others
in terms of a factor or criteria in analysis. In this case, the
criteria of the three methods are: distance, size and esti-
mated information gain, respectively. The strategy known as
NFE [1], even though it is a simple method, is one of the
technique most used in the literature to compare with novel
approaches because it brings interesting results.

Overall, the methodology proposed in this paper corre-
sponds to a cycle which needs to be repeated while there are
frontiers to be explored. This cycle is represented by the dia-
gram on Fig. 2. Thus, when an experiment is initiated, the
robot needs to gather some information about the environ-
ment and initiate the map’s construction. When the model
is updated, the robot needs to search for frontiers and then

Fig. 7 Referential maps with
the three initial positions for
each map, represented by the
letters A, B and C

(a) (b)

J Intell Robot Syst (2018) 91:313–331 321



execute the predictions in order to calculate the estimated
information gain. With these information, it will select and
generate a path to a region of the map. Afterwards, the robot
navigates through the path until reaches the desired destina-
tion. This whole process is repeated until the environment
be completely covered.

Some common metrics, such as quality of the map, were
not applied in the experiments because of the high preci-
sion of the robot’s location. To asses the methodology, we
used a rate of completeness by time and the total cost to
transverse the environment while building the map. In order
to calculate this rate, we used two maps as referential for
each environment and defined the total information values
of each ideal complete map.

4.2 Illustrative Example

In this section, an experiment is presented to illustrate our
methodology during an exploration task. Pictures were cap-
tured in different moments in order to describe the main
steps of our technique, such as frontiers detection, predic-
tions and our adapted tree expansions.

The robot was initialized at the position represented
by letter A on the Office scenario. At first instance, the
robot executed a 360° observation over the environment
and generated a map using all information acquired. It was
detected three different frontiers on map and, consequently,
three different prediction zones were designed based on the
characteristics of each frontier, as it can be seen in Fig. 8.

Figure 9 presents the predictions and the values corre-
sponding to the estimated information gains already cal-
culated for each frontier. The propagation of the walls
generated open areas inside the prediction zones with num-
bers 1 and 3. On the other hand, the prediction zone with
number 2 propagated using straight lines preserving the
local structure.

Fig. 8 Initial map containing frontiers represented by numbers 1, 2 e
3 with their own prediction zones

(a)

(c) (d)

(b)

Fig. 9 In a the Information Gain values are shown for each frontier.
Images b, c and d represent the prediction for frontiers number 1, 2
and 3, respectively

The last step of the exploration cycle is characterized by
the RRT propagation in order to select a destination to be
explored. The new path will be used during the navigation
to reach the desired location. In this moment, the path was
expanded with more samples in direction of the frontiers 1
and 2 until it reaches the number 1, illustrated in Fig. 10. In
this way, the selected frontier will be explored first. During
the tree expansion, the frontier with number 2 had only one
sample in its direction even though it brings an equivalent
weight based on the estimated information gain values. The
reason is because a sample cannot not be generated when
it is too close to obstacles. Hence, from the closest node
of the tree in direction to the frontier number 2 there is no
space to generate a new sample. Besides, the percentage of

Fig. 10 Tree propagation to create an exploration route. The circles,
one on each frontier, indicate the goal bias for the tree expansion. The
tree is represented using small gray circles with the root in black. The
final route is the only path between the robot and the Frontier 1
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Fig. 11 Detected frontiers and prediction zones after five minutes of
exploration

samples generated on random positions was low, not enough
to circumnavigate the obstacle.

After five minutes of exploration, the robot updates the
map and identifies four new frontiers. The prediction zones
were projected as it can be seen on Fig. 11. After the initial
position, the robot explored the left side of the map until it
reaches the current position. The prediction zones that were
formed have similar dimensions and characteristics.

Figure 12 shows the current map with values related to
each estimated information gain obtained by the predictions
shown in Fig. 13. From the highest to the lowest values, the
frontiers can be ranked as follows: 4, 1, 2 and 3.

At this moment, the walls were propagated in straight
lines inside the predictions zone 1, 2 and 3, as presented
in Fig. 13a, b and c, respectively. Frontier 4 was propa-
gated changing the direction in one of the walls creating an
open area. It brought a higher estimated information gain
compared to the others.

In order to finish another cycle, the robot needs to make
a new decision about where to go next. Figure 14 shows
the tree propagation, which will result in a path to a rele-
vant destination (frontier) on the map. At this moment, the

Fig. 12 The values related to each estimated information gain on
current map

(a)

(c) (d)

(b)

Fig. 13 Predictions for a Frontier 1, b Frontier 2, c Frontier 3, and d
Frontier 4

path was created in the direction of Frontier 1. Even though
Frontier 4 got the highest information gain on the current
map, most of the samples are blocked by obstacles when
they are generated by the adapted RRT algorithm. The same
thing happens for the other frontiers except by Frontier 1. As
a result, the tree expanded into Frontier 1 more frequently.
The tree expansion is interrupt only when a new sample is
located close to the bias of a frontier being attached to the
tree.

Comparing the results from the different strategies pre-
sented earlier after 15 minutes of exploration, it is possible
to spot the effects of each approach on the built map.
For example, the map which represents the outcome of
the strategies that always explore the nearest frontiers has
not much gaps with low information, as it can be seen in
Fig. 15a. It is common on this strategy explore parts of the

Fig. 14 Tree generated to create an exploration route. The final route
will be the only path between the robot and Frontier 1
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(a)

(c) (d)

(b)

Fig. 15 Maps generated based on different strategies after 15 min-
utes of exploration. The small black circle indicates the robot’s current
position. The actual detected frontiers as also highlighted

maps completely before moving on to others which is dif-
ferent to the other greedy approaches. However, the robot
spends so much time navigating through regions with low
gain of information resulting in a low rate of map’s covering.
The others expand the map faster but ignores the cost to dis-
locate the robot, as presented in Fig. 15b and c. In this way, a
lot of gaps with low information are left to be explored later
and the robot tries to head to the areas with the highest infor-
mation gain. Despite they have a faster expansion during the
first minutes of the exploration, they start to get slow when
new frontiers are not anymore detected. In this moment, the
robots needs to move around places that have already been
explored to fulfill the small gaps. Finally, Fig. 15c presents
the map with the methodology results demonstrating that
our approach tries to reach the areas with highest informa-
tion gain although it does not leave small gaps around the
robot behind.

After 30 minutes of exploration, the map gets closer to
its final configuration. In this moment, it was detected three
small frontiers as it can be seen on Fig. 16. Normally, the
latest frontiers represent small gaps or regions that were
complicated to be reached by the RRT method. For exam-
ple, the frontier with number 1 was not easy to reach when
the robot was not close and when it was there were others
with higher estimated information gain to be explored.

The frontiers represented by the numbers 2 and 3 illus-
trate corners of a room with low information gain, as it can

Fig. 16 Detected frontiers and prediction zones after 30 minutes of
exploration

be seen on Fig. 17. These regions are common to not bring
considered information for the map building. Different from
the others, Frontier 1 resembles a large room or corridor.
Then, comparing to the other options, it would be the best
choice because of the higher estimated information gain.

Nonetheless, the robot generates a tree which identify a
route to a desired destination. At this moment, it was created
a small path into Frontier 3, illustrated in Fig. 18. The tree
is composed only by two nodes, the root and the one close

(a)

(c) (d)

(b)

Fig. 17 a The values related to each estimated information gain on
current map. Predictions for b Frontier 1, c Frontier 2, and d Frontier 3
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Fig. 18 Tree generated to create an exploration route. The final route
will be the only path between the robot and Frontier 3

to the frontier. Because of the proximity from the robot to
those frontiers, the robot decides to explore them first and
then the frontier marked with number 1. Finally, when it
reach and explore the last one, the exploration task will be
completed.

4.3 Quantitative analysis

This section compares the solutions obtained by the previ-
ous discussed approaches and our methodology. It shows
different evolution features for each technique applied. For
each technique, 45 experiments were executed, 15 for each
initial position shown on Fig. 7. Overall, each experiment
has a commitment to explore autonomously the environ-
ment until it gets completely covered.

The graphics present the maps’ evolution for each strat-
egy. We used only the mean of the values to plot the results.
As the dispersion level was low, we decided not to use
the ranges of the standard deviation on graphics for better
visualization.

4.3.1 Office

Figure 19 presents the percentage of the map covered
against exploration time for the office environment consid-
ering each proposed initial position. As it can be noticed,
the NFE strategy presents a slow evolution when compared
to all other approaches. The main reason for that behavior
is because the NFE algorithm always search for frontiers
that are nearby the robot even when it does not yield much
information. Hence, the robot takes too long to expand the map.

The results obtained for position B were similar to position
A, however, the last initial position obtained results a little bit
different. When the robot is initialized on position C, there

(a)

(b)

(c)

Fig. 19 Percentage of the map covered against exploration time for
office environment considering different initial positions. The solid
blue line represents the proposed methodology, the dashed red line
the NFE approach and dashed green and yellow the other greedy
approaches

is basically only one direction to be explored, different from
positions A and B. Basically, all the experiments exe-
cute the same exploration behavior during the first three
minutes. Then, different directions appears resulting on
different maps expansions. The NFE continues explor-
ing the nearest frontiers without considering the estimated
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(a)

(b)

(c)

Fig. 20 Distance traveled to complete the exploration mission for
office environment considering different initial positions

information gain. Consequently, the result becomes similar
to position A and B.

Based only on the map expansion, our method was quite
similar to the other greedy strategies (BF and HIG). On the
other hand, when it is analyzed the total cost to dislocate the
robot through the environment, we notice that our technique

(a)

(b)

(c)

Fig. 21 Percentage of the map covered against exploration time for
cave environment considering different initial positions. The solid blue
line represents the proposed methodology, the dashed red line the NFE
approach and dashed green and yellow the other greedy approaches
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(a)

(b)

(c)

Fig. 22 Distance traveled to complete the exploration mission for cave
environment considering different initial positions

spent way less energy to explore and build the map, as it
can be seen in Fig. 20. The NFE hardly navigates through
areas already explored and the others do it more often. Our
approach represents the balance between the NFE and the
other greedy strategies.

4.3.2 Cave

Figure 21 presents the percentage of the map covered
against exploration time for the office environment consid-
ering each proposed initial position.

The NFE approach obtained results slightly better on
cave environment but still inferior than our methodology
and the other greedy strategies. The main reason for this
effect is because this new environment is characterized by
large open areas. Consequently, when the robot explores
frontiers around itself it still yields a significant information
gain. Besides, this environment does not have much cor-
ners with low information gain to be explored. Corners are
common inside more clustered environments.

Our methodology tries to reach the highest estimated infor-
mation gain areas without leaving gaps with low information
gain to be explored later. As the areas are bigger, these gap
are easier reached by our technique. Hence, our methodol-
ogy results were similar to the other greedy approaches.

Nonetheless, we obtained similar outcomes when we
analyzed the total cost to explore the environment com-
pletely, shown in Fig. 22. In this scenario, our approach got
results slightly closer to the NFE. It shows that our approach
explored more areas around the robot than moved to reach
the highest estimated information gain regions. Our method-
ology tries to indirectly balance the information gain criteria
with the distance cost criteria during the tree expansion for
each path generated.

4.4 Noise Influence Evaluation

The algorithm used to solve the SLAM problem depends
on the data collected by the sensors during the exploration
in order to build a map and find the robot’s location. If the
sensors used on the robot are not precise, i.e., with too much
noise, the map can be formed with a low accuracy state.

This section about noise influence was introduced in
order to better evaluate and understand the effects of the
estimated map on the robot’s decision about where to go
next.

There are in the literature algorithms that succesfully
solve this problem by fusing the sensors’ data or using other
information (e.g. visual features) [29–31]. However, even
new SLAM approaches do not garantee a precise map in
all kind of scenarios. Figure 23 presents an example of
different maps that have been built considering an odo-
metrical information with 0%, 10% and 20% of linear and
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(a)

(c) (d)

(b)

Fig. 23 Maps after exploring the same environment with different
error rates

angular errors. As it can be noticed, it is possible to see a
deformation on maps even when the error rate is not too high.

A map with a bad quality can harm the methodology in
different ways. First, frontiers that do not really exist can
be inserted on map. In this way, the robot will eventually
select a false frontier in order to complete the task. As a
consequence it will not be able to reach the area and will
increase the total cost of navigation. Second, some obsta-
cles can be designed over free areas creating fake blockages
on map. Consequently, the adapted RRT will not be able

Fig. 25 Map of the Office scenario after 2000 seconds of exploration
and considering 10% of error

to expand the tree for some regions of the map. Besides,
with the sensors’ noise, straight walls can be mapped in
curves. Our methodology works properly when the walls
are mapped in straight lines or in a slight curvature. Other-
wise, the predictions might be generated incorrectly. Hence,
in its current state, the proposed methodology depends of
the proper functioning of the module responsible to solve
the SLAM problem.

Figure 24 illustrates the noise influence during an explo-
ration in the Office environment. It was considered only a
10% error on the odometry during the experiments to not
distort much the map. Most of the experiments were capable
to complete the task, however, the maps generated were not
precise compared to the real state, e.g., Fig. 25. Due to the
aforementioned problems, the execution of the exploration
missions were slower then the average already presented before.

Regarding the total distance traveled to transverse the
environment, the experiments showed a higher cost then the

Fig. 24 Comparison between
an experiment with and without
error on the odometry
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Fig. 26 Distances traveled to explore the Office scenario between the
approaches with and without error on map

average distances obtained before, with total accurate maps.
It is important to point that some experiments were inter-
rupted after 2500 seconds of exploration. This is due to
some of them were not capable to complete the task, as con-
sequence of false frontiers and unreachable areas. Figure 26
compares both outcomes. Even though it shows only a
slightly increase, it is enough to notice that the errors on map
affects directly the total cost to explore the environments.

5 Conclusion and Future Work

In this paper, we proposed a novel solution for autonomous
exploration tasks in situation where the time to create a map
is paramount. The strategy combines prediction techniques
with an information-theoretic approach in order to enhance
rapid environmental coverage. In our approach, we exploit
some common indoor characteristics to make predictions
possible. This assumption allows the robot to estimate the
potential information gain for each candidate frontier and
make better decisions about where to go next. Then we
proposed an adaption on the RRT technique to select and
generate the path to best destinations to be explored. The
methodology provides a good balance among prioritizing
candidate frontiers with highly expected information gain
and candidate frontiers that are closer to the current position
of the robot.

The combination of the decision-maker and navigation
processes brought to our methodology a reduction of the
exploration cost. When the robot was using a greedy algo-
rithm to select destinations to areas with the highest esti-
mated information gain, it resulted in constantly revisiting
regions already explored in order to reach the goals. In this
way, the map could be rapdly expanded but with a high
cost to dislocate the robot throught the environment. Our

new contribution made possible to expand the map more
efficiently.

In simulation we evaluated the performance of our algo-
rithm using two main metrics: completeness by time and
distance traveled. The results of the proposed strategy
illustrated a better performance compared to the Nearest-
Frontier Exploration strategy and other greedy approach. As
a result, with the proposed approach it becomes possible to
obtain a more complete map in a shorter amount of time.

The experiments show that our approach may fail if the
map generated by SLAM algorithm is not accurate. The
reasons for that are because the walls start to create unreal
curves and areas with no obstacles becomes free or it turns
free with real obstacles within. In this way, it is important
to use good sensors with an SLAM algorithm that brings
accurate maps.

The work has several future directions that can be pur-
sued in order to improve the proposed methodology, which
includes the extension of the proposed methodology to
multi-robot ensembles. With a bigger number of agents
exploring different regions by the same time, it will become
faster to cover the environment completely. Besides, we
intend to create a module that adapts the walls propaga-
tion based on the local areas, making the it possible even
when it is not a straight wall. In the same way, we expect to
develop an adaptive prediction zone that would analyze the
old robot’s observations to set the best shape and size. Con-
sequently, it might better select the destination and faster
reduce the map’s uncertainty.
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14. Surmann, H., Nüchter, A., Hertzberg, J.: An autonomous mobile
robot with a 3D laser range finder for 3D exploration and dig-
italization of indoor environments. Robot. Auton. Syst. 45(3–4),
181–198 (2003)

15. Charrow, B., Liu, S., Kumar, V., Michael, N.: Information-
theoretic mapping using Cauchy-Schwarz quadratic mutual infor-
mation. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4791–4798 (2015)

16. Chang, H.J., Lee, C.S.G., Lu, Y.H., Hu, Y.C.: P-SLAM: simul-
taneous localization and mapping with environmental-structure
prediction. IEEE Trans. Robot. 23(2), 281–293 (2007)

17. Ström, D.P., Nenci, F., Stachniss, C.: Predictive exploration con-
sidering previously mapped environments. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 2761–2766
(2015)

18. Oßwald, S., Bennewitz, M., Burgard, W., Stachniss, C.: Speeding-
up robot exploration by exploiting background information. IEEE
Robotics and Automation Letters 1(2), 716–723 (2016)

19. Stachniss, C., Martı́nez Mozos, Ó., Burgard, W.: Efficient explo-
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on Shannon and Rényi entropy. In: 2015 IEEE International Confe-
rence on Robotics and Automation (ICRA), pp. 487–494
(2015)

25. Jarvis, R.A.: Collision-free trajectory planning using distance
transforms. In: Proceedings of the National Conference and Exhi-
bition on Robotics (1984)

26. Hough, P.V.C.: Method and means for recognizing complex pat-
terns, US Patent 3,069,654. [online]. Available: https://www.
google.com/patents/US3069654 (1962)

27. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for
grid mapping with Rao-Blackwellized particle filters. IEEE Trans.
Robot. 23(1), 34–46 (2007)

28. Howard, A., Roy, N.: The robotics data set repository (radish).
[Online]. Available: http://radish.sourceforge.net/ (2003)

29. Liang, X., Chen, H., Li, Y., Liu, Y.: Visual laser-slam in large-scale
indoor environments. In: 2016 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pp. 19–24 (2016)

30. Kadir, H.A., Arshad, M.R.: Improved simultaneous localization
and mapping (slam) algorithms for aerial vehicle under dynamic
sea surface environment. In: 2016 IEEE International Confer-
ence on Underwater System Technology: Theory and Applications
(USYS), pp. 61–66 (2016)

31. Kumar, S.R., Ramkumar, K., Srinivasan, S.: Map spread fac-
tor based confidence weighted average technique for adaptive
slam with unknown sensor model and noise covariance. In: 2016
International Conference on Robotics: Current Trends and Future
Challenges (RCTFC), pp. 1–6 (2016)

Jhielson M. Pimentel is a Research Engineer at the Institute for Sys-
tems and Robotics of IST, University of Lisbon, Portugal. He received
his M.Sc. in Computer Science from Universidade Federal de Minas
Gerais, Brazil in 2016. During his Master’s program, he was with the
Computer Vision and Robotics Laboratory (VeRLab). Currently, he is
with the Laboratory for Robotics and Engineering Systems (LARSys),
and his main research interests are in mobile robotics, path planning,
multi-robots systems and decision making.

Mário S. Alvim is an Assistant Professor at the Department of
Computer Science (DCC) of Universidade Federal de Minas Gerais
(UFMG), Brazil. He received his M.Sc. degree in Computer Science
from the same university in 2008, and his Ph.D. in Computer Sci-
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