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Abstract Planetary exploration poses many challenges for
a robot system: From weight and size constraints to extrater-
restrial environment conditions, which constrain the suitable
sensors and actuators. As the distance to other planets
introduces a significant communication delay, the efficient
operation of a robot system requires a high level of auton-
omy. In this work, we present our Lightweight Rover Unit
(LRU), a small and agile rover prototype that we designed
for the challenges of planetary exploration. Its locomotion
system with individually steered wheels allows for high
maneuverability in rough terrain and stereo cameras as its
main sensors ensure the applicability to space missions.
We implemented software components for self-localization
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in GPS-denied environments, autonomous exploration and
mapping as well as computer vision, planning and control
modules for the autonomous localization, pickup and
assembly of objects with its manipulator. Additional
high-level mission control components facilitate both
autonomous behavior and remote monitoring of the system
state over a delayed communication link. We successfully
demonstrated the autonomous capabilities of our LRU at the
SpaceBotCamp challenge, a national robotics contest with
focus on autonomous planetary exploration. A robot had
to autonomously explore an unknown Moon-like rough ter-
rain, locate and collect two objects and assemble them after
transport to a third object – which the LRU did on its first try,
in half of the time and fully autonomously. The next mile-
stone for our ongoing LRU development is an upcoming
planetary exploration analogue mission to perform scientific
experiments at a Moon analogue site located on a volcano.

Keywords Autonomous mobile robots · Planetary
exploration · Robotic challenge · Navigation ·
Manipulation · Autonomous task execution

Mathematics Subject Classification (2010) 68T40 ·
70B15 · 93C85 · 68T45

1 Introduction

The Lightweight Rover Unit (LRU) [72] is particularly
suited for planetary exploration. This field of application
challenges the design of a robot in many aspects. Economic
transportation to the planet forces the rover to be light. After
arriving at the planet’s surface, all sensors and actuators
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need to work under the alien conditions. Even when faced
with heavy communication delay and blackouts, the ground
station team must be able to interact with the rover on a
high level. As the delay renders teleoperation inefficient, the
rover has to solve most tasks autonomously. It has to nav-
igate unknown, rough terrain to explore the area and reach
scientifically relevant locations safely. Therefrom, the rover
has to manipulate the environment to take samples or to
assemble technical equipment.

We designed the LRU to cope with the challenges of
planetary exploration. Its unique construction is particularly
lightweight (approx. 40 kg) and thus economic to transport
into space. The LRU solely relies on sensor concepts (Iner-
tial Measurement Unit (IMU), stereo cameras) which work
in alien conditions and are currently employed in space mis-
sions [28]. The LRU’s locomotion system can drive over
rough terrain and is highly maneuverable due to its four
independent wheels, each of them having individual steer-
ing and driving motors. A force-controlled manipulator on
the back of the rover picks up and assembles objects. The
autonomy of the LRU stems from a variety of software
components. We developed and integrated modules for on-
board self-localization in GPS-denied environments, local
and global mapping, fast obstacle avoidance, path planning,
autonomous exploration, object detection and pose esti-
mation, manipulation planning, platform and manipulator
control, inter-process communication, autonomous high-
level task execution as well as for a ground station mission

control and the communication to it over a restricted and
delayed connection.

We evaluated the LRU’s capabilities in the official Space-
BotCamp 2015 challenge, which posed typical challenges
of a planetary exploration mission. The robot had to find
two known objects in an unknown Moon-like rough terrain
and assemble them at a base station, as shown in Fig. 1.
The rover had to fulfill these tasks in a single run. Com-
munication to the rover was heavily delayed as well as for
most of the time unidirectional, restricting the ground sta-
tion team to merely monitor the system. Therefore, the rover
needs to solve all tasks autonomously, meaning that it has to
cope with an unknown environment using its on-board sen-
sor data only. In this work, we present the LRU and explain
how it solved the challenge under all these constraints fully
autonomously and successfully completed the mission in a
single run in just thirty minutes, half of the time limit.

Since our success at the SpaceBotCamp in 2015, we
continued the development of the LRU to extend its capa-
bilities and move further in the direction of future space
missions. Our next major milestone will be a lunar explo-
ration analogue mission as part of the Robotic Exploration
of Extreme Environments (ROBEX) project. The LRU will
have to demonstrate its abilities in a Moon-analogue rough-
terrain outdoor environment on Mt. Etna, Sicily, Italy in
summer 2017. In order to gather scientific data on the crust
model of the Moon – or on the composition of Mt. Etna in
the analogue mission – the task for our rover is to deploy

Fig. 1 Our Lightweight Rover Unit (LRU) picks up the battery (yellow, top left) and the sample (blue container, top right) and assembles them at
the base station (red, bottom) during the SpaceBotCamp challenge
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seismic measurement instruments. Similar to the SpaceBot-
Camp, these upcoming experiments will feature a limited
communication channel to a far-away ground station and
thus require a high level of autonomy of our robotic system.

This work constitutes a significantly extended version
of our paper “The LRU Rover for Autonomous Plan-
etary Exploration and its Success in the SpaceBot-
Camp Challenge” [58], for which we received the IEEE
International Conference on Autonomous Robot Systems
and Competitions (ICARSC) 2016 best paper award. Its con-
tent goes beyond the original paper by both extending
the sections of the conference paper as well as adding
novel sections on our manipulator workspace analysis, the
system’s IT architecture, its power distribution unit, our
next steps towards space qualification, our algorithms for
autonomous exploration, manipulation planning, platform
and manipulator control, our plan and world representations
for autonomous mission control, our high-fidelity simula-
tion environment and its usage as well as the upcoming
ROBEX space analogue mission.

We start this work with a survey of related rover sys-
tems in Section 2 and then give an overview of the LRU
in Section 3, detailing our robotic system’s hardware com-
ponents and highlighting related aspects. We present our
software architecture in Section 4 and describe the LRU’s
individual software modules as well as our ground station
mission control setup in its subsections. In Section 5, we
introduce our high-fidelity Software-in-the-Loop (SiL) sim-
ulation that allows us to test a multitude of the LRU’s
software components early on in different simulated envi-
ronments. Afterwards, we discuss our success in the Space-
BotCamp challenge in Section 6 and outline the upcoming
ROBEX lunar exploration analogue mission in the sub-
sequent Section 7. In our final Section 8, we summarize
our contributions w. r. t. the LRU as a rover prototype for
autonomous planetary exploration and provide an outlook
on topics of ongoing and future work.

2 Related Work

The earliest space exploration rovers, Lunokhod 1 & 2
(USSR), were landed on the Moon in 1970 and 1973. The
relatively close proximity of the Moon allows for a teleoper-
ation of lunar rovers from Earth. Also Yutu (China), landed
in 2013, was mainly teleoperated from Earth, although it
was capable of some autonomy for hazard avoidance and
navigation. For missions on Mars, due to the long distance
from Earth to Mars and the resulting high round-trip com-
munication latency of eight to forty minutes, teleoperation
becomes less feasible. Thus a high degree of autonomy of
the rover system is necessary for efficient missions. The
experiences gathered with the successful and ongoing Mars

rover missions like the Mars Exploration Rover Mission
(MER) [46] and the Mars Science Laboratory (MSL) [28] as
well as earlier considerations on rover autonomy [69] clarify
requirements and space-suitable options regarding hardware
as well as software components. Autonomous navigation
solutions for unstructured and unknown environments tak-
ing robot safety, resource management (e. g., power con-
sumption) and general robustness into account are avail-
able in many robotic research areas such as autonomous
driving, e. g., [67, 76], search and rescue [57] and plane-
tary rovers / field robotic systems tested on Earth [26, 43,
60, 65, 73]. These systems, including all systems participat-
ing in the SpaceBotCamp 2015 challenge, use a variety of
optical sensors for navigation, most commonly laser scan-
ners and active RGB-D cameras [14, 66] or a combination
of those, e. g., [32, 60, 65]. In contrast, in recent planetary
rover missions like MER and MSL, the rovers only perceive
with stereo vision systems for obstacle avoidance and nav-
igation and use other types of cameras for a multitude of
scientific purposes. For example, Curiosity [28], the latest
and most advanced Mars rover, employs a total of 17 cam-
eras: Two front and two back stereo hazard camera pairs
(HazCams), two navigation stereo pairs (NavCams), one
mast camera stereo pair to capture panoramic images of the
Mars surface, a camera attached to a robot arm (MAHLI),
a camera to control the descent system (MARDI) and an
optical chemical measurement instrument (ChemCam). The
advantages of camera systems are the availability of both,
mature algorithms and compact, low-power flight-qualified
cameras, whereas flight-qualified versions of other sensors
for navigation and mapping, like suitable laser scanners, are
currently not available [28, 46]. Sensor-specific noise char-
acteristics and a typically less dense depth reconstruction
of passive stereo camera systems pose a higher challenge
on navigation and mapping algorithms compared to laser
scanner-based systems [26, 60, 65], which allow high-
precision measurements within a longer range of distances.
Similar to past and current Mars exploration missions, the
rover described in [73] as well as our own system only
employ stereo camera systems. We use a single camera pair
for navigation and mapping and another one for close-range
object pose estimation for autonomous manipulation. For
the SpaceBotCamp scenario, we added an additional color
camera for long-range color-based object detection, but we
can easily replace it by another type of scientific camera
for mission-specific purposes. We refer to further related
work concerning the individual aspects of our system in the
respective sections throughout this work.

3 System Overview

Our system setup, presented in Fig. 2, consists of the LRU
rover as well as a ground station to monitor the robot’s
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Fig. 2 System overview showing the key components of the ground station GUI for monitoring and the rover hardware modules

state and to provide remote access for shared autonomy
approaches. In the SpaceBotCamp scenario, described in
more detail in Section 6, the communication link was
artificially delayed by two seconds in each direction, which
approximates the delay between a ground station on Earth
and a rover on the Moon. In the following, we give details
on the rover’s hardware and present its software components
in Section 4. We designed the LRU for operation in rough
terrain by equipping it with four individually powered and
steered wheels, which are connected to the rover body via
two actuated bogies. At its front, the LRU rover has a pan/tilt
camera head for navigation and object search. At its back,
we mounted a manipulator for object pickup and assembly
as well as an additional pair of stereo cameras for precise
object pose estimation during manipulation.

3.1 Kinematics

The LRU has a total length of 1090 mm and a total width
of 730 mm. It is designed to drive in rough terrain at a max-
imum velocity of 1.1 m/s. In Fig. 3, we give an overview
of the LRU platform. It consists of four individually pow-
ered and steered wheels, attached to two bogies that each
make use of a Serial Elastic Actuator (SEA). That way, the
rover features active and passive suspension in both bogies.
The active element allows controlling the bogie’s rotational
position to adjust the center of mass in order to distribute
wheel load in rough terrain or improve stability on steep
slopes. The active-passive combination allows to imple-
ment an active dynamic body damping. Also all components
attached to the rover body benefit from that additional
degree of freedom by increasing their workspace, e. g., by
repositioning the attached camera beam for a better view of
the environment. Each actuator in the SEA, the wheel hub
and steering drives utilizes an ILM38 drive train that was
designed for space applications, see Section 3.2. Compared
to other rover concepts, the LRU profits from its individu-
ally steered wheels, which allow for driving sideways and

turning in place, thus increasing maneuverability. Further-
more, our four-wheeled kinematic has advantages in terms
of compactness and weight compared to six-wheeled rovers.

3.2 Locomotion

As for the kinematics, reliability and robustness in rough
terrain are also most important for the Locomotion Sub-
System (LSS). Due to their high peak torque and very high
torque per volume and weight ratio, we use permanent mag-
net synchronous motors [70] in every rover joint. Brushless
DC (BLDC) motors use fewer mechanical components and
show no mechanical friction or cold welding risk because
of brushes. All drawbacks of brushes like brushwear, elec-
tromagnetic interference due to brush-sparking and need
for lubrication or atmosphere are avoided completely. Fur-
thermore the heat dissipation is improved compared to
conventional DC motors. The windings are on the stator,
which has a direct conductive heat path to the exterior.
Two actuator unit sizes were developed to meet the dif-
ferent requirements. We employ the small ILM25 unit to
move the pan/tilt unit and the bigger ILM38 unit for wheel
traction and steering. The name indicates that it is an inter-
nal rotor motor with the number showing the diameter of
the motor stator in millimeters. Originally the ILM38 unit
(rated torque: 5 Nm), shown in Fig. 4, has been developed
for the Mobile Payload Element (MPE) rover prototype [29]
and was developed further to the LRU actuator module. We
employ it for traction as well as for steering and actuat-
ing the serial elastic module. To actuate the rover’s pan/tilt
unit [71], the concept was scaled to a smaller ILM25 mod-
ule (rated torque: 2.4 Nm). This unit is actually used and
validated in an ongoing DLR space mission called Mobile
Asteroid Surface Scout (MASCOT) [50, 51]. Concerning the
sealing of the drive units, we carried out a closer investiga-
tion. We tested the motor unit with different combinations of
shaft surface coatings and Polytetrafluoroethylene (PTFE)
seal elements. Several tests were executed in a thermal
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Fig. 3 LRU platform top and side view

vaccum chamber to determine the best trade-off for low fric-
tion, good tightness and longterm stability. With a proper
sealing solution, robust commutation electronics and space-
proven lubrication, the drive unit can be considered as a
component designed for space applications.

Our wheel design, as shown in Fig. 5, combines a flex-
ible spring metal sheet running surface with a central rigid
ring and thereby profits from both advantages of wide and
narrow wheel types. The wheel-to-ground contact is focused
on the rigid ring on hard and flat terrain, which leads to low
rolling resistance. When driving in soft terrain, the flexible
running surface ensures reduction of sinkage and, in com-
bination with the grousers, gives the wheels maximum grip.
We are able to adapt the stiffness of our elastic wheels by
changing the number, geometry and material of the spokes,
allowing them to absorb shocks directly in the wheels. In
Fig. 5b and c, we present wheels with six blade springs
(higher stiffness) and with three laser-sintered titan spokes
(lower stiffness) respectively. The, more complex, laser-
sintering production allows a precise definition of the elastic
behavior in three dimensions based on finite-element anal-
ysis. While stiff behavior can increase the precision when
grasping objects with the manipulator, lower stiffness helps
to absorb shocks when driving in rough terrain.

3.3 Manipulator Selection and Adaptation

Fulfilling the goals of the SpaceBotCamp challenge
required the robots to pick, place and manipulate objects.
We considered three different manipulators to address these
tasks: The in-house developed Light Weight Robot III (LWR
III) [35], the Jaco2 manipulator by Kinova [8] and the
P-Rob manipulator by F&P Personal Robotics [11]. We per-
formed an analysis of the workspace of the aforementioned
manipulators using Reachability maps [24, 75]. For a com-
parison of effective dexterity and workspace volume, we
employed high-resolution workspace models that we gen-
erated under consideration of all collisions between rover
and manipulator as well as self-collisions, using the hybrid
generation method introduced in [48].

In Table 1, we summarize the collected analysis data. We
derived constraints on weight and payload capacity from
the mechanical design and the SpaceBotCamp challenge
description. Based on the assumption that general manipu-
lation tasks are easier with a highly dexterous manipulator,
we compare the workspace volume under different dexter-
ity conditions: A ≥ 0 % dexterity condition reflects the
full workspace volume that the manipulator can reach. The
workspace gets smaller as we filter out volumes of lower

(a) Sectioned view of drive train with ILM38
motor unit

(b)  Photo of ILM38
unit with closed casing

(c) Photo of ILM38 unit
with open casing

Fig. 4 Drive train of the LRU’s locomotion sub-system (LSS)
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(a) Sectioned view of wheel hub (b) Wheel with six blade
springs (top) and single
blade spring (bottom)

(c) Wheel with three laser-
sintered titan spokes (top)
and single titan spoke (bot-
tom)

Fig. 5 LRU wheel hub and wheel spoke materials and configurations

than ≥ 50 % and ≥ 75 % dexterity. Applying this crite-
rion, we observe that the P-Rob manipulator has a small
usable workspace volume to begin with and significantly
low dexterity in comparison to other manipulators. The LWR
can operate in a large workspace volume with high dexter-
ity, we however discarded it due to its heavy weight. We
thus selected the Jaco2 manipulator as it provides the most
dexterous abilities throughout its workspace volume while
satisfying our weight constrains.

Any potential collision of the manipulator with the rover
itself decreases the effective workspace. Thus we searched
for a mounting point that does not lead to significant
reductions in workspace quality. Moreover, we aimed for
maximizing the reach of the manipulator for objects on the
ground. We thus generated multiple workspace models for
different mounting pose of the manipulator, see Fig. 6 for
an overview over variations of the mounting angle. While
we model the manipulator with geometric primitives, i. e.,
cylinders and spheres, we represent the rover’s body as a
dense pointcloud of its hull, which we generated from its
CAD model. Such a setup allows for computationally effec-
tive point-to-primitive collision checks during workspace
generation, during which we employed a discretization with
1 cm voxel resolution and 6000 end-effector orientations in
each voxel. We studied mounting poses in terms of the reach

of the manipulator along a flat ground plane, its reach to
the planned storage spaces on the rover’s sides as well as its
ability to reach the top of the rover’s body for the possibility
of additional object storage. We determined that a mount-
ing angle of 45 deg is ideal w. r. t. the criteria listed above.
Our analysis, depicted in Fig. 6, showed significant dexter-
ity reductions due to collisions of the manipulator with the
pan/tilt unit. We therefore decided to mount the manipulator
at the back of the rover. To enhance the grasping capabili-
ties of the six-degree-of-freedom manipulator, we optimized
the gripper w. r. t. the shapes of the target objects. Further,
we implemented a custom control framework for the Jaco2
manipulator in order to actively control its contact forces
during manipulation, see Section 4.5.2 for details.

3.4 Sensor Setup

In the context of space missions, it is essential to limit
the weight and power consumption of the components to a
minimum. Further, several test concerning heat, vibration,
radiation, etc. have to be passed. Thus, pure camera-based
systems are preferred to the integration of LIDAR sys-
tems, which typically are heavier, consume more power and
are hard to qualify for space applications. Consequently,
we based our complete autonomous navigation, mapping

Table 1 Manipulator weights, payloads and workspace volumes at three different dexterity thresholds (“≥ 0 %” indicates the full workspace)

Manipulator Weight Payload Dexterity

≥ 0 % ≥ 50 % ≥ 75 %

LWR III 22 - 30 kg 7 - 14 kg 2.6673 m3 1.8545 m3 1.4518 m3

P-Rob 20 kg 3 kg 1.5715 m3 0.7525 m3 0.2389 m3

Jaco2 5.3 kg 1.5 - 2.5 kg 1.9505 m3 1.8713 m3 1.2746 m3

J Intell Robot Syst (2019) 93:461–494466



Fig. 6 Different mounting poses with the Jaco2 manipulator’s collision model in stretched configuration and a cross-section of the corresponding
capability map

and exploration on a monochrome stereo camera system.
Its baseline of 9 cm results from the demand for precise
close-range data for navigation. We use an IMU in the
rover’s body to improve its ego motion estimation through
sensor fusion. An additional center camera gives us color
information for object detection. We however are able to
exchange the center camera for other types of scientific
cameras depending on the particular mission requirements.
The cameras’ fields of view are increased by using a pan/tilt
mechanism that is able to pan the cameras ±180◦ and to
tilt ±90◦ [71]. We employ an additional pair of color stereo
cameras at the back of the rover to get unobstructed, high-
resolution vision data for object pose estimation during
manipulation. With a baseline of 6 cm, we adjusted these
cameras to the manipulator’s workspace and use them only
during object pickup and assembly.

3.5 IT Architecture

In Fig. 7 we present an overview of our IT architecture,
including the LRU rover, an on-site lander, our ground sta-
tion as well as a channel simulator employed to simulate the
delayed, constrained and lossy communication link between
the ground station on Earth and both rover and lander resid-
ing far away on a foreign planet or moon. The role of the
lander in our setup is limited to converting and forwarding
the communication from the rover in a format appropri-
ate for the transportation over the aforementioned link, as
described in more detail in Section 4.7.2. The ground station
contains a computer as the counterpart of the lander w. r. t.
the communication link. It distributes the rover data to a set
of operator workstations.

In order to build a truly autonomous system, we perform
all required computation on board the LRU. As its main

On-Board Computer (OBC), we employ a standard indus-
trial PC with an Intel Core i7-3740QM CPU (2.70 GHz)
for all tasks that either process high-bandwidth data, like
our vision-based perception, navigation and search & explo-
ration pipeline, or that pose high computational demands
like manipulation planning. In addition, we execute low-
frequency tasks, such as high-level mission planning, on
the LRU’s main computer. We added a Spartan-6 FPGA
extension board to run the computationally intensive stereo
matching. For the high-frequency, real-time control loops of
the manipulator controllers, we employ an additional com-
puter board with an Intel Atom E3845 CPU (1.91 GHz) in
order to separate them from the i/o-intensive image pro-
cessing pipeline, thus helping us to satisfy the controller’s
real-time requirements. After the SpaceBotCamp, we also
moved the, however less time-critical, platform control
algorithms from the main computer to the Atom board,
as indicated in Fig. 7. We connect the Jaco2 manipulator
to a separate BeagleBone Black computer board with an
ARM Cortex-A8 processor, which we extended through a
custom-made cape in order to be able to address the manip-
ulator through its high-frequency RS485 interface. While
the computers are connected with each other via Ethernet,
we employ Ethernet for Control Automation Technology
(EtherCAT) for communication with the platform motor
controller. It is a standardized, deterministic real-time bus
that allows us to actuate the motors in sync with each other.
The utilization of terrestrial components for computation
hardware allows faster research cycles on novel software
concepts. As stated above, we however run parts of our
computationally intensive stereo image processing pipeline
on an FPGA. The corresponding VHDL code thus could
also be transfered and implemented on space-proof, i. e.,
radiation hardened, FPGAs in the future.
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Fig. 7 IT architecture overview including the LRU’s components as
well as the communication link between an on-site lander and the
ground station, which we artificially degrade in order to simulate

a delayed and constrained link between Earth and foreign celestial
bodies. All computation required for autonomous robot behavior is
performed on-board the LRU

3.6 Power Distribution

An electro-mobility vehicle like the LRU demands for a
robust and efficient energy management and distribution
system, the so-called Power Control and Distribution Unit
(PCDU). Its main system requirements are reflected by the
incorporation of a hierarchical safety design that is oriented
towards the major safety guidelines for space technology,
namely safety for the mission and safety for the equipment.
According to these guidelines, the PCDU is responsible for
the power supply of its payloads, uninterrupted choice of
the best available power source and the delivery of telemetry
data regarding the status of power sources and supply buses.

As depicted in Fig. 8, the PCDU receives the incoming
power from either a pair of rechargeable Li-Ion batteries
with a capacity of 208 Wh each or an external power sup-
ply. The supplied voltage can be in the range of 23 V to
30 V. A hierarchical power path controller selects the con-
venient power source according to its availability, i. e., the
external power supply has the highest priority followed by

the first and the second rechargeable battery. The PCDU
incorporates a network of bus controllers that control and
monitor the different power buses of the system. Each one
of the bus controllers controls a bi-stable relay that feeds
power either to the main bus or a connected sub-bus. In case
of failures, e. g., over-current episodes on the sub-buses,
the corresponding bus-controller can detect the failure and
switch off the failing bus segment without interfering with
the other power buses. The power is switched from the
power path controller to the so-called main bus without any
conversion by the main bus controller, which in turn serves
as a central distribution rail for the following sub-buses:

– Main OBC bus: incorporates a DC/DC converter with
12 V output and powers the OBC and its subcomponents

– High Voltage Payload (HVPL) bus: includes a DC/DC
converter for 24 V based payload, such as the Jaco2
manipulator

– Low Voltage Payload (LVPL) bus: includes a DC/DC
converter for 12 V based payload devices, such as exter-
nal cameras, other sensors and computer boards
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Fig. 8 The Power Control and Distribution Unit (PCDU) incorporates
comprehensive switching of power buses and the automatic selec-
tion of the most appropriate power source. Mobile power sources

(rechargeable Li-Ion batteries) can be hot-swapped. Telemetry data is
fed to the on-board computer via USB

– Drive bus: receives and switches power directly from
the main bus to supply the twelve drive controllers of
the LRU

The PCDU main controller is responsible for collecting
telemetry data from the bus controllers as well as for send-
ing commands in order to achieve a safe and stable boot-up
of the LRU system and to enable bus control capabilities
for the OBC or a distant ground station. The transmitted
telemetry data comprises information about all bus-related
voltages and currents, status of batteries and status of all
bus controllers. A further controller – the so-called power-
failure controller – is independent from all other controllers
and restores a stable boot condition in case of a complete
power failure. For this purpose, the controller manages an
independent power source that is charged as soon as power
is stabilized on the LRU. In case of a power failure, all
busses are switched off by this controller by redundant
relay switching lines. Furthermore, this controller serves
as a watch-dog for the emergency power-off button. The
system’s safety structure ensures that in the case of an elec-
tronics failure, the high level components, such as the OBC,
are able to proceed their operation and that the autonomous
task execution and failure handling modules as well as the

ground station are notified and can decide on further steps.
As the development of the PCDU along with an adaption
of the LRU’s infrastructure consumed more than a year, we
did not yet test it during the SpaceBotCamp challenge, but
integrated it for the ROBEX missions.

3.7 Next Steps to Space Qualification

The institutes of the German Aerospace Center (DLR)
always focus on the aspect of space qualification of hard-
ware and software developments when designing new robot
prototypes in the context of space applications, which is
also an important point during the development of our LRU.
The LRU is a continuous development related to the lunar
lander mission of the European Space Agency (ESA). For
this mission, the German space industry has developed a
small sample-retrieval mobility unit, named Mobile Payload
Element (MPE), to collect soil samples and inspect the envi-
ronment near a pol-landed lander [29]. During this project,
the Robotics and Mechatronics Center of DLR (DLR-RMC)
held the responsibility for both the Locomotion Sub-System
(LSS) as well as for the Autonomous Payload Element
(APE), a perception and processing unit. We implemented
these key modules as part of our LRU with the aim of
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qualifying them further to reach the space readiness level,
which is relevant for future mission considerations. In
the space sector, the Technology Readiness Level (TRL)
describes the development status of single components as
well as full systems. The MPE rover development, lead by
the OHB System AG, has reached an overall level of TRL 3,
i. e., the state of a proof of concept. The aim of the DLR-
RMC qualification activities is to lift the modules of the LSS
and APE to the stable state of TRL 6, which requires the
modules to be tested in a relevant environment. This is the
level from which on modules are considered for application
in future space missions [50, 70–72].

Another interesting development parallel to the official
ESA mission line is our support of the Part-Time Scien-
tists team from Germany, Berlin, which takes part in the
Google Lunar X-Prize competition [6]. In their Asimov and
Audi lunar quattro rover prototypes [9], the same key ele-
ments regarding the LSS and APE are implemented as in

the MPE and LRU prototypes. At DLR-RMC, we face the
goal of implementing the latest developments in software
and hardware to achieve a high performance and go beyond
the current state of the art, while at the same time devel-
oping carefully chosen key components further, testing and
validating them, in order to reach a level of robustness and
reliability that makes them relevant to be employed in future
official space mission experiments.

4 Software Architecture

We present an overview of our software architecture in
Fig. 9 and describe its individual modules in detail in the
following sections. We established the data flow between
our components via three different middlewares in order
to satisfy their particular needs: Links and Nodes for
real-time control and SensorNet for the distribution of

Fig. 9 LRU software architecture: On-board key components and data flow
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high-bandwidth vision data, both being developed at our
institute. In addition, we connect our higher-level software
components via the widely used Robot Operating System
(ROS) [49].

On board the LRU, we typically run more than 100 soft-
ware processes in parallel, involving the execution of about
100 different libraries and components developed by more
than 20 internal developers. In order to manage this com-
plexity, we employ the process manager of Links and Nodes
to monitor process output, manage runtime dependencies
and allow the compilation of mission settings by combining
pre-defined modules and configurations. In addition, we
developed our own release and dependency management
toolchain RM Package Management (RMPM) to track and
deploy consistent software versions to the LRU as well
as to mockup systems and simulations. Furthermore, in
order to obtain reproducible builds and raise the quality of
our software components, we use a continuous integration
workflow, supported by automated builds and tests on all
code changes committed to our version control system. We
thereby try to bridge the gap between the requirement for
quick prototyping during research and the need for well-
defined software development processes and standards, both
to handle such a complex robot system in its current state as well
as with regard to the direction of future space qualification.

4.1 Perception

The LRU’s perception of the environment is purely vision-
based. In this section, we describe our image processing
pipelines, starting with stereo matching to generate 3D
information, visual odometry as the key input for our
navigation components and long-range object detection as
well as close-range object pose estimation required for
autonomous manipulation tasks.

4.1.1 Stereo Matching and Visual Odometry

We address our five cameras via our own middleware Sen-
sorNet that is based on shared-memory transport in order
to stream high-bandwidth image data at low latency. For

the pair of stereo cameras in the pan/tilt head, we perform
dense stereo reconstruction through Semi-Global Match-
ing (SGM) [33] running on an on-board Spartan-6 LX75
FPGA with a resolution of 1024 × 508 px at 14.6 Hz.
We use the resulting depth data for stereo visual odome-
try, obstacle avoidance and 3D environment mapping. We
chose monochrome cameras for our navigation stereo setup
as they have a shorter exposure time as well as a higher
effective resolution than color cameras. This is important
for the accuracy of our visual odometry estimation [34],
which constitutes the basis of the LRU’s self-localization.
Furthermore, we map the color information of our third
pan/tilt camera onto the navigation cameras’ depth data to
serve as input for our object detection. The additional rear-
facing color stereo cameras are only triggered on-demand
for close-range precise 6D object pose estimation. We thus
can perform their stereo reconstruction on the CPU at a
higher resolution than supported by our FPGA. In order to
achieve an accurate mapping of color to depth data as well
as to obtain a reliable object localization for grasping, the
transformations between the stereo and color cameras as
well as between the rear cameras and the gripper have to
be determined. We automated this process, called hand-eye
calibration [64], by attaching a calibration pattern to the
LRU’s gripper to move it to pre-defined poses within the
cameras’ fields of view.

4.1.2 Object Detection

Detecting both near and far objects with a fixed-lens
stereo setup is challenging as far-away objects likely appear
too small in the image to identify shape properties. All
the SpaceBotCamp objects however have large unicolored
homogeneous surfaces on all sides. For far-range detec-
tion, we thus employ a color-based object segmentation,
coupled with an estimation of the objects’ extents, as out-
lined in Fig. 10. A learning-based classification approach
allows us to achieve a robust segmentation in various light
conditions: The feature vector f (i, j) for each pixel at
coordinates i, j consists of the pixel’s hue, saturation and
value (HSV) parameters for its own color and brightness

Fig. 10 Object detection pipeline: First we classify the pixels in the color image and then cluster them to object hypotheses. Depth information
allows us to check these against the known object dimensions
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Fig. 11 Successfully estimated position and orientation of the base
station object from a partial view and different task-relevant manipu-
lator approach poses shown next to it (red: input point cloud, yellow:
bounding box of object model)

as well as additional features describing its local neigh-
borhood. Since a complete description of a pixel’s neigh-
borhood would exceed a reasonable complexity for its
feature vector, we approximate the neighborhood relation
by solely adding two further dimensions, which describe
the mean intensity at two given neighborhood distances
n1 and n2. Compared to a feature vector including a
complete description of the neighborhood, we are thereby
able to reduce the dimension from 78 to 5: f (i, j) =
{h(i, j), s(i, j), v(i, j), vn1(i, j), vn2(i, j)}

During a training stage, we took a few thousand anno-
tated images of the SpaceBotCamp objects and systemati-
cally varied light conditions, background and object poses.
We then fed the resulting feature vectors into a Naı̈ve Bayes
classifier. After removing outliers and low-pass-filtering
the mask, we combine the resulting segments with depth
data for a cluster analysis. Since depth and angle w. r. t.
the camera are sufficient to estimate an object’s position
and size, we filter all clusters according to the object’s
expected dimensions in order to obtain a reliable and robust
estimation of its location. We experimentally determined a
reasonable maximum distance of 5 m for object detection
with the LRU’s camera system, taking into account robust-
ness and the cost of acting on false positives during the
SpaceBotCamp challenge.

4.1.3 Object Pose Estimation

For object pickup and assembly tasks, the LRU not only
needs to locate the objects, but also needs to estimate their
6D poses relative to the rover’s manipulator with a certain
precision. For example, the pose of the base station has to
be estimated with an accuracy of up to 1 cm for a robust
insertion of the battery object. We first capture the target
object with the LRU’s rear stereo cameras. However, the
uniformly colored objects in the SpaceBotCamp scenario
are challenging for stereo reconstruction, leading to poor
and sparse depth images with a high level of noise. We
therefore employ an additional structured-light projector to
enhance the texture of these objects by projecting an artifi-
cial random pattern onto them. The pattern itself does not
need to be calibrated as it only enhances the structure in
the images and is not necessary for other, textured, objects.
Nonetheless, the stereo data is still noisy and incomplete, as
shown in the red point cloud in Fig. 11, which we successfully
employed to estimate the pose of the base station. In Fig. 12,
we outline the workflow of our object recognition pipeline.

As a pre-processing step, we use the information from
the object detection to mask out the background in the depth
image. Further, we downsample the point cloud computed
from stereo matching, then smooth it and estimate surface
normals using the Point Cloud Library (PCL) [52]. For
the pose estimation itself, we employ our own extension of
PCL’s sample consensus module, which is capable of fitting
more shapes (including boxes, as needed here). Compared
to traditional Random Sample Consensus (RANSAC) meth-
ods, we thereby do not only optimize the inlier count proba-
bilistically, but also minimize the percentage of the shape’s
volume that is contradicting the depth measurements [21].

The SpaceBotCamp base station object, however, is not
always fully visible, thus the best-matching model is likely
to be too small. Moreover, the base station is not a per-
fectly symmetric box, but has other features, such as the
slot into which the battery had to be inserted. This poses
two challenges for the fitting, which is designed only to
handle primitives, like for example the battery object. We
thus added a post-processing step to handle both the basic

Fig. 12 Object pose estimation pipeline: First we pre-process depth images from the rear cameras using information from our object detection. We
then apply primitive-fitting and finally find a feasible solution by comparing against a high-resolution 3D model and checking scene constraints
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(a) Segmented 
camera image

(b) Edges from 3D
object model

(c) Best object pose
hypothesis

(d) Incorrect and dis-
carded hypothesis

Fig. 13 Different stages of the edge-based orientation disambiguation during object pose estimation of the SpaceBotCamp base station object

and more complex cases, consisting of an extension of our
scene description language with the option to define a 3D
model for the fitted shapes. We acquired a 3D mesh of the
base station object through the automatic 3D modeling sys-
tem described in [42]. This highly accurate model is then
placed in all possible positions overlapping the fitted model
to generate a set of 6D pose hypotheses. We thereby exclude
those hypotheses that violate any constraints that we defined
a priori in the scene description, for example stating that
the base station cannot be standing upside down. We then
render all model placement hypotheses and compare the
resulting images with the camera image using an edge
distance-based scoring, next to the volumetric information
scoring from [21]. We give an example of the partially visi-
ble base station object and correct/incorrect box hypotheses
in Fig. 13.

4.2 Navigation

In this section, we describe the components of our nav-
igation stack, both for on-board local and global self-
localization and mapping of an previously unknown semi-
or unstructured environment. We designed our mapping
framework to allow the LRU to operate in GPS-denied, pre-
viously unknown indoor as well as rough-terrain outdoor
environments. We combine fast local mapping for obsta-
cle avoidance with a submap-based online global mapping
approach to create a consistent 3D environment model for
search and exploration.

4.2.1 Fast Local Self-Localization and Obstacle Mapping

For a robust, real-time local pose estimation, we fuse our
visual odometry estimates with wheel odometry and IMU
measurements in a local reference filter [55], which is real-
ized as a keyframe-based Extended Kalman Filter (EKF)
with time-delay compensation [56]. As a first mapping step,
we perform a fast stereo-error adaptive obstacle and terrain
classification on the depth images from the pan/tilt stereo
cameras, as we present in detail in [16]. The depth error of
stereo reconstruction grows quadratically in distance to the
cameras. As the association of 3D data and the original cam-
era viewpoints is lost during its aggregation into submaps,
we have to consider the stereo errors early on. We present a
visualization of the 2.5D terrain classification maps created
during our SpaceBotCamp run in Fig. 14. We can directly
use these cost maps for local path planning and fast obstacle
avoidance.

4.2.2 Online Global Self-Localization and 3D Environment
Modeling

In addition, we integrate the full 3D stereo data, includ-
ing the obstacle classification results, into submaps by
aggregating it along the trajectories estimated by our local
reference filter. We always switch the filter’s frame of ref-
erence into the origin of the current submap in order to
maintain consistency and numerical stability within the fil-
ter as well as to allow for a more accurate integration of

(a) t = 0 min (b) t = 1 min (c) t = 6 min (d) t = 10 min (e) t = 17 min

Fig. 14 Sequence of 2.5D terrain classification maps created during our SpaceBotCamp run
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Fig. 15 Schematic of the SLAM graph for our submap-based global mapping. The highlighted rectangles represent overlapping submaps that
match, resulting in a loop closure constraint that is added to the graph

the filter’s uncertainty estimates into our overlying SLAM
system. For online global optimization of pose and map
estimates, we add the submap origins as nodes to a SLAM
graph, connect them via the filter estimates and then run
the iSAM2 [40] incremental least-squares error minimiza-
tion after each change of the graph. The combination of a
local reference filter and incremental graph SLAM allows
us to benefit from their particular advantages: The filter pro-
vides real-time, long-term stable state estimation for control
and fast obstacle avoidance while the online graph optimiza-
tion provides global pose and map estimates. We provide a
detailed description of our integration of local reference fil-
ters and global optimization as part of our modular SLAM
system in [59].

In order to generate loop closure constraints, we per-
form 6D map matching using the obstacle classifications
and the 3D submap data to compute relative transformations
between pairs of submaps, as we describe in detail in [17].

Based on the most recent SLAM estimates for the pairwise
transformations and uncertainties between submaps, our
map matcher selects and ranks the most promising poten-
tially matching pairs for registration in order to improve its
efficiency over a brute-force approach. By relying on 3D
geometric features instead of 2D image features, we achieve
a higher robustness w. r. t. changing viewpoints and vary-
ing light conditions. After a final Iterative Closest Point
(ICP) refinement step and outlier filtering, we integrate
the resulting 6D transformations into our SLAM graph, as
we sketched out in Fig. 15. We thereby weigh these rela-
tive transformations by the error estimates computed during
map matching. We present a top-down and side view of a
height-colored 3D point cloud map of the SpaceBotCamp
scenario, as created by our mapping pipeline, in Fig. 16.
Beside the 3D point data, we also visualized the under-
lying graph that is created and optimized by our SLAM
system. As recent work beyond the SpaceBotCamp, in

Fig. 16 Top-down and side view of height-colored 3D point cloud
map of the SpaceBotCamp scenario created by our graph-slam compo-
nents (blue ellipsoids: covariance of submap origin position estimates,
blue and yellow lines: graph constraints from filter estimates and

submap matches). The hill in the top left corner, see also Fig. 30, is
clearly visible, its flank however is missing in the point cloud as it was
too steep to be observed from above and the LRU did not look up to
see it from below

J Intell Robot Syst (2019) 93:461–494474



addition to 3D point data, we attach 3D probabilistic voxel-
based maps (resolution: 0.1 m) to each of our submaps
and merge these when computing an estimate for the full
map. We employ the freely available open-source OctoMap
library [38] for the creation of these probabilistic voxel
maps. They allow for an explicit representation of occupied,
free and unknown space and are thus valuable input for our
autonomous frontier-based exploration that we present in
Section 4.3.2.

4.3 Search and Exploration

For planetary exploration, we consider previously unknown
environments as well as scenarios where a low resolution
map, e. g., from a satellite image, is available. As in real
space missions, the rover should be able to execute prede-
fined tasks fully autonomously, but also be able to support
a semi-autonomous operation as low-level remote control
is either impossible or very inefficient due to the afore-
mentioned communication delays. Starting with a rough
map from a low resolution image, a waypoint mission can
be planned, either in order to fully explore the whole ter-
ritory or to explicitly focus on areas of interest where
relevant targets are likely to be found. In scenarios where no
prior information is available, we carry out a frontier-based
exploration.

4.3.1 Object Search

In the SpaceBotCamp challenge, a rough map (1 px =̂ 0.5 m)
was given, however we did not know the location of the tar-
get objects a priori. Thus, in order to find all targets, we
needed to plan waypoints such that they cover the com-
plete field. We therefore divided the area into grid cells
sized according to the LRU’s range of reliable perception.

During the search and exploration in the challenge, we
scanned the area on each waypoint with our pan/tilt sen-
sor head, covering a full 360◦ angle of view around the
rover in order to detect objects. Unreachable waypoints are
approached as close as possible and then skipped, i. e., the
motion is stopped and the full 360◦ view is conducted. If
an object is detected, the rover interrupts its current explo-
ration state to pick up the object and continues with the
next waypoint afterwards. We apply a fast, graph-based
2D path planner for the LRU to navigate autonomously
between waypoints, taking the surrounding obstacles and
local terrain classification maps into account.

4.3.2 Exploration

In unknown scenarios, we employ a frontier-based explo-
ration algorithm [74] in order to maximize coverage. In
comparison to the aforementioned object search with a-
priori knowledge, for which we plan waypoints offline,
our autonomous exploration plans local exploration goals
online. At each frontier to unexplored territory, we find can-
didate exploration goals with respect to the current global
pose and map estimates, as sketched out in Fig. 17. In order
to decide, which goal shall be approached next, the utility
of reaching a goal is estimated. We assess this utility by
taking the distance to the exploration goal and an expected
information gain into account. To prevent the system from
moving unnecessarily towards a dead end, we implemented
a service that repetitively reevaluates the utility of reaching
the current exploration goal.

In detail, we derive the frontiers from our local 2D occu-
pancy grid map similar to [74], except that we split long
frontiers into several separate frontiers in order to guarantee
that the robot can observe the whole frontier from a possible
exploration goal.

Fig. 17 Top-down and side view of the exploration process. We visu-
alize the frontiers between free, known space and unknown space as
clusters of colored frontier cells. At each frontier, a candidate explo-
ration goal is represented by a red rod and labeled in sequence of its

utility. The top-down view shows our 2D occupancy grid map, the local
obstacle point cloud and the detected frontiers. The side view visu-
alizes the 3D probabilistic voxel grid map used for information gain
calculations and the detected frontiers
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Fig. 18 Online task cancellation during exploration: The robot plans a
path to the next goal and starts approaching it. During the approach, the
utility of reaching the goal is repetitively rechecked. The robot detects

that it will end up in a dead end that it has already fully explored and
therefore stops the goal approach before reaching the exploration goal

At each frontier, we define the cell at the center of the
frontier to be a candidate exploration goal gi . At each gi , we
calculate the expected information gain IGi for our stereo
camera sensor readings from the 3D voxel maps created by
our mapping system, as described in Section 4.2. Let X be
the set of voxels that can be observed from gi . The IGi is
defined as the sum of the differences between the current
entropy H and the expected entropy E[H ′] at each voxel
x ∈ X :

IGi =
∑

x∈X
H(x) − E[H ′(x)] (1)

H is calculated using the probability of occupancy of the
current voxel space. To estimate E[H ′], we simulate the
stereo camera at each gi and perform a sparse ray tracing,
taking into account a decreasing probability of observabil-
ity with increasing distance from the stereo camera sensor.
After updating the 3D probabilistic voxel space with the
simulated sensor data, E[H ′] is calculated similar to H . We
select the robot’s next exploration goal to be the goal with
the highest utility value ui . We determine ui for reaching an
exploration goal as introduced by [27], taking the distance
to the exploration goal di and IGi into account:

ui = IGi · exp(−λdi) (2)

We set the constant λ = 0.2 as proposed by [27]. Depending
on the actual distance to the selected exploration goal, the
robot either moves towards the goal or looks at the goal. If
the exploration goal is close to the current robot position,
i. e., within the range of the stereo sensor, the robot looks
at the goal: The robot moves its pan/tilt camera head in the
direction of the goal and updates the voxel space with the

newly received information. If the exploration goal is far
away, the robot plans a path to the goal and then tries to
approach it.

Similar to [36] and [61], we calculate and evaluate ui

repetitively during the goal approach. If ui decreases below
a threshold δ, the goal approach is stopped. This prevents the
robot from moving towards goals leading for example into a
dead end, as shown in Fig. 18. After reaching an exploration
goal or stopping the goal approach, a new exploration goal is
chosen according to the exploration strategy described here.

4.4 Manipulation

To cope with communication delays during remote plan-
etary missions, the manipulation of probes and technical
equipment must be semi-autonomous to the least. Round
trip times from a few seconds (Moon) up to several minutes
(Mars) degrade teleoperation techniques. The manipulation
software of the LRU can autonomously pick and assem-
ble prior known objects. An example is the assembly of the

Fig. 19 Sketch of assembly tasks performed at the base station object
of the SpaceBotCamp
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(a) Placing the sample (b) Inserting the battery (c) Pressing the lever

Fig. 20 Our successful base station assembly at the SpaceBotCamp

base station of the SpaceBotCamp, as shown in Figs. 19
and 20. The most challenging subtask is the autonomous
insertion of the battery object. The rover has to estimate the
relative pose of the base station (see Section 4.1.3), plan
and execute a motion to position the battery in front of the
slot and finally insert it while actively controlling the contact
(see Section 4.5.2). In this section, we describes how the LRU
plans motions for its manipulator and combines its manipu-
lation modules in order to solve the individual subtasks.

4.4.1 Manipulation Sequence

After detecting an object, for example the base station, the
rover must select a strategy on how to place the sample or
insert the battery. We designed a manipulation sequence,
which follows a similar pattern for each object. First the
rover estimates the object pose, see Section 4.1.3, and
approaches the object at a predefined pose. Next the manip-
ulator hand approaches the object at a subsequent prede-
fined pose. Finally the manipulator executes a sequence of
relative impedance-controlled motions to fulfill the task. We
encoded the individual manipulation strategies as relative
transformations in the robot’s world model, as described in
Section 4.6.3. We manually designed the strategies as our
scenario only included known objects and our goal was that
each strategy is predictable by the operator. We split the
individual approach motions into two parts: First the rover
approaches the object based on an initial pose estimation
and in a second step the manipulator approaches the object
based on a second pose estimation. We choose not to imple-
ment a whole-body approach motion in order to minimize
the uncertainties in the tool position, as the navigation of
the rover is subject to much higher uncertainties (due to slip
and sensor noise) then a manipulator motion by its own. In
contrast to the relative impedance-controlled motions that
we could test beforehand, the manipulator approach motions
need to be planned online in order to avoid undesired col-
lisions with the rover itself as well as with the previously
unknown environment.

4.4.2 Motion Planning

To allow for any kind of autonomy during manipulation, the
rover must be able to plan and execute motions of its manip-
ulator. These motions need to satisfy a multitude of different
constraints:

– Task goal constraints: The manipulator motion has to
translate and rotate the hand or object to the desired goal
pose. For example the manipulator has to position the
sample above the scale on top of the base object.

– Continuous task constraints: The manipulator motion
needs to keep the hand or object in a certain position or
orientation. For example the manipulator needs to keep
the sample container oriented upright in order not to
spill its contents.

– Collision avoidance constraints: The manipulator
motion is not allowed to collide with the rover or the
environment, including other objects like for example
the base station.

– Kinematic constraints of the manipulator: The manipu-
lator motion needs to respect the kinematic structure of
the manipulator and its limits.

– Dynamic constraints of the manipulator: The manipu-
lator motion needs to respect the dynamic constraints
of the manipulator, which is limited by the maximum
torques available in its motors. When manipulating
heavy objects, the manipulator thus cannot hold the
object in arbitrary configurations.

Finding a motion that satisfies all these constraints is not an
easy task, due to three main facts:

– High dimensionality of the search space: As the Jaco
manipulator has six joints, the possible search space has
six dimensions. When being discretized with a resolu-
tion of 0.1 deg, the unique configuration space has more
than 2×1021 different configurations, which is roughly
half the number of grains of sand on all of the beaches
on Earth.
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– Non-linear projection: The configuration space of the
manipulator as well as the workspace it manipulates
objects in are connected through the kinematics of
the manipulator, which is a non-linear projection. This
makes it difficult to perform the inverse projection
of collision and manipulation task constraints into the
configuration space of the manipulator.

– Multitude of constraints: As mentioned above, the
manipulator motion is subject to a multitude of con-
straints, with each on its own already posing a challenge
to motion planning. Combining these constraints of dif-
ferent task spaces in a single motion is particularly
challenging.

Our approach faces these challenges with a combination of
different methods, where each individual method addresses
one of the main challenges:

– Rapidly Expanding Randomized Trees (RRT): Our
method for manipulator motion planning is based on
the concept of RRTs [44]. They face the challenge of
high-dimensional search spaces by randomly sampling
the search space and dividing it implicitly into Voronoi
regions. This biases the search for new motions towards
unexplored regions of the search space and reduces the
effect of the curse of dimensionality.

– Linearization of the constraints: To gather all con-
straints in one search space, we linearize the projection
with the Jacobian of the manipulator and project the
individual constraints into the configuration space of the
manipulator [62]. By using this linearization in an iterative
algorithm, the robot can search the configuration space
for possible motions while respecting all constraints.

– Hierarchical composition of constraints: To combine
the individual task constraints in a defined manner,
we prioritize the constraints based on their importance,
similar to the concept of [25]. We enforce these priori-
ties by projecting low-priority constraints into the null

space of the linearization of high-priority constraints.
This allows the robot for example to assign higher
importance to avoiding collisions than to holding the
sample strictly upright.

For example in the SpaceBotCamp scenario, the LRU has to
place the sample onto the ground station. The correspond-
ing approach motion from the rover’s transport container
needs to hold the sample upright (continuous orientation
constraint), reach a pose above the ground station (goal pose
constraint), and is not allowed to collide with the rover as
well as the ground station (self- and environment- colli-
sion constraints). One corresponding motion computed by
our motion planner is depicted in Fig. 21. The manipula-
tor motion fulfills all mentioned constraints and moves the
sample into the correct position above the ground station.
During the SpaceBotCamp scenario, we used the motion
planner for adaptive motions from the manipulator’s home
position to the object-relative approach poses. We how-
ever predefined the approach motions themselves to allow
more thorough tests of these critical motions beforehand
and facilitate the monitoring from our ground station as
predefined motions are easier to predict. In future work,
for example the upcoming ROBEX mission, we will inte-
grate our motion planner with environment models based
on the robot’s sensor data and will employ it to plan whole
approach motions combining the degrees of freedom from
the rover platform as well as its manipulator.

4.5 Control

In this section, we describe the control concepts for both the
rover platform and the rover’s manipulator as used in the
SpaceBotCamp challenge, where locomotion and manipula-
tion have been performed strictly separated. For future chal-
lenges, it is desirable to make use of the combined degrees
of freedom of rover platform and manipulator. Therefore,
the implementation of a suitable whole-body controller

(a) Start (dark) and goal state (light) (b) Planned solution visualized as a flow of
configurations

Fig. 21 A visualization of planning the approach motion from the
sample holder to the base station (red). The given start configuration
(dark) as well as the found goal configuration (light) are displayed on

the left. The computed motion plan, depicted as a flow of configu-
rations on the right, fulfills the orientation constraint of holding the
sample upright at all times
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exploiting the benefits of compliant control algorithms will
be our next step.

4.5.1 Platform Control

The mobile platform of the LRU is equipped with four
independently steerable wheels to guarantee high maneu-
verability. Thus it is able to both turn on the spot and
perform car-like as well as crab-like motions according
to the situation. Therefore, the wheels have to be steered
individually such that the nonholonomic (moving without
slipping) constraints are satisfied. A desired velocity in
three planar directions (translation in x- and y-direction and
rotation about the z-axis) is commanded for the geometric
center of the rover from the high-level software components
like local path planning, as shown in Fig. 9. This velocity
command is then used to compute the corresponding desired
velocities and steering angles for the individual wheels by
solving the rigid body kinematics equations. We assume that
the underlying controllers follow the desired steering posi-
tions and wheel velocities sufficiently fast. Experience has
shown that this simple control strategy is robust and well-
suited for motions in rough terrain, as we demonstrated in
the SpaceBotCamp challenge, see Section 6. Nevertheless,
slip detection and traction control will be implemented to
improve the performance in rough terrain, especially in view
of the ROBEX scenario.

4.5.2 Manipulator Control

During the SpaceBotCamp, two known objects had to be
localized, picked up, and placed in containers attached to the
LRU. Then, the rover had to drive back to the base object,
where the container with the sample had to be placed on
a smooth surface (scale) on top of the base object, and the
battery object had to be pushed into the slot at one side
of the base object. Thus, the different requirements during
the manipulation scenarios ranged from high positioning

accuracy during the approach phase to robust and defined
contact behavior during the manipulation phase, especially
while inserting the battery object into the slot of the base
station. We give a detailed description of the manipulation
sequence and the resulting constraints in Section 4.4. In
order to satisfy this variety of requirements, we used dif-
ferent control modes during the SpaceBotCamp, including
position control and impedance control [13].

To implement the different control modes, we replaced
the commercial Kinova Jaco2 API with in-house con-
trollers. We developed a communication layer based on an
embedded microcontroller, which sends pulse-width modu-
lation (PWM) commands directly to the motor controllers
at the necessary control frequencies of approx. 1 kHz and
allows the implementation of joint-level position and torque
controllers. Building upon the joint torque controllers, we
implemented an impedance control framework in the opera-
tional space of the manipulator, which is determined by the
six Cartesian degrees of freedom of the end-effector. Our
impedance control framework is based on the principle of a
virtual spring-damper system as sketched out in Fig. 22. The
aim is to modify the mechanical impedance of the manipu-
lator, that means the mapping from (generalized) velocities
to (generalized) forces [47]. The setpoint of the controller
xdes can be understood as the equilibrium point of a vir-
tual spring in the absence of external forces. It is used to
compute desired joint torques τ cmd, which are realized by
an inner torque control loop. The resulting robot motion is
fed back to the controller. With this approach it is possible
to define a proper and stable interaction behavior in contact
with both known objects and unknown environments. The
inner torque control loop is compliant and thus allows for a
good contact behavior for small to medium stiffness of the
virtual spring. This approach also leads to a robust task exe-
cution, for example when inserting the battery object into
the slot of the base station, as the active compliance of the
manipulator can be employed to cope with uncertainties in
modeling and localization.

Fig. 22 Impedance control in operational space: The desired posi-
tion in operational space xdes is converted into joint torque commands
τ cmd via a virtual spring (stiffness K imp) and a virtual damper (damp-
ing constant Dimp). The joint torques are realized by a compliant inner

control loop under the influence of external forces F ext. Position and
velocity of the end-effector (x, ẋ) are computed by forward kinematics
and fed back to the impedance controller
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4.6 Autonomous Task Execution

Due to communication limitations, one important require-
ment for a planetary exploration robot is the ability to fulfill
complex tasks without human interaction. To enable a robot
to act autonomously, various task control architectures can
be found in literature, which can be categoriesed into three
approaches: symbolic planners, behavior-based approaches,
and congnition-enabled robot control. Symbolic planners
are the most commonly used architectures to solve complex
scheduling tasks. The task is defined as a target world state
and the planner tries to compute a sequence of actions to
transform the current state into the desired one. Thus, the
state of the environment has to be known and the effects
of actions on it have to be precipitable. Planetary explo-
ration in unknown environments, by definition, violates at
least the first of these two assumptions. Because of these
limitations, Brooks [18] proposed an architecture based on
a hierarchy of simple behaviors. While it was shown to
work well in real-world environments for tasks like avoid-
ing collisions and random exploring, this approach is not
sufficient for more complex tasks like the maintenance of
technical equipment. The cognition-enabled robot control
[15] is bridging these contradictory approaches by propos-
ing a reactive behavior specification while maintaining a
semantic representation of the behaviors. It was designed
for domains, in which the tasks are strongly underspeci-
fied, like service robots doing home chores. Therefore, the
inference of missing information and its transformation into
executable plans are important aspects. In planetary explo-
ration, the task itself however is precisely defined. The
challenge for the robotic system is to fulfill it robustly in
an unknown environment with the uncertainties created by

real hardware and software components. For our architec-
ture, we therefore propose an approach that is similar to the
cognition-enabled robot control with respect to the reactive
behavior of the control by using plans, but, since our tasks
are better specified, we can use fixed implementations of
the plans themselves. This allows us to test each sub-plan in
detail, making the system more robust and also predictable
for a human operator.

In the following sections, we introduce RMC Advanced
Flow Control (RAFCON) as our tool for implementing
autonomous task execution. We present our concepts on
how to implement the plans and how to model the robot’s
world state. Furthermore, we utilize the SpaceBotCamp sce-
nario as an example for the mission design and highlight
the advantages of our approach w. r. t. fault detection and
recovery.

4.6.1 RAFCON

We employ our own powerful visual programming tool
RAFCON [19, 20] for programming complex autonomous
tasks. It is based on hierarchical, concurrent state machines.
For the SpaceBotCamp challenge, we built state machines
with more than 700 states, 1200 transitions and up to eight
hierarchy levels, demonstrating the capability and scala-
bility of the tool. The handling of huge state machines is
possible due to the state machine editor GUI, see Fig. 23,
featuring an elaborate zooming concept. This allows the
user to zoom and pan inside the state machine like in a digi-
tal map and thereby facilitates dynamic expansion or hiding
of details of sub-states deeply nested in a hierarchy.

Moreover, RAFCON supports state re-usability as state
machines, designed by different developers, can be linked

Fig. 23 The RAFCON GUI, showing the state machine that we used at the SpacebotCamp in its central widget
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into more complex state machines by so-called library
states. In scenarios like the SpacebotCamp challenge, state
machine development is typically distributed among several
developers. In our case, one cared for the states concern-
ing computer vision, another prepared the navigation states
and a third wrapped the manipulation functionalities of
the robot into states. Thereby, we can provide all of the
robot’s functionalities in small state machines that we then
combine to more complex ones. Furthermore, these single
building blocks can be re-used in other scenarios, reducing
development time. A human-readable and thus versionable
state machine storage format improves collaborative state
machine creation. Next to linking existing states as libraries,
they can also be used as templates to quickly develop similar
functionality.

The ability to launch state machines at arbitrary states
boosts quick state machine development and makes power-
ful error handling and failure recovery possible. Especially
in complex missions, in which a part of the task has already
been fulfilled, dedicated entry points allow a full system
recovery without performing redundant work. An open plu-
gin concept offers an easy integration of scenario-specific
data visualization. For the SpacebotCamp, we developed a
plugin for remote state machine execution monitoring and
control, as described in Section 4.7.

4.6.2 Plan Representation

A plan is defined as a control program that encodes a strat-
egy for the robot on how to complete a task [15]. As in the
planetary exploration domain, typically all tasks are well
defined, there is no need for an automatic generation of plan
segments. Instead, we propose a modular concept of hier-
archical plans that have been designed beforehand and can
thus be tested in the preparation phase of a mission. Even
though we do not use any plan generation, the robot’s course
of action is not fixed, but depends on its sensor data and the
knowledge it acquires during plan execution. In order to cre-
ate efficient and flexible plans that scale to more complex
problem instances, we set up several design rules, which
we describe in the following. For the implementation of
these rules, we strongly benefit from the features of our tool
RAFCON.

– Modularity: A plan is required for each identifiable
sub-task: Breaking a mission down into the smallest
possible sub-tasks with respective plans is beneficial for
various reasons. First, code duplication can be avoided
by reuse of already implemented plans, exploiting the
library concept of RAFCON states. Second, the task’s
structure and, during execution, the mission state are
better observable in RAFCON’s visualization when all
individual sub-tasks, ideally down to each functional

call, are represented as separate (hierarchical) states in
the control program. Third, it is easier to detect causes
of failures when the individual units are smaller. Fourth,
there is less hidden data flow between different func-
tion calls when they are represented as RAFCON states,
since data flow can be visualized and monitored in our
tool.

– Robustness: A plan should recover locally: In cases
where function calls fail to cope with uncertainties of
the environment, it is important to detect failures and
try to recover locally. For example, a nondetermin-
istic heuristic may find a solution simply by trying
again. For most errors however, more sophisticated fall-
back strategies are necessary. In RAFCON, they can
be added as additional states that are executed on the
detection of failures in individual states. If no local
error recovery is possible, the RAFCON error propa-
gation passes the problem to a higher level in the state
hierarchy.

– Generality: A plan should have no dependencies: The
design goal of a plan is that it can be executed when-
ever the robot has to fulfill the corresponding task. Thus
it should not depend directly on previously executed
plans. Of course, this is not possible if the task itself
depends on previous tasks. Nevertheless, this decou-
pling should be the design goal for each plan. An
example on how to decouple plans is to enforce that
each plan using the robot’s manipulator drives it back to
its home position. This allows all plans to start with the
assumption of a known initial manipulator pose. Intro-
ducing such constraints might slightly reduce efficiency
but make the plans much more flexible.

4.6.3 World Representation

Task execution approaches based on symbolic planning
require a detailed model of the world state for planning. As
mentioned before, this however is unavailable in unknown
environments. In contrast, our approach does not employ the
world representation for direct planning. Instead, it deter-
mines the robot’s course of action by selecting appropriate
pre-defined plans that can cope with uncertainties, unex-
pected events, or failures, as discussed in Section 4.6.2.
Since we do not employ our world representation as the
basis for planning, we avoid problems arising from oversim-
plifications. We use it to model the following knowledge of
the robot:

– Environment properties: Even though the environment
is not fully known, we typically do have significant
initial knowledge a priori to a mission. One example
is information about technical devices that we want to
manipulate. Such knowledge has to be represented in

J Intell Robot Syst (2019) 93:461–494 481



a way that is useful for the robot. We employ a scene-
graph model to represent the world as a tree of nodes
that are linked by 6D transformations to their respective
parents. Each node represents either a physical object
or an abstract entity like a pose, a grasp or a region
of interest. Annotated links between these nodes allow
us to also model uncertainties, incomplete and miss-
ing information. For example, while the initial location
of a certain object might be unknown, we can model
its existence as a-priori knowledge by adding it as a
child of the world node. In addition, we can include
further information as its properties and child nodes,
like for example possible grasps defined relative to the
object. Once we detect and localize the object in the
environment, we can easily update our world model by
re-locating the object’s sub-tree in the scene graph.

– Semantic interpretation: The decisions regarding the
robot’s task execution within our hierarchical plans are
based on the semantic interpretation of explicit and
implicit knowledge represented in the world state. It
thus needs to have a task-related meaning for the robot.
Some facts about the state of the environment, the robot
and its mission need to be represented explicitly, for
example if a button on a technical device has already
been pressed or not. Other knowledge can be derived
from the current state of the scene graph. During pick
and place tasks, an object can, for example, be inferred
to be successfully picked up by the robot once its parent
node in the scene graph is asserted to be the robot itself.

– Memory of experience: Not every piece of informa-
tion can be immediately employed within the (sub-)plan
in which it is acquired. An example from the Space-
BotCamp would be the detection of a target object
while executing the pickup of another. It is important
to store such information in the robot’s world represen-
tation for later use, when deciding on the robot’s next
actions. In addition, storing experience as knowledge
about past failures allows to prevent their repetition and
thereby protects the robot from getting stuck in oscil-
lating behavior. For example, consider a case in which
the robot, from far away, confuses a stone with a target
object to be picked up. When approaching the object,
at closer distance, it is able to resolve its error. With-
out memory however, the robot might drive away and
repeat its mistake from a further distance, approaching
the same stone over and over again. Storing information
in the world model stating that the target object is not at
the stone’s location can prevent such issues.

4.6.4 Mission Control

To deal with the limited communication that is typical for
space missions, we propose to increase the autonomy of the

system. This implies that the mission control itself is to a
certain extend located on-board the robot. As long as no
intervention from the ground station occurs, the system has
to decide on its course of action on its own. For high-level
plans, especially the top level, we developed a clear struc-
ture to implement this behavior with our tool RAFCON. In
Fig. 24, we present a simplified version of our top-level state
machine for the SpacebotCamp mission. Besides the two
initialization states, we created several sub-plan states, like
pick battery, assemble base, etc., and a central decision state
called mission control. This mission control state decides
which sub-plan is executed next based on the current world
state and a set of rules. For example, if a battery object is
detected and no battery has already been picked up, the pick
battery plan will be executed. Afterwards, the mission con-
trol state will be activated to decide for the next step, which
can be dependent on the success or failure of the previously
executed sub-plans. Therefore, the robot’s course of action
is not fixed but results from the robot’s current knowledge
about the world and the task structure, which is encoded as a
set of rules. This structure allows for a flexible control flow
that is easy to understand and monitor. In case failures can-
not be resolved locally, knowledge about them is added to
the world state. It can thus be taken into account for future
autonomous decision making without the need for changing
the state machines themselves.

Based on this structure, we can also simplify the inter-
actions with human operators at the ground station, as
described in Section 4.7. Operators can easily pause, stop
and re-start the state machine as they do not have to reason
about the correct entry point. The robot can determine it by

Fig. 24 Simplified SpaceBotCamp top-level state machine containing
a single decision state, mission control, that decides on which sub-plan
to execute next based on the current world state and a set of rules.
This structure allows for a flexible course of action and simplifies error
handling and human interaction. The pick mug state depicted in this
screenshot refers to the state for picking up the rock sample
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itself based on the knowledge represented in its world state.
Since the world state itself is saved in a persistent way, even
a complete reboot of the robot is unproblematic hence the
state machine can automatically continue with the mission
afterwards.

4.7 Ground Station Mission Control

Being able to monitor and – if necessary – to intervene with
a robot’s task execution is crucial while operating a robot
in unstructured and unknown environments. In contrast to
many field robotics applications here on Earth, the commu-
nication channel to a robot deployed on another planet will
likely be low-bandwidth, severely delayed and unreliable
with potentially extended periods of communication black-
outs in one or both directions. We designed our system and
mission control to efficiently monitor autonomous task exe-
cution as well as to control the robot with periods of shared
autonomy when necessary.

4.7.1 Communication Setup

We present a sketch of our communication setup in Fig. 25.
The autonomous LRU rover is connected via a wireless con-
nection to an on-site lander, as depicted in the left part of the
figure. The only responsibility of the lander is to forward the
communication link over the delayed and unreliable chan-
nel between the robot system and our ground station. All
processes controlling the autonomous robot operation run
on the LRU rover itself. The ground station (mission con-
trol), as shown in the right part of the figure, is split into
a main computer that acts as the communication counter-
part of the lander. In addition, it runs the server processes
for the ground station network in order to distribute the data
among several operator workstations for remote monitoring
and access.

4.7.2 Dealing with Unreliable Communication Channels

To avoid any side-effects of an unreliable communication
channel on the robot’s task execution, all communication
between the robot and human operators at the ground sta-
tion is based on non-acknowledged communication over
UDP between otherwise completely decoupled networks.
Not using any acknowledgment mechanism for communica-
tion fits well to many transmitted data streams of continuous
nature (e. g., sensor data) and allows the robot to operate
in scenarios where no uplink to the robot is available (the
default in the SpaceBotCamp scenario).

For transmitting task-relevant information like sensor
data, planned paths or detected objects, we use ROS in a
multi-master setup with two ROS networks, one on the robot
and one between all ground station computers. We devel-
oped an UDP forwarder to exchange any ROS topics in a
network-transparent way between subscribers and publish-
ers on both sides. High-bandwidth data like images and
point clouds are transferred rate-limited and with reduced
resolution. For specific ROS message types like images, the
data is split and marshalled in a way that allows to reassem-
ble a complete ROS message even if large parts of the
message’s packets have not been received. We, for example,
transmit image data chunk-wise and fill in missing chunks
on the receiver side.

We monitor the execution status of ROS and non-ROS
processes running on the robot through our process man-
ager provided by our Links and Nodes middleware, thereby
gaining access to all processes’ console output. In addition,
we get a clear picture if all required components operate
normally by specifying run and restart dependencies as well
as conditions for how a process normally behaves during
start-up, execution and quitting (defined by regular expres-
sions on console output). The console outputs and execution
state (stopped, starting, started, ready, stopping, error, etc.)

Fig. 25 Communication setup for remote monitoring and access
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per process are forwarded to the ground station via UDP
multicasts, allowing multiple operators and applications to
receive and analyze this information at the same time. The
process manager on the robot side also implements a UDP
command protocol over which start/stop requests for any
process can be triggered from the ground station. To reli-
ably monitor the task execution and high-level system state,
our task control software implements a UDP-based commu-
nication protocol (separate from our mechanism for ROS
messages) with additional message bursts, sequence num-
bers and hash values to cope with packet loss and reordering
during transmission of state information. Similar to the pro-
cess manager, a UDP-based command protocol allows, for
example, to pause and continue task execution.

4.7.3 Remote Access for Shared Autonomy

In case of (imminent) failure or on the observation of abnor-
mal behavior on system- or component-level, we employ
several mechanisms to restore normal operation conditions
and resume autonomous task execution. On a task-level,
we are able to start, stop, pause and step through the
active task execution model. In addition to the main task,
we maintain a repository of standalone (sub-)tasks, which
can be triggered remotely and largely require no specific
start conditions (e. g., lookBackwards, moveManipulatorTo-
HomePosition, detectObjectA). On a process level, we are
able to stop and restart processes and process groups on
the robot. Besides those required to execute a task with
the robot, we also prepared failure handling scripts, which
can be triggered for example to re-initialize hardware com-
ponents or modify parameters. For remote terminal and
direct file-system access, we employed the mobile shell
Mosh [10], which is available as free software, in order to
replace the usual SSH terminal connection.

4.7.4 Mission Control Setup at Ground Station

Our mission control setup at the ground station, as used dur-
ing the SpaceBotCamp challenge, includes three operators
– navigation, (general) system and manipulation operator
– and one supervising operator coordinator. The naviga-
tion operator monitors planning and execution of drive
motions as well as robot localization and mapping through
appropriate 2D and 3D visualizations for navigation frames,
paths and the generated maps (obstacle map, height map,
etc.). The system operator focuses on warning/error mon-
itoring for all processes, (sub-)system restarts, monitoring
and, if necessary, control of high-level task execution. For
this purpose, we use the ROS console together with cus-
tom remote UIs for process management and high-level task
visualization/execution. The manipulation operator moni-
tors the object recognition, manipulator motion planning

and motion execution. All operators have access to all basic
robot telemetry information such as battery voltage, CPU
usage and temperature, emergency status, joint positions
& torques, controller state, and control rate statistics via a
custom UI as well.

5 Simulation Environment

We built a complete Software-in-the-Loop (SiL) simulation
[45] that replicates all the interfaces of the LRU, including
its drives, IMU and visual sensors. Hence, the software compo-
nents may run on both the real and the simulated system
without modifications. The simulation allows parallel soft-
ware development despite limited hardware resources and
pre-testing of software components in different scenarios.
The latter is particularly important for space missions as
real-world tests are difficult for extraterrestrial environments.

5.1 High-Fidelity Robot Simulator

The RoverSimulationToolkit [31] is a general purpose
toolkit for the simulation of planetary rovers, written in
Modelica and currently developed at DLR. It focuses on
multi-body simulations and in particular on the locomotion
subsystem to support the design and development of new
rovers during the early design phases. It allows the user to
quickly design new rovers, modify existing designs, model
a vast variety of environments and to test the rovers in those
environments. In preparation for the SpaceBotCamp chal-
lenge, we employed this toolkit to create a SiL simulator for
the LRU. It replaces the sensors and actuators, i. e., the first
and last row of components in the block diagram in Fig. 9,
with a simulation, while leaving all other parts as they are.
In Fig. 26, on the right, we show the rover’s software stack,
while on the left side, we present what it communicates
with: Either the rover in the real physical world or a sim-
ulation thereof, including both the simulated environment
as well as the rover with its virtual sensors and actuators.
We grayed out the manipulation components as their simu-
lated counterparts are current work in progress and not fully
integrated yet.

When simulating a rover with our RoverSimulationToolkit,
we automatically create an interactive 3D visualization
utilizing the DLR Visualization Library [31]. As we
described in Section 4.2, the LRU’s autonomy is primarily
based on optical sensors. Therefore simulating the cam-
era system became an essential part of our SiL simulator:
We utilize the 3D visualization to create artificial camera
images, which then can be used by our computer vision
algorithms [30, 54]. Therefore we extended the simulation
to provide renderings of camera images with a predefined
frame rate and independently from the user visualization.
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Fig. 26 Software-in-the-Loop (SiL) simulation: The rover software sends actuator commands to either the simulation or to the real rover and
receives sensor data. The simulation is build in such a way that the switch between the two systems does not require any changes to the rover’s
software components

The resulting color or monochrome images are distributed
via our SensorNet middleware, equally to the interfaces on
the real rover system. The usage of multi-threading and
modern CPU extensions [63] allows us to render multi-
ple cameras, each running at a rate of 15 - 30 Hz. The
large bandwidth when handling virtual camera data does
not only affect image creation, but also the image process-
ing pipeline. As we described in Section 4.1, the stereo
matching for 3D reconstruction is a computationally expen-
sive task, requiring the use of FPGAs to run sufficiently
fast. While we can interface our FPGA-based stereo recon-
struction from the simulation, the number of FPGA boards
however is limited. To circumvent this issue, we further
extended our simulated cameras with the option to directly
provide simulated depth data. While these artificial depth
images differ from real stereo reconstructions, in particular
w. r. t. error and noise behavior, they are sufficient for many
steps of unit and integration testing. In Fig. 27, we show
the different parts of our 3D visualization. The left image
shows a visualization as it presents itself to the user: A 3D

visualization of the scenario, in this case the LRU driving
on the surface of the Moon. The other images show virtual
camera views: The center one shows a normal camera image
and the right one a depth image of the same scene, with col-
ors of each pixel denoting the distance from the camera. The
color gradient indicates the receding ground and the large
boulder in front of the rover.

5.2 Simulation Scenarios and Tests

In preparation for the 2015 SpaceBotCamp, we primarily
used an environment derived from the previous challenge in
2013, which was recorded by the team of the University of
Bonn, Germany. They publicly released a 3D model [37, 53]
based on high-precision laser scan data. We simplified their
mesh to speed up the simulation and added a surface texture
to increase the realsim for our computer vision pipeline. In
Fig. 28, we present the LRU in this environment, as well as
the corresponding 3D reconstruction created by the LRU’s
image processing and mapping components.

Fig. 27 Simulatior visualization of the LRU on the Moon (left) with virtual camera image (center) and virtual depth camera image (right). The
color denotes distance from camera, its gradient indicates the receding ground with the boulder sticking out
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Fig. 28 Landscape of the 2013 SpaceBotCup scenario in the simulator visualization (left) and respective 3D point cloud created by our SLAM
system (right)

The upcoming space analogue mission of the ROBEX
project will be at Mt. Etna in Sicily, Italy, as we discuss in
detail in Section 7.2. Tests in simulations will again play
a crucial part in our preparations. Therefore, we recorded
a first set of laser scans and panoramic images of a simi-
lar, Moon-like environment during a preliminary expedition
on the island of Vulcano, Italy in the summer of 2015 [12].
After meshing and simplifying the laser scans, we used the
camera image as a background image as well as to cre-
ate a texture for the 3D model. The result is a realistic
reconstruction of the recorded site as depicted in Fig. 29,
demonstrating the viability of this approach. Since then,
the final mission site has been determined and a detailed
exploration of the site on Mt. Etna was performed in sum-
mer of 2016. Part of this expedition was the recording of
high-resolution images and laser scans of the mission site.
Based on this data, we will create a realistic simulation in
preparation of the upcoming lunar analogue mission [5].

The ultimate goal for the research of planetary rovers
is the deployment on another planet. While for our proto-
type, this is still far off, we can already use simulations to

investigate the behavior of our rover under various condi-
tions present at its final deployment location early on in the
design process. Unfortunately, high resolution images that
include elevation data of the surface of the Moon are hard
to come by. Typically, the highest resolution obtainable is
in the order of 50 cm × 50 cm per pixel [7, 41, 68]. This is
too low for any meaningful simulation. Yet the lunar sur-
face shows a self-similarity where large features resemble
smaller ones [22]. We therefore used images from the Lunar
Reconnaissance Orbiter Camera at [7] with a resolution
of 50 cm × 50 cm per pixel and reduced their metric scale
by a factor of ten. Afterwards, we manually added some
additional features relevant for navigation, such as rocks.
While we cannot guarantee its realism, this virtual Moon-
like terrain optically resembles the surface of the Moon,
as can be seen in Fig. 27. It therefore allows us to test
our image processing pipeline and higher-level components
under Moon-like conditions.

Our high-fidelity simulation allows us to test a variety
of system components, as indicated in Fig. 26. So far, we
primarily employed the simulator to test our stereo vision-

Fig. 29 Simulation of the LRU at a hillside on Vulcano, Italy. Ground reconstructed based on laser scans and panoramic images
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based perception pipeline, our localization and mapping
components as well as our modules for autonomous explo-
ration and high-level task execution. Future work constitute
simulator-based tests of object manipulation tasks, requiring
an extension of the simulated rover to include the manip-
ulator. Due to trade-offs between runtime and precision,
simplified models and approximations as well as different
types of sensor noise, a simulation typically cannot replace
tests with a real robot, in particular for low-level compo-
nents like robot control and raw sensor data processing.
Nonetheless, the simulation allows us to test many com-
ponents and their interplay early on and with less effort
compared to real-world tests. This is in particular invalu-
able to support a continuous system integration, both for
initial interface and communication tests between our more
than 100 software components as well as for regular inte-
gration steps to check if any changes on individual modules
influence or break the overall system behavior.

6 The SpaceBotCamp Challenge

The SpaceBotCamp [2, 3] is a national German robotics
challenge organized by the DLR Space Administration.
Similar to the DARPA Robotics Challenges (DRC) [4] in the
USA, its goal is to stimulate innovations, benchmark state-
of-the-art technologies in the field of autonomous mobile
robotics and kick-start their integration into working sys-
tems. It took place in November 2015 in Hürth, Germany
with ten participating teams from universities and research
institutes from all over Germany. We all had to face a
challenging task focused on autonomous exploration and
manipulation in an unstructured, previously unknown GPS-
denied environment.

6.1 Scenario Description

An autonomous robot system, consisting of one or mul-
tiple robots with a total mass of less than 100 kg, had to
autonomously explore and map an area modeled after a
Moon-like, rough-terrain planetary surface. Therein, it had
to locate and collect both a blue container with a rock sam-
ple (approx. 500 g) as well as a yellow object representing a
battery (approx. 800 g). Both objects had to be transported
to a red base station and finally assembled, as sketched out
in Fig. 19. A high level of autonomy was necessary to ful-
fill the task since an artificial delay of four seconds round
trip time was additionally added to the communication link
in order to simulate the real delay between Earth and Moon.
The bandwidth was limited to 100 Mbit/s, a data rate that
has been reached via Ka-band radio for lunar-Earth dis-
tances by the Lunar Reconnaissance Orbiter launched in
2009 [39]. Furthermore, the uplink to the robotic system

was completely blocked, except for up to three five-minute
checkpoints. During these limited time frames, a ground
station crew was allowed to send commands to the robotic
system over a channel with the same delay and bandwidth
limitation as the downlink. Apart from that, the teams could
only passively monitor the robot. In addition, the ground sta-
tion crew was located in a separate room and thus without
any visual contact to the competition field. After two days
of preparation, each team had a single opportunity to solve
the challenge within a sixty-minute time slot in front of a
public audience.

6.2 Results and Discussion

According to the original rules of the challenge, we were the
only team amongst the ten competitors to fulfill all manda-
tory tasks. In addition, our robot was able to localize itself
in the environment solely relying on its on-board sensors
and created a 3D map of the environment. Furthermore, we
solved the tasks while facing all of the specified communi-
cation constraints from the very beginning of the mission.
We accomplished this in just thirty minutes, half of the given
time frame, and with full on-board autonomy. In contrast,
many other teams softened the challenging communication
restrictions in order to allow for mixed autonomy and tele-
operation approaches. We only took a single one of the three
allowed checkpoints to double-check the object localization
for the base station, as its precision is crucial for flawless
assembly. We thereby solely sent four high-level commands
to the rover during the whole mission while experiencing
the one-way delay of two seconds for all sent commands
and received data. Thus we could demonstrate that we still
had full high-level control of the system despite the delayed
and constrained communication link between ground sta-
tion and LRU. As we perform all processing on-board the
LRU, the bandwidth-limited communication channel was
sufficient to monitor the system. In particular for the cam-
era images and navigation maps, we down-sampled the data
both in frequency and resolution before sending them to the
ground station. Our methods described in Section 4.7.2 fur-
ther allowed us to deal with packet loss that occurred when
approaching the limits of the unidirectional communication
channel without acknowledgment mechanisms. Finally, our
system was the only robot which managed to climb and
descend the steep crushed-stone ramp, shown in Fig. 30,
fully autonomously. We describe the details of our solu-
tion for the SpaceBotCamp challenge throughout this work
together with the respective individual components of our
system, highlighting all aspects relevant for the SpaceBot-
Camp as well as the improvements and extensions we made
since then. In addition, we present our run at the SpaceBot-
Camp in the accompanying video (Supplementary Material)
and at https://youtu.be/wCTkSxcna8o.
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Fig. 30 An overview photo and top-down view of the SpaceBotCamp
scenario. The competition field was 13 m x 18 m. The top-down view
is underlaid with the given rough height map of the scenario with a res-
olution of 1 px = 0.5 m. We scaled the sketched LRU and objects up by
factors two and four respectively for better visibility. The LRU started
next to the red base station on top of a hill of approx. 2 m height. In

the foreground, a blue container filled with a rock sample can be seen,
while the yellow battery object is hidden by a large rock in the left
image. The goal of the challenge was to explore and map the unknown
terrain as well as to locate and collect the sample and the battery object
for the assembly task at the base station

7 The ROBEX Space Analogue Mission

After the success of our LRU rover in the SpaceBotCamp
challenge, we continued to further improve our system,
moving in the direction of space missions. Our next mile-
stone is a lunar exploration analogue mission as part of the
ROBEX project.

7.1 The ROBEX Alliance

The Helmholtz Alliance Robotic Exploration of Extreme
Environments (ROBEX) is a conglomeration of sixteen insti-
tutes and universities that are performing space and under-
water research in extreme environments [1]. This alliance
works together to develop advanced robotic technologies

(a) Active seismic experiment (b) Passive seismic experiment

Fig. 31 Demo scenarios of the ROBEX lunar analogue exploration mission: The LRU has to autonomously place remote units with seismic
sensors in two different configurations
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Fig. 32 LRU at lunar analogue test site on Mt. Etna, Sicily, Italy in September 2016

for exploration in harsh environments like deep sea and
space. The main objective of this alliance is to bring together
deep sea and space research communities, identify com-
mon areas of knowledge and technologies that are shared
between them, and to learn and benefit from each other. In
order to evaluate as well as to showcase the output of the
combined efforts of the ROBEX partners, two demo mis-
sions are planned at the end of the project: One for deep sea
exploration and the other for planetary surface exploration.
The planetary exploration scenario relies on a lunar mission
scenario and will be demonstrated in an analogue mission
on Earth. The mission goal is to study the crust model of
Earth’s moon based on seismic measurements. The neces-
sary measurement instruments are to be deployed by a lunar
rover at different locations around a lander site. Therefore,
in the analogue mission, our rover prototype, the LRU, will
autonomously deploy a passive seismic array of instruments
as well as perform an active seismic measurement campaign
[23].

7.2 The Lunar Exploration Analogue Mission

The lunar surface exploration analogue mission is scheduled
to take place during June - July 2017. The purpose of the
mission is to show the technical readiness of the system in
achieving the scientific challenges in a terrestrial scenario,
as an actual mission on the Moon would be out of the scope
of this project.

For this mission, the selected site should be analogous
to the Moon’s surface and in addition allow real seismic
experiments, as required in the scientific mission scenario.
Mt. Etna on Sicily, Italy was selected as the site for the
analogue mission, as it is of volcanic nature, features a
Moon-like surface and has constant seismic activity. The
mission, i. e., ROBEX-ASN as shown in Fig. 31, consists
of two parts, which are an active seismic experiment and a
passive seismic experiment.

The active experiment will feature an artificial seismic
source at a known location. The LRU will pick up a remote

unit, i. e., a seismic sensor box, from the lander and carry
it to a pre-defined position. There it will places it on flat
ground, detach from the box and wait until a seismic mea-
surement is taken. The LRU will then repeat this process
at a given set of measurement points, as we sketched out
in Fig. 31a. For the passive seismic experiment, a Y-shaped
array of seismic sensors is to be deployed as shown in
Fig. 31b. In contrast to the active seismic experiment, the
passive passive array will record data from the volcano’s
natural seismic activity. Similar to the SpaceBotCamp chal-
lenge, a high level of autonomy for our rover is key to
a successful and efficient execution of the mission. Both
experiments will be controlled and monitored from a ground
station in approx. 30 km distance at the foot of the moun-
tain. We conducted preliminary experiments on Mt. Etna
in September 2016 to test the performance of the key
components needed for the success of the analogue mis-
sion, including the components for autonomous navigation,
mapping and manipulation as well as the communication
setup to the far-away ground station. In Fig. 32, we give
an impression of our LRU operating in the lunar analogue
test site on Mt. Etna. Further, we obtained laser scan and
image data of our target environment in order to reconstruct
the scenario for tests in simulation, as described in detail in
Section 5.2.

8 Conclusion and Future Work

In this work, we have presented the Lightweight Rover
Unit (LRU) as an agile rover system for autonomous plan-
etary exploration. We provide an overview of our system
architecture, detailing both the hardware and software com-
ponents as well as our ground station setup for monitoring
the robot’s state and activities over a delayed and restricted
communication link. We designed the LRU to operate at
a high level of autonomy during rough-terrain navigation,
search and exploration as well as object manipulation tasks.
This is essential to conduct efficient space missions in the
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light of delayed communications to foreign planets. In addi-
tion, our framework for autonomous task execution allows
interactions with the rover at a high level of abstraction
in case shared autonomy is needed. The LRU faced the
challenges posed by the SpaceBotCamp 2015 planetary
exploration scenario with great success and allowed us to
demonstrate fully autonomous operation with very limited
options for monitoring and remote access. The upcoming
ROBEX analogue mission will give us the opportunity to
demonstrate the LRU’s capabilities to support scientific
experiments in a Moon-like outdoor environment, taking the
components of our rover prototype one step further towards
real space missions.

For future work, we aim to move further parts of our
stereo image processing pipeline to FPGAs in order to
unburden the LRU’s main on-board computer as well as to
allow for future space qualification of these components. In
addition, we plan to extend the rover’s object manipulation
abilities by employing a more flexible grasp and assem-
bly planning and by implementing whole-body planning
and control. A future 6D whole-body local path planning
could also allow the LRU to safely overcome tougher rough-
terrain obstacles. Furthermore, we work on joint localiza-
tion and mapping with multiple robots to improve efficiency
through parallelization, robustness through redundancy and
to benefit from complementary capabilities in heteroge-
neous robot teams. We intend to add additional semantic
interpretations of the robots’ surroundings, their own capa-
bilities, and objects of interest to semantic maps and knowl-
edge bases in order to support autonomous exploration,
manipulation and task distribution between several robots.

Acknowledgements We thank the members of the Mobile Robots
Group at DLR-RMC, especially Annika Maier, Bertram Willberg, Flo-
rian Schmidt and Philipp Lutz as well as our system administrators,
in particular Stefan Engelhardt and Stefan von Dombrowski for their
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