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Abstract Multiple autonomous industrial robots can be of
great use in manufacturing applications, particularly if the
environment is unstructured and custom manufacturing is
required. Autonomous robots that are equipped with manip-
ulators can collaborate to carry out manufacturing tasks
such as surface preparation by means of grit-blasting, sur-
face coating or spray painting, all of which require complete
surface coverage. However, as part of the collaboration
process, appropriate base placements relative to the envi-
ronment and the target object need to be determined by the
robots. The problem of finding appropriate base placements
is further complicated when the object under considera-
tion is large and has a complex geometric shape, and thus
the robots need to operate from a number of base place-
ments in order to obtain complete coverage of the entire
object. To address this problem, an approach for Optimiza-
tion of Multiple Base Placements (OMBP) for each robot
is proposed in this paper. The approach aims to optimize
base placements for multi-robot collaboration by taking
into account task-specific objectives such as makespan, fair
workload division amongst the robots, and coverage per-
centage; and manipulator-related objectives such as torque
and manipulability measure. In addition, the constraint of
robots maintaining an appropriate distance between each
other and relative to the environment is taken into account.
Simulated and real-world experiments are carried out to

� Mahdi Hassan
Mahdi.Hassan@student.uts.edu.au

1 Centre for Autonomous Systems (CAS) at the University
of Technology Sydney (UTS), 15 Broadway,

demonstrate the effectiveness of the approach and to verify
that the simulated results are accurate and reliable.
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1 Introduction

The fast advancement of robotic technologies is signifi-
cantly improving the processes and cost-efficiency of many
manufacturing applications, and in turn enabling the shift
from mass production to custom manufacturing [1]. Unlike
the traditional industrial robots used for mass production
where the robots are preprogrammed, and their bases are
commonly fixed, Autonomous Industrial Robots (AIRs) are
able to operate in complex and challenging unstructured
environments. An AIR is an industrial robot, with or without
a mobile platform, that has self-awareness and environmen-
tal awareness that enables it to operate autonomously in
unknown or partially known environments. If the AIR is
attached to a mobile platform, then its definition is the same
as the Autonomous Industrial Mobile Manipulator (AIMM)
[1]. AIRs are able to perform tasks such as exploration for
mapping and localization [2, 3], surface-type identification
[3], task or surface allocation [4], and path planning and
collision-free motion planning [5, 6].

Integrating multiple cooperative AIRs can increase the
capacity and flexibility of an AIR team. As an example,
the two independent mobile AIRs shown in Fig. 1 areUltimo, NSW 2007, Australia
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Fig. 1 Two mobile AIRs performing grit-blasting

required to perform a manufacturing task (such as grit-
blasting) on the three objects. For such applications, using
multiple AIRs can help minimize the overall completion
time of the task, maximize coverage of the target objects,
and hence improve productivity. However, deployment of
multiple AIRs requires effective collaboration amongst the
AIRs during both planning and operation. The AIRs that are
shown in Fig. 1 need to collaborate with each other to per-
form tasks such as deciding on their base placements, task
allocation, and collision-free motion planning.

Surface preparation through abrasive blasting and high-
pressure cleaning, surface coating and spray painting are
common operations in manufacturing. Complete coverage
is an integral part of such operations, i.e. all surface areas
of interest need to be operated on. Coverage Path Planning
(CPP) [7–10] is the task of determining a path that passes
through all points of an area or volume of interest, so as
to achieve complete coverage. For example, Fig. 1 shows
the grit-blasting application where the surface is cleaned by
high-speed grit particles striking the surface. The stream of
grit is directed by a nozzle attached to the end-effector of
each AIR, which aims at a sequence of targets, i.e. a path
generated using a CPP algorithm.

The work presented considers optimizing the collabora-
tion of multiple AIRs for complete coverage tasks in man-
ufacturing applications. The collaboration is optimized by
determining which, out of a set of possible candidate base
placements, should be used for each AIR in a large unstruc-
tured environment. Appropriate team objectives, which are
relevant to the complete coverage task (maximal cover-
age and minimal makespan) and the performance of the
AIRs (maximal manipulability and minimal torque), are
considered.

There are research works in the available literature for
finding an appropriate base placement for a single robot in
different environments, such as the manufacturing environ-
ments [11, 12] and underwater environments [13, 14]. Many
of the methods utilize optimization techniques given objec-
tives that are relevant to the intended task. The problem of

finding an optimal base placement for a robot can be compu-
tationally expensive due to the size of the search space and
hence, researchers often simplify the problem by consider-
ing only a limited number of critical discrete end-effector
positions [15] when optimizing the base placements. The
objectives taken into account for the optimization are spe-
cific to the task, e.g. maximizing manipulability measure
for the high accuracy needed in the milling application [16].
However, other performance measures such as the task-
dependent and direction-selective performance indexes [17]
are also shown to be important under certain conditions
when finding an optimal base placement for a robot. The
problem becomes increasingly complicated when (i) mul-
tiple robots are involved in carrying out the intended tasks
[18], and (ii) when each robot must find multiple base place-
ments such that the robot team can collectively complete the
overall task.

The problem of finding a single base placement for each
of the AIRs to cover a small object was investigated in
[18]. This paper extends the prior work so as to enable
the approach to be applicable for large objects where sev-
eral base placements for each of the AIRs are needed so
as to achieve complete coverage of the object under con-
sideration. The sequence of the base placements that each
AIR needs to operate from is also determined as part of
the approach. In addition to the objectives relevant to the
complete coverage task and the performance of the AIRs,
constraints related to the robots maintaining a safe dis-
tance between each other and relative to the environment are
considered.

The remainder of the paper is structured as follows.
Section 2 provides a detailed description of the prob-
lem. Section 3 presents the methodology, consisting of
three Subsections: Section 3.1 provides an overview of the
approach, Section 3.2 details the mathematical modeling,
and Section 3.3 presents an approach for solving the prob-
lem where a multi-objective genetic algorithm is used. Real-
world and simulated experiments are presented in Section 4
and further analyzed, compared and discussed in Section 5.
Concluding comments and future studies are stated in
Section 6.

2 Problem Description

Figure 2 shows an example application where two AIRs
are deployed to clean an I-beam’s surfaces through grit-
blasting, prior to spray painting the surfaces. At their current
base placements, the AIRs can collectively cover all sur-
faces of the I-beam by following the boustrophedon paths,
and thus achieve the complete coverage goal. However,
from a different set of base placements, it may be impos-
sible to achieve complete coverage. Thus, optimizing base
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Fig. 2 The base of two AIRs positioned appropriately relative to an
I-beam and each other so as to jointly achieve complete grit-blasting
coverage of the I-beam

placements for each AIR relative to the object and other
AIRs is crucial.

The problem of AIR’s base placement is further compli-
cated when the object is larger than the AIR’s workspace
or has a complex geometric shape, and hence multiple base
placements for each AIR are required to achieve complete
coverage of all surfaces. For example, consider the environ-
ment shown in Fig. 3 where two AIRs are deployed to cover
all internal and external surfaces of a boxlike structure. Each
AIR needs to be repositioned several times so as to achieve
complete coverage. Therefore, the problem is to find: (i) the
minimal number, nv of base placements for each AIR; (ii)
the location of the nv base placements for each AIR; and
(iii) the visiting sequence of the nv base placements.

The base placement problem must be solved while con-
sidering the following:

(a) A boxlike structure (b) Simulated scenario

Fig. 3 Two AIRs to operate on a boxlike structure and to cover all
internal and external surfaces

– complete (or above threshold) surface coverage;
– minimal overall completion time (or makespan);
– fair workload division between the AIRs;
– safe distance between the AIRs, and relative to the

environment;
– minimal torque experienced by the AIRs’ joints; and
– high manipulability of the AIRs’ manipulators.

3 Methodology

In this section, first, an overview of the proposed approach
to Optimization of Multiple Base Placements (OMBP) for
each AIR is presented, followed by a detailed explanation of
the mathematical model, and finally, the utilization of multi-
objective optimization.

3.1 The OMBP Approach

The flowchart that is shown in Fig. 4 illustrates the OMBP
approach and where it fits in the overall operation of the
AIRs. Table 1 defines the parameters used in this paper and
their notation. Sets and functions are represented as upper-
case letters, scalars are represented as lowercase letters, and
vectors or matrices are represented as bold lowercase let-
ters. Superscripts are used to help describe the parameter,
whereas subscripts are used as indices.

AIRs are able to perform tasks autonomously. Two of
these tasks are exploration for mapping [2, 3] and local-
ization [19], which are shown in block 1 of the flowchart.
Note that appropriate control architectures [20] needs to be
devised for these tasks.

The next step is communication between the AIRs for
sharing of information, as shown in block 2 of the flowchart.
The AIRs share the obtained information to generate a com-
plete map of the environment. These sets of information are
then used in the OMBP approach (block 3).

As shown in module 3.1 of Fig. 4, the OMBP approach
starts by discretizing the search space for two main rea-
sons: (i) the object on which the AIRs operate is large or
complex, thus multiple base placements for each AIR are
needed, and (ii) complete coverage requires finding feasi-
ble AIR poses for a large number of points that represent
the environment or the object, which is a computation-
ally intense process. Discretization is acceptable for many
manufacturing applications if near-optimal solutions can be
obtained.

Figure 5a shows two sets of discrete base placements
Bi = {bi1, bi2, . . . , bi(nb

i )
} for i = 1, 2 where i is the AIR’s

index and nb
i is the total number of discrete base placements

for the ith AIR. A base placement is defined as the x, y,
z position with respect to a reference point. If the joint on
the base of an AIR is not a full 360◦ revolute joint about
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Fig. 4 A flowchart showing an
overview of the OMBP
approach and its modules

the z-axis, then the AIR’s base needs to rotate a number
of times about the z-axis so as to cover all the reachable
areas from a base placement. For each AIR, the number of
discrete base placements and their density can be decided
based on the application and the capacity of the AIR such
as its workspace size. For example, in Fig. 5a, the two AIRs
have different capacity; thus the density of the discrete base
placements is different for each AIR. If the two AIRs were
identical, then the discrete base placements will be the same
for both AIRs. One challenge is to select a number of base
placements from the set Bi for each AIR, such that the team
objectives are optimized. However, prior to performing the
base placements optimization, simple preliminary filtering
can prevent potentially poor performing base placements
from becoming candidates, hence reducing the size of the
search space. For example, Fig. 5b shows the base place-
ments of the first AIR. The base placements with a cross
are deemed to be too close to the objects and are discarded
to prevent the AIR from having a high likelihood of colli-
sion with the objects. The base placements indicated with
filled red circles are also prevented from becoming candi-
dates due to their predicted low coverage of the objects. The
rest of the base placements are anticipated to have reason-
able to high coverage and are an acceptable distance away
from the objects. These base placements are henceforth
referred to as Favored Base Placements (FBPs). This pro-
cess of finding the FBPs is represented in module 3.2 of the
flowchart.

After determining the FBPs for each AIR, the next step
is to perform the multi-objective optimization (module 3.3).
The aim is to select a subset of FBPs for each AIR and to
determine the visiting sequence of the selected FBPs such
that the team objectives are optimized, and constraints are
satisfied.

The output of the multi-objective optimization is the
Pareto optimal solutions that lie on the Pareto front. The
Pareto front will be discussed in Section 3.3.

Coarse discretization of the search space can be initially
considered; however, if certain thresholds are not met (e.g.
if the overall coverage is not above a threshold) then a
finer discretization (module 3.4) can be generated around
the good performing base placements. In doing so, a time-
efficient option is to keep the best solutions obtained from
the previous optimization run to use as part of the initial
solution/s for the next optimization run. For example, if
Genetic Algorithm is used, then the initial population can
be made up of the best solutions from the previous run com-
bined with the new base placements generated from finer
discretization.

Using the OMBP approach, the index and the visiting
sequence of the FBPs that each AIR needs to visit are deter-
mined, which is followed by the task execution (block 4).
During the task execution and at each assigned base place-
ment of the AIRs, collision-free motion planning [5] is to be
performed by the AIRs in order to cover the paths generated
on the surfaces of the object to obtain complete coverage
[7]. Prior to the motion planning at each base placement,
area partitioning and allocation [4] may also be required to
appropriately partition the overlapped areas that fall inside
the overlapped workspace of the AIRs and to allocate the
partitioned areas amongst the AIRs equitably.

3.2 Mathematical Modeling

In this section, firstly the design variables are presented fol-
lowed by the design objectives. An explanation of how the
objectives conflict with each other is also provided after
introducing each objective. Finally, the design constraints
are expressed.

3.2.1 Design Variables

Let BFBP
i = {βββi1,βββi2, . . . ,βββi(nF

i )} ⊆ Bi be the FBPs asso-
ciated with the ith AIR, for i = 1, 2, . . . , n. Note that for
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Table 1 Nomenclature

Parameter Definition

Bi A set of discrete base placements for the ith AIR

BFBP
i A subset of base placements from the set Bi , called Favored Base Placements (FPBs)

bij j th discrete base placement from the set Bi

βββi A favored base placement from the set BFBP
i , associated with the ith AIR

βββAIR
i (t) Base placement of the ith AIR at time t

di Distance between two adjacent targets along a path of the ith AIR

Fj (Z) A function that calculates the value of the j th objective based on the design variables in Z

δ Minimum distance threshold between the base placements of two AIRs

δs
ik A small negative or positive integer to be added to gik

gik kth nonzero gene in the ith part of a chromosome

I s A set containing the indices of the progress times in T s

J(qf
ikj ) A function that calculates the Jacobian of the pose qf

ikj

Nf (Zik) A function that calculates the number of targets that can be reached with feasible poses of the ith AIR at the kth base placement

n Number of AIRs deployed

nb
i Number of discrete base placements in the set Bi

nD
i Number of nonzero genes selected from dad’s chromosome for the ith part

nF
i Number of favored base placements (i.e. size of the set BFBP

i )

n
g
i Number of genes in the ith part of a chromosome (i.e. the length) associated with to the ith AIR

nM
i Number of nonzero genes selected from mom’s chromosome for the ith part

nj Number of joints of an AIR

nO
i Number of targets associated with the ith AIR

nT
i Total number of targets associated with the ith AIR which represent all surfaces

nv
i Number of base placements to be visited by the ith AIR

nv Number of base placements to be visited by all AIRs

Oi A set of discrete points (called targets) that are associated with the ith AIR and are used to represent all surfaces

Oal
i A set containing the targets that are allocated to the ith AIR

Oik A set of targets that are inside the workspace of the ith AIR at the kth base placement

oikj j th target in the set Oik

qf
ikj A feasible AIR pose that reaches the target oikj with correct end-effector position and orientation, and without collision

Ti (Z) A function that calculates the overall completion time of the ith AIR based on relevant design variables in Z

T s A set containing the progress times of the n AIRs sorted from the lowest time to the highest

T al
i A set containing the maximum torque ratio corresponding to each target in Oal

i

Tim(qf
ikj ) A function that calculates the torque experienced by joint m of the ith AIR at pose qf

ikj

T Rmax(qf
ikj ) A function that calculates the maximum torque ratio of the pose qf

ikj

ti Current progress time of the ith AIR

tc Overall completion time of the task (makespan)

t si Time associated with the ith AIR setting-up and moving to the next base placement

τ
cap
im Torque capacity of joint m of the ith AIR

vi End-effector speed of the ith AIR

vd
i Difference between the maximum and minimum End-effector speeds of the ith AIR

vmin
i Minimum end-effector speed of the ith AIR

vmax
i Maximum end-effector speed of the ith AIR

W(qf
ikj ) A function that calculates the manipulability measure of the pose qf

ikj

Wal
i A set containing the manipulability measure for each target in Oal

i

wikj A weighting factor (from 0 to 1) applied to the end-effector speed of the ith AIR based on the area in which the target
oikj is located

Z A set containing all the nonzero design variables

Zik kth design variable associated with the ith AIR

θj Angle of the j th joint of an AIR pose
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(a) Discrete base placements of two AIRs

(b) FBPs of AIR 1

Fig. 5 Discrete base placements of two AIRs with different capacity,
and the FBPs of the first AIR

the ith AIR, nF
i ≤ nb

i , meaning that the number of FBPs are
less than or equal to the total number of discrete base place-
ments. The design variables are Zik ∈ {0, 1, . . . , nF

i } with
constraints Zij �= Zik ⇐⇒ Zik > 0, i = 1, 2, . . . , n,
j = 1, 2, . . . , nF

i , k = 1, 2, . . . , nF
i , k �= j . As an example,

the design variable Zik = 3 means that the kth base place-
ment of the ith AIR is the third FBP, i.e. the ith AIR is to
visit βββi(Zik) = βββi3 for its kth base placement. Hence, the ith
AIR can visit up to a maximum of nF

i FBPs where nF
i is the

total number of FBPs. If a design variable is given a value
of zero, i.e. if Zik = 0, then one less FBP will be visited by
the ith AIR and the AIR will move from the (k − 1)th base
placementβββi(Zik−1) to the (k+1)th base placementβββi(Zik+1).
Let Z be a set containing all the design variables that have
a value greater than 0, i.e. Z = {Zik|Zik > 0, ∀i, k : i =
1, . . . , n, k = 1, . . . , nF

i }. The AIRs collectively visit nv

FBPs where nv equals the number of design variables in Z.
Similarly, nv

i is defined as the number of FBPs to be visited
by the ith AIR only, and can be determined based on the
number of nonzero design variables that are associated with
the ith AIR. Ultimately, the aim is to obtain values for nv

nonzero design variables such that the team objectives are
optimized while constraints are satisfied.

It needs to be noted that since the number of FBPs to
be visited by an AIR is initially unknown, the extreme, but
unlikely case would necessitate visiting all FBPs, and hence
the number of design variables can be as large as the num-
ber of FBPs. However, an approximation of the number of
FBPs to be visited by each AIR, i.e. nv

i , can be made based
on the size of the object (explained in Section 3.3). This
approximation can significantly reduce the size of the search
space.

3.2.2 Design Objectives

The objectives considered that are relevant to the task of
complete surface coverage and the performance of the AIRs
are (i) maximal coverage, (ii) minimal makespan, (iii) max-
imal manipulability measure, and (iv) minimal AIRs’ joint
torques.

Objective 1 - Maximal Coverage: It is vital that the base
placements selected by the AIRs result in maximum cov-
erage of the surfaces. Figure 6 shows two AIRs that are
deployed to perform the task of grit-blasting. At each
assigned base placement of an AIR, a set of discrete points,
Oik = {oik1, oik2, . . . , oik(nO

i )}, which are used to represent

the surfaces of an object, are located inside the workspace
boundary of the AIR where k is the base placement index of
the ith AIR and nO

i is the total number of discrete points that
falls inside the workspace boundary of the ith AIR. These
discrete points will henceforth be referred to as targets. Due
to constraints such as the joint angle limits of the AIR, some
of these targets may be unreachable by the AIR. In order for
a target, oikj ∈ Oik to be reachable by the ith AIR, a feasi-

ble AIR pose qf
ikj = [θ1, θ2, . . . , θnj ] needs to be found for

the target where θ1 to θnj are the angles of the nj AIR joints.
A feasible AIR pose is one that can reach the target with

appropriate end-effector orientation and position, and with-
out collision, e.g. the pose of AIR 1 (i = 1) shown in
Fig. 6a generated to cover the target oikj . One option for
computing a feasible AIR pose for a target is to use the
lookup table explained in [18]. Another option is to perform
inverse kinematics using a numeric approach (e.g. optimiza-
tion based) or an analytical approach (if possible) and then
performing collision checking to assess feasibility. Deter-
mining a feasible AIR pose should account for minimal
torque on the AIR’s joints and maximal manipulability mea-
sure, for example as explained in [18], so as to calculate the
following objectives more accurately.

At each assigned base placement of an AIR, the reach-
able targets can be joined to form a path using a single robot
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Fig. 6 Two AIRs to cover all
surfaces of an I-beam

(a) An I-beam represented

using targets

(b) Paths generated by

joining targets’centroid

coverage path planning algorithm [7]. Ideally, the gener-
ated paths of the AIRs at all the selected base placements
result in complete coverage paths, such as the paths shown
in Fig. 6b, which cover all surfaces of the object. Thus, to
achieve complete surface coverage, the base placements of
all AIRs should be selected such that all targets represent-
ing the surfaces can be reachable by feasible poses of the
AIRs. The size of the targets shown in Fig. 6a are the same
for both AIRs, since in this example both AIRs are identi-
cal. However, depending on the capacity of each AIR, the
size and the density of the targets can be different, meaning
that the paths generated on the surfaces of an object can also
be different for each AIR.

This objective is therefore to maximize the number of
targets that can be reached by all AIRs. That is, to minimize
missed-coverage:

min
Z

F1(Z) = 1 −
n∑

i=1

nv
i∑

k=1
Nf (Zik)

nT
i

(1)

where Z is a set containing all the design variables that have
a value greater than zero, n is the number of AIRs, nv

i is the
total number of base placements that the ith AIR needs to
visit, nT

i is the total number of targets associated with the
ith AIR which represent all surfaces, and Nf (Zik) calcu-
lates the number of targets that can be reached with feasible
AIR poses at a base placement decided based on Zik which
is a design variable in Z associated with the ith AIR and
its value determines the FBP to be visited by the ith AIR
for the kth base placement. Since the AIRs can have dif-
ferent capacities, then each AIR can be associated with a
different set of targets that represent the surfaces. Hence,
nT

i can be different for each AIR (i.e. for each i). The over-
lapped targets, which more than one AIR can reach, need to

be counted only once. The overlapped targets can be found
by performing a simple distance query, and can be parti-
tioned and allocated based on the method in [4] or based
on the “first come, first served” basis. Note that in Eq. 1,
F1(Z) = [0, 1] and represents the percentage of missed-
coverage. A value of 0 for F1(Z) corresponds to an optimal
result, meaning that there is no missed-coverage and all
areas of interest are covered. Conversely, a value of 1 corre-
sponds to the worst possible result, meaning that the AIRs
could not cover any section of the surface.

Objective 2 - Minimal Makespan: The second objective is
to minimize the makespan (i.e. the overall completion time
of the task). Optimizing this objective has the added benefit
of equitably dividing the workload between the AIRs, since,
in order to achieve the minimal makespan, the coverage task
needs to be divided appropriately amongst the AIRs. This
objective also takes into account the set-up time associated
with repositioning an AIR. If the cost of repositioning is
set appropriately, then minimizing the makespan can also
minimize the number of base placements needed. Thus, this
objective is to minimize the makespan:

min
Z

F2(Z) = max{T1(Z),T2(Z), . . . ,Tn(Z)} (2)

where Ti (Z) is the completion time of the ith AIR, which
can be calculated as

Ti (Z) =
⎛

⎝
nv

i∑

k=1

Nf (Zik) · di

vi

⎞

⎠ + nv
i · t si (3)

where nv
i is the total number of base placements that the ith

AIR needs to visit, Nf (Zik) calculates the number of tar-
gets that can be reached with feasible AIR poses at a base
placement decided based on the value of Zik in Z, di is the
distance between two adjacent targets along a path of the
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ith AIR, vi is the chosen end-effector speed of the ith AIR
suitable for the application, and t si is the set-up time asso-
ciated with the ith AIR moving to the next base placement,
which may include tasks such as turning off/on accessories
and tools.

Note that this objective (minimal makespan) is in conflict
with the Objective 1 (maximal coverage in Eq. 1). The con-
flict is due to the following reasons: (i) the aim of Objective
1 is to minimize missed-coverage by increasing the number
of targets that each AIR covers which in turn increases the
makespan, hence Objective 1 is optimal when all areas are
covered whereas Objective 2 is optimal when no area is cov-
ered, and (ii) Objective 1 has the potential to cause a larger
number of FBPs to be selected for each AIR so as to maxi-
mize coverage by reaching more targets, whereas Objective
2 aims to minimize the number of FBPs to be selected for
each AIR since the second term in Eq. 3 (after the plus sign)
considers a penalty to account for the set-up time. Due to
the conflict in these objectives and the following objectives,
a multi-objective optimization algorithm is appropriate to
solve the mathematical model.

Equation 3 assumes that a constant end-effector speed
will be employed to achieve uniform coverage of the sur-
faces (e.g. when spray painting a vehicle). However, in
certain situations and applications, non-uniform coverage
may in fact be required. As an example consider the task of
grit-blasting a rusted object where only certain areas of the
object are heavily rusted. The rusted areas will need a more
intensive, or extended period of grit-blasting to achieve
a uniform surface finish. This area-specific focus can be
accomplished by reducing the end-effector speed for such
target areas. Each target can thus be weighted based on the
surface area it falls in (e.g. the level of rust). This weighting
can then be used for calculating Ti (Z). That is,

Ti (Z) =
⎛

⎝
nv

i∑

k=1

Nf (Zik)∑

j=1

di

(wikj · vd
i ) + vmin

i

⎞

⎠ + nv
i · t si (4)

where vd
i = vmax

i − vmin
i , and where vmax

i and vmin
i are the

maximum and minimum end-effector speeds of the ith AIR,
respectively, and wikj is the weighting factor, 0 ≤ wikj ≤ 1,
applied to the end-effector speed based on the area in which
the target oikj is located.

Objective 3 - Maximal Manipulability Measure: Perfor-
mance metrics [21] such as the manipulability measure, the
dexterity index, the minimum singular value, and measures
of isotropy can be used to help obtain a measure for a manip-
ulator or a manipulator pose corresponding to a certain point
in the workspace. The use, limitations, and benefits of each
of these measures depend on the application and the struc-
ture of the system or the robot manipulator. Manipulability

measure [22] can be used to obtain a measure for a manipu-
lator pose corresponding to a target in the environment. The
aim is to position the AIRs such that the targets are reached
with poses that will increase the likelihood of finding a
feasible trajectory during the task execution. The higher
the sum of the manipulability measures of the poses corre-
sponding to the targets, the higher the likelihood of finding
a feasible trajectory during the task execution, since a large
manipulability measure of a pose corresponds to a pose that
is far away from singularities and can move more freely.
Therefore, this objective is to maximize the sum of manip-
ulability measures for all AIR poses corresponding to all
targets representing the environment. That is,

max
Z

F3(Z) =
n∑

i=1

nv
i∑

k=1

Nf (Zik)∑

j=1

W(qf
ikj ) (5)

where

W(qf
ikj ) =

√
det

(
J(qf

ikj )J
T(qf

ikj )
)

(6)

is the manipulability measure (a value from 0 to 1), nv
i is

the total number of base placements that the ith AIR needs
to visit, Nf (Zik) calculates the number of targets that can
be reached with feasible AIR poses at a base placement
decided based on the value of design variable Zik in Z,
J(qf

ikj ) is the Jacobian of the pose qf
ikj . When determin-

ing a feasible pose for an AIR, maximizing manipulability
measure for the AIR needs to be considered, e.g. as per the
lookup table in [18].

This objective (maximal manipulability) is in conflict
with Objective 2 (minimal makespan). Objective 2 aims
to minimize the makespan which indirectly minimizes the
number of targets to be covered and the number of FBPs for
each AIR to operate from. On the contrary, this objective
has the potential to achieve a greater sum of manipulability
measures, F3(Z) (in Eq. 5), when more targets are covered
and possibly when the AIRs operate from a larger number
of FBPs.

This objective (maximal manipulability) and Objective 1
(maximal coverage) benefit from covering a greater number
of targets. However, greater coverage does not necessarily
equate to a greater sum of manipulability measures. Hence,
this objective is required. For example, there may be a num-
ber of base placements from which an AIR can cover the
same targets; however, from one of these base placements
the AIR may be able to reach the targets with better manip-
ulability measure. That is, there can be multiple solutions
for which coverage is maximal, but not all solutions are the
same in terms of manipulability measure, and vice versa.
Objective 3 and Objective 1 may be combined using the
weighted sum method which requires proper normaliza-
tion of the objectives. In this case, Objective 1 should be
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given a greater weight since maximizing coverage is more
important in complete coverage tasks. However, due to the
suitability of multi-objective optimization with respect to
other objectives, it is preferable for Objectives 1 and 3 not to
be combined to enable straightforward selection from, and
comparison between, the Pareto optimal solutions.

Objective 4 - Minimal Torque: To improve the operating
condition of an AIR, it is preferable to minimize the torque
experienced by the joints of the AIR.

Let the torque ratio of joint m of a feasible AIR pose qf
ikj

be the amount of torque the joint has experienced divided by
its torque capacity. The maximum torque ratio T Rmax(qf

ikj )

for the pose qf
ikj is the largest torque ratio from all the joints

of the ith AIR, i.e.

T Rmax(qf
ikj ) = max

m

∣∣∣∣∣∣

Tim(qf
ikj )

τ
cap
im

∣∣∣∣∣∣
(7)

where Tim(qf
ikj ) is the torque experienced by joint m of the

ith AIR at pose qf
ikj , and τ

cap
im is the toque capacity of the

mth joint.
This objective is to minimize the sum of maximum torque

ratios of the AIR that experiences the most amount of
torque. That is,

min
Z

F4(Z) = max
i

⎛

⎝
nv

i∑

k=1

Nf (Zik)∑

j=1

T Rmax(qf
ikj )

⎞

⎠ (8)

where nv
i is the total number of base placements that the ith

AIR needs to visit, and Nf (Zik) calculates the number of
targets that can be reached with feasible AIR poses based
on the design variable Zik in Z.

For a feasible AIR pose qf
ikj , the torque at each joint

is calculated based on: (i) the weight of the nozzle, joints
(actuators), and links of the AIR; and (ii) the reaction force
generated on the nozzle, e.g. due to the stream of grit or
paint exiting the nozzle. Readers are advised to refer to [23]
for information on calculating torque for an AIR manipu-
lator pose. When finding a feasible pose for an AIR at a
base placement, the feasible AIR pose needs to be deter-
mined such that the torque on AIR’s joints is minimized,
e.g. using the lookup table in [18]. Note that in the appli-
cations under consideration, such as grit-blasting and spray
painting, the AIR moves at a slow speed when operating
on a surface. Hence, torque due to angular, centripetal, and
Coriollis accelerations [23] can be neglected.

This objective (minimal torque) is in conflict with Objec-
tive 1 (maximal coverage) and Objective 3 (maximal manip-
ulability). Both Objectives 1 and 3 benefit from covering
a larger number of targets, whereas similar to Objective 2

(minimal makespan), this objective (minimal torque) is neg-
atively affected by larger coverage since the sum of torque
experienced by the AIRs increases as coverage increases
(not at a constant rate). It may seem then that this objec-
tive can be combined with Objective 2 (minimal makespan)
since they both benefit from lower coverage. However, this
objective can in fact be in conflict with Objective 2. In
Objective 4, selecting a larger number of base placements
from which the AIRs can operate, may result in more reach-
able targets and reduced torque experienced by the AIRs,
whereas in Objective 2 there is a set-up time penalty pro-
portional to the selected number of base placements so as to
minimize makespan.

3.2.3 Design Constraints

Constraint 1 - Distance Between Any Two AIRs: The prox-
imity of the AIRs with respect to each other at any time
during the task execution should not be allowed to cause
restrictions on their maneuverability or cause a high risk of
collision. Aminimum acceptable distance between the AIRs
or a threshold δ should be determined based on the appli-
cation or the structure of the AIRs. For example, for the
AIRs shown in Fig. 6, δ can be the distance from an AIR’s
base to the workspace boundary of the AIR. For simplicity,
the boundary can be approximated to be a sphere. Thus, the
AIRs’ base placement should be chosen such that
∥∥∥βββAIR

i (t) − βββAIR
l (t)

∥∥∥ > δ (9)

∀i, l : i = 1, . . . , n, l = 1, . . . , n, i �= l, and ∀t : t =
0, . . . , tc where βββAIR

i (t) and βββAIR
l (t) are the base place-

ments of the ith and lth AIRs at time t , respectively, n is
the total number of AIRs, and tc is the overall completion
time of the task. An alternative option is to design this con-
straint as an objective function that maximizes the distance
between the AIRs. Although this option may be helpful for
some applications, it does not guarantee that it will satisfy
the constraint of maintaining a safe distance between the
AIRs. Thus, the solution needs to be checked afterwards for
feasibility.

Constraint 2 - Distance to Obstacles: Note that the con-
straint on the distance between any AIR and the environ-
ment or the objects (obstacles) is already considered as part
of the selection of FBPs. Recall that during the selection of
FBPs, the base placements that are in close proximity to the
objects are discarded.

3.3 Multi-objective Optimization

An appropriate optimization algorithm needs to be uti-
lized to solve and test the proposed mathematical model.
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Multi-objective optimization algorithms [24] are useful for
simultaneously optimizing multiple objectives that can be in
conflict with each other. The output of the multi-objective
optimization algorithms is the Pareto front. An advantage of
obtaining the Pareto front is that the strategy for selecting
the final solution from the Pareto front can be conve-
niently modified to suit the changes that occur within the
application without the need for repeating the optimization.

For the last two decades, strong and continuing research
has been dedicated to the development of evolutionary algo-
rithms [25]. An example of Multi-Objective Evolutionary
Algorithms (MOEAs) is Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [26], which can be a suitable option
for solving the proposed mathematical model.

Metaheuristic algorithms such as NSGA-II can be helpful
in addressing NP-hard problems, particularly for problems
with high combinatorial complexity and discrete search
space. The optimization problem under consideration is a
combination of the well-known Art Gallery Problem (AGP)
and the Multiple Traveling Salesmen Problem (MTSP) [27,
28], both of which are considered to be NP-hard. AGP
asks for the minimum number of points (and their loca-
tions) from which the entire environment can be observed,
which is, in the problem under consideration, the same as
finding the minimum number of FBPs (and their locations)
from which the environment can be covered. In the MTSP,
the goal is to find the visiting sequence of a number of
cities by multiple salesmen such that the total cost (e.g.
travel time) is minimized and constraints are satisfied. This
is similar to finding the visiting sequence of the selected
FBPs for each AIR such that AIR team’s objectives and
constraints are met. Thus, NSGA-II is suitable for the prob-
lem under consideration, and its effectiveness is verified
using experimental results presented later in this paper. Note
that comparing NSGA-II to other metaheuristic optimiza-
tion algorithms that can solve the proposed mathematical
model is outside the scope of this paper.

3.3.1 Chromosome Representation

A chromosome representation is developed that is designed
and tested specifically for the problem under consideration.
The work in [27] uses a two-part chromosome represen-
tation to solve the Multiple Traveling Salesmen Problem
(MTSP), and the authors explain that the two-part chro-
mosome reduces the search space when compared to one-
chromosome and two-chromosome representations. The
developed chromosome representation is to a certain extent
similar to the two-part chromosome [27]; however, there are
twomain differences. As shown in Fig. 7, the first difference
is that instead of having two parts for each chromosome,
multiple parts are considered where each part is associ-
ated with one of the AIRs. The second difference is that

Fig. 7 A multi-part chromosome representation developed for the
problem under consideration

instead of having a part in the chromosome to represent the
required number of base placements for each AIR, i.e. for
determining the value of nv

i , ∀i : i = 1, . . . , n, this param-
eter is made to correspond to the fixed length of the ith part
of the chromosome associated with the ith AIR.

Figure 7 shows an example of the developed chromo-
some representation where the first part of the chromosome
corresponding to the first AIR has a length of three. That is,
there are three nonzero genes in this part, which represent
the indices of the FBPs that the first AIR needs to visit. The
visiting sequence of the selected FBPs is from left to right.
Therefore, in this example, AIR 1 first visits the 3rd FBP
followed by the 6th FBP and then the 11th FBP.

Alternatively, each part of the chromosome can be made
with a length equaling the number of FBPs of the corre-
sponding AIR, and binary encoding can then be used to
determine the FBPs that need to be visited by the AIR. How-
ever, to reduce the length of the chromosome and also to
reduce the search space, each part is generated with a length
based on the capacity of the corresponding AIR. For exam-
ple, for two identical AIRs with the same capacity, if either
AIR can individually cover the entire object using a mini-
mum of 8 FBPs, then the length of each part corresponding
to each of the two AIRs is 4 (i.e. 8/2 = 4). Meaning that if 8
appropriate FBPs are chosen for both AIRs (4 for each AIR),
then the entire object is covered. If the AIRs’ capacities are
different, then the length of each part of the chromosome
can take into account the capacity of the AIRs. In Fig. 7,
the length of the first, second and nth part of the chromo-
some is 3, 2 and 4, respectively, meaning that AIR 2 has a
greater capacity (e.g. larger workspace size) than AIR 1, and
AIR 1 has greater capacity than AIR n. Besides reducing the
search space and chromosomes’ length, another advantage
of this chromosome representation is that when additional
base placements are considered for finer discretization of
the search space (Module 3.4 of Fig. 4), the length of the
chromosome doesn’t need to be changed. This is because
the number of base placements to be visited by each AIR
will remain the same.

It may not be possible to accurately determine the num-
ber of base placements nv needed for all AIRs to collectively
cover the entire object. Thus, a reasonable approximation
can be used based on the size of the object, or the number
and the density of the targets that represent the object. The
initial population can be generated such that for each part
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Fig. 8 Multi-part chromosome representation with additional zero genes to deal with the uncertainty in determining the number of base
placements to visit

of a chromosome there are additional genes with a value of
zero, as shown in Fig. 8. When creating a new population at
each GA iteration, chromosomes with a different number of
zero genes can be made, e.g. through crossover operation.
The genes with the value of zero are interpreted as void (i.e.
they don’t represent any base placement). Thus, incorporat-
ing additional genes provides the flexibility to increase or
reduce the number of FBPs to be visited by each AIR. The
greater the uncertainty in approximating nv for an applica-
tion or an environment, then the larger the number of zero
genes that can be added to the chromosome when generating
the initial population. Note that the requirements that will be
outlined in the following explanation of the crossover and
mutation operators need to be accounted for so as to prevent
infeasible solutions being added to the initial population and
subsequent populations.

3.3.2 Crossover Operator

An example crossover operator is presented in this section,
and the requirements that need to be taken into account
for achieving feasible solutions are explained. An off-
spring generated from a crossover operator is only added
to the subsequent population if it satisfies all the relevant
requirements; otherwise, it is discarded. Alternatively, the
crossover operator can be implemented such that an off-
spring automatically meets the requirements as part of the
way the offspring is generated.

In performing a crossover operation, a pair of parent
chromosomes are selected, and a child chromosome is
generated from the parents in the hope that the child chro-
mosome will provide a better solution. There are several
methods for selecting and exchanging genes from the par-
ents chromosomes to form the child chromosome. Uniform
crossover [29, 30] with some modifications is used for
the developed chromosome representations; however, other
crossover methods can also be used. Figure 9 is an example
where crossover operation is performed on two selected par-
ents to generate the child chromosome. There are three parts
for each chromosome meaning that there are three AIRs.
The length of each part of the chromosome is different since
each AIR has a different capacity. It can be seen that for
each part of the chromosome a random number of nonzero
genes are first selected from the dad’s chromosome, then a

random number of genes are selected from the mom’s chro-
mosome, and finally the rest of the genes are given a value of
zero.

Several requirements need to be taken into account so as
to obtain feasible solutions when designing the crossover
operator for the problem under consideration:

1. Let ng
i be the number of genes in the ith part of a chro-

mosome (i.e. the length) corresponding to the ith AIR.
nv

i nonzero genes are to be selected from the parents
chromosomes for the ith part of a child chromosome
such that nv

i ≤ n
g
i . nv

i can be based on the nv
i value

of one of the parents chromosomes or can be a ran-
domly generated value with the lower bound being the
minimum number of base placements for the ith AIR.
The remaining number of genes, i.e. ng

i − nv
i genes, are

assigned zeros.
2. nD

i nonzero genes are selected from dad’s chromosome
and nM

i nonzero genes are selected from mom’s chro-
mosome for the ith part of a child chromosome such
that nD

i + nM
i = nv

i . Selection of the genes from the
dad’s and mom’s chromosomes can be random, left
to right, etc. The selected nonzero genes can then be
copied on the same genes of the child’s chromosome,
copied from left to right, or randomly.

3. Let gik be the kth nonzero gene in the ith part of a
chromosome. gik �= gim, i.e. in the ith part of a chromo-
some, the kth nonzero gene and the mth nonzero gene
cannot be the same since any AIR should not visit the
same base placement more than once.

4. If the deployed AIRs are identical, then it should not be
possible to have gik = gjm, i.e. it should not be allowed

Fig. 9 An example of the crossover operation for the developed multi-
part chromosome representation
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to have the kth nonzero gene in the ith part of a chro-
mosome be the same as the mth nonzero gene in the j th
part of a chromosome. Having more than one identical
AIR visiting the same base placement will not improve
the result. However, if different AIRs are deployed, then
each AIR would have a different capacity, and there can
be potential for better performance or a greater coverage
by another AIR visiting the same base placement.

3.3.3 Mutation Operator

An example mutation operator is presented in this section,
and the requirements that need to be taken into account
for achieving feasible solutions are explained. The pur-
pose of the mutation operator is to maintain diversity from
one population to the next, and this is done by altering
the values of a small number of genes in a chromosome
[29]. For the problem under consideration, only the nonzero
genes are allowed to be altered so as to avoid increasing
or reducing the number of FBPs each AIR needs to visit
as part of the mutation operation. The genes are altered
by a small magnitude, and thus the aim is to potentially
improve the performance of a chromosome by slightly
changing the values (i.e. choosing neighboring FBPs) of
a few nonzero genes. Figure 10 shows an example of the
mutation operation where for each part, a random num-
ber of genes of the chromosome are slightly altered by
adding a small positive or negative random integer to the
genes.

The number of nonzero genes to be selected and the
selection of the genes can, for example, be arbitrary. Note
that points 3 and 4 of the requirements mentioned for the
crossover operator (i.e. in Section 3.3.2) are also applica-
ble to the mutation operator. A small value can be added to,
or subtracted from, the kth selected nonzero gene of the ith
part of the chromosome. In doing so, the lower and upper
bounds are not to be violated, i.e. the following condition is
to be kept true: 1 ≤ gik +δs

ik ≤ nF
i where δs

ik is a small neg-
ative or positive integer added to gik , and nF

i is the number
of FBPs associated with the ith AIR. This constraint pre-
vents the mutated gene from having a value of zero (which

Fig. 10 An example of the mutation operation where small positive
or negative random integers are added to a small number of genes

means one less base placement would be visited), or to have
a value greater than nF

i .

4 Experiments

This section first presents an insight into the procedure
used for evaluating the objective functions, followed by an
explanation of the simulated and the real-world experiments
with brief results. Then, Section 5 (Results and Discus-
sion) provides a more detailed explanation of the results,
studies on repeatability and solution quality, validation of
the simulation results using real AIRs, and comparisons
between different solutions from the Pareto front. The simu-
lated experiment uses real data obtained from part of a steel
bridge maintenance site, and the aim is to test the OMBP
approach using three AIRs. The real-world experiment is
conducted using two real AIRs and a vehicle that is targeted
for grit-blasting.

The function ‘gamultiobj’, which is based on NSGA-II,
from the Matlab 2013 optimization toolbox was used for the
experiments. Based on a brief investigation, it was found
that the default parameters for Matlab ‘gamultiobj’ function
perform well for the problem under consideration. Detailed
investigation on the effects of different parameters, and
comparing between the various optimization algorithms, is
outside the scope of this paper. The computer used to run
the algorithm has the following specifications: 2.8GHz Intel
Xeon E5-2680 v2 and 256GB 1866MHz ECCDDR3-RAM.
However, the code is single threaded and hence only uses 1
core of the CPU at any one time.

The experiments consider the grit-blasting application,
which is similar to many other surface preparation manufac-
turing applications, such as spray-painting, surface coating,
and surface polishing. The AIRs are made up of a Neobotix
MP700 base, a 6 DOF Schunk industrial robot, a grit-
blasting nozzle, and an RGB-D camera attached to the
nozzle. The following values are used: (i) the constant end-
effector speed of the AIRs is set to 0.1 meters per second
for the simulated experiment, and 0.056 meters per second
for the real-world experiment, (ii) the size of the targets rep-
resenting the objects is set to 0.04 meters in radius, (iii) the
overlap of two adjacent targets along a path is set to approx.
30% of their diameter, (iv) the threshold δ used in Eq. 9 is
set to 1 meter, and (v) the set-up time, t si used in Eq. 3 is set
to be 10 minutes for the intended application.

To find feasible AIR poses, a lookup table the same as
the one mentioned in [18] was used in the experiments to
potentially reduce the computation time. The aim of finding
feasible AIR poses for the targets is not to generate a tra-
jectory for the AIR for task execution, but rather to sim-
ply examine which targets are reachable at a particular base.
Thus, the use of a lookup table is effective and time efficient.
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4.1 Objective Functions Evaluation

Various multi-objective optimization algorithms can be
used to solve the proposed mathematical model. However,
regardless of the optimization algorithm used, the objec-
tive functions are required to be evaluated iteratively within
the optimization solver. Function 1 is shown and explained
in this section so as to give an insight into the procedure
used in the experiments for evaluating the objective func-
tions within the employed NSGA-II optimization algorithm.
The presented fitness function is specific to the application
being considered; however its applicability can extend to a
wide range of similar applications or scenarios.

The inputs to the fitness function (Function 1) are the
design variables Z and all targets, O = {Oi, . . . , On} asso-
ciated with all AIRs. The design variables are encoded as
the genes of the chromosomes used in the multi-objective
GA. For example, the design variables associated with the
ith AIR correspond to the nonzero genes in the ith part
of the chromosome. The function loops nv times (line 3)
where nv is the number of nonzero genes in a chromosome
(i.e. the total number of base placements all AIRs need to
visit). At each loop, the aim is to evaluate the performance
(line 13) of an AIR at one of its assigned base placements.
To do so, the progress times, t1, t2, . . . , tn, of the n AIRs
are first sorted from the lowest to the highest value (line 4)
where T s = {T s

1 , T s
2 , . . . , T s

n } with corresponding indices
I s = {I s

1 , I s
2 , . . . , I s

n}, and T s
i ∈ {t1, t2, . . . , tn} with corre-

sponding index I s
i . The progress time of an AIR is the time

expected to have been taken by the AIR while carrying out
the task up to it current base placement (i.e. current loop).
Based on the sorted progress times T s and corresponding
indices I s , the AIR with the minimal progress time (i.e. the
ith AIR in line 7) moves to its next assigned base placement.
However, only if the number of base placements assigned to
the AIR has not exceeded (line 9) where nv

i is the total num-
ber of base placements the ith AIR needs to visit. If the base
placement βββAIR

i that the ith AIR will move to is close to
another AIR’s base placement βββAIR

j (j ∈ 1, . . . , n, j �= i)

(i.e. the distance checking shown in line 10 where δ is the
threshold used in Eq. 9), then the ith AIR is made to wait
until the j th AIR has completed the work at its current
base placement (line 11). The fitness function is designed
based on the “first come, first served” strategy, such that
when an AIR moves to its next assigned base placement,
it is allocated all the targets that it can reach and that are
not yet allocated to another AIR. The performance at the
next assigned base placement of the ith AIR is then eval-
uated (line 13 - further explained below) and the progress
time ti of the AIR is updated (line 14) by adding the set-up
time t si of the ith AIR to the progress time. However, in the
case that the limit is reached in terms of the number of base
placements to be visited by the ith AIR (line 17), then the

Function 1 Objective Functions Evaluation

1: function FITFUNC(Z, O)
2: ki ← 1, ∀i : i = 1, . . . , n
3: for Counterbase = 1 to nv do
4: [T s, I s ] ← Sort{t1, t2, . . . , tn}
5: í ← 1
6: while í ≤ n do
7: i ← (I s)

í
8: k ← ki

9: if k ≤ nv
i then

10: if ‖βββAIR
i − βββAIR

j ‖ ≤ δ then
11: ti = tj
12: end if
13: [Oal

i ,T al
i , Wal

i , ti ] ← Perf(O, Zik)

14: ti = ti + t si
15: ki ← ki + 1
16: í ← n + 1
17: else if ki > nv

i then
18: í = í + 1
19: end if
20: end while
21: end for
22: F1 ← Coverage(Oal, O)
23: F2 ← Makespan(t1, . . . , tn)

24: F3 ← Manipulability(Wal)

25: F4 ← T orque(T al)
26: return [F1, F2, F3, F4]
27: end function

next AIR with minimal progress time, i.e. (i + 1)th AIR, is
checked to be used (lines 18).

The output data obtained from the function Perf (in line
13) can be used to obtain the values of objectives F1 to F4

(lines 22 to 25) based on Eqs. 1, 2, 5 and 8, respectively.
For all the experiments, it is assumed that the AIRs need
to obtain a uniform coverage of all the surfaces, thus the
completion time of an AIR is based on Eq. 3.

The function Perf (Function 2), which was used in line
13 of Function 1, is to evaluate the performance of an AIR
at a particular base placement. The inputs to the function are
the sets of targets in O, and Zik which is the design vari-
able indicating the index of the FBP. Based on the design
variable Zik , the targets Oik that are inside the workspace
boundary of the ith AIR at the kth base placement can be
obtained. An appropriate number of discrete base rotations
(i.e. nr in line 2), which an AIR needs to perform in order to
cover all targets at a particular base placement, is to be pre-
determined based on the structure and the kinematics of the
AIR. At the kth base placement, the function loops through
the base rotations (line 2) and all targets oikj ∈ Oik, ∀j :
j = 1 . . . nO

i (line 3). For each target, if the target is reach-

able (line 4), i.e. if a feasible AIR pose qf
ikj can be found for

the target oikj , then the target oikj , the manipulability mea-

sure W(qf
ikj ) (calculated based on Eq. 6) due to the AIR’s

pose qf
ikj , and the maximum torque ratio T Rmax(qf

ikj ) (cal-
culated based on Eq. 7) are added (lines 5 to 7) to the sets
Oal

i , T al
i and Wal

i , respectively. Note that the notation �
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Function 2 Evaluate Performance at a Base Placement
1: function PERF(O, Zik)
2: for Counterrot = 1 to nr do
3: for j = 1 to nO

i do
4: if Reachable(oikj , Zik) = true then
5: Oal

i ← Oal
i � oikj

6: Wal
i ← Wal

i � W(qf
ikj )

7: T al
i ← T al

i � T Rmax(qf
ikj )

8: ti ← ti + t (oikj )
9: end if
10: end for
11: end for
12: return [Oal

i ,T al
i , Wal

i , ti ]
13: end function

represents concatenation. The subscript al is used to sym-
bolize the allocated targets. The time it takes to cover the
target oikj (i.e. t (oikj )) is also added to the progress time ti
of the ith AIR (line 8).

4.2 Three AIRs Applied in a Steel Bridge Maintenance
Environment

A mock environment as shown in Fig. 11a is created using
real data obtained from a part of a steel bridge maintenance
site. Simulations were then performed on the data obtained

(a) The environment in which scan-
ning was performed to obtain the data

(b) The result of the simulation

Fig. 11 AIRs applied for steel bridge maintenance

from the mock environment (Fig. 11b). Three identical sim-
ulated AIRs modeled upon real AIRs are used to perform
the task of grit-blasting. The simulated scenario consists
of 7518 targets (shown as small blue disks in Fig. 11b)
to represent all the surfaces to be cleaned in the environ-
ment. The circles on the ground are all the discrete base
placements, from which the 18 empty circles are the FBPs.
When determining the FBPs, in order to discard the base
placements that have low coverage of the targets represent-
ing the objects, an estimation for coverage can quickly be
made by calculating the number of targets that fall inside
the workspace boundary of an AIR at each of the discrete
base placements. This estimation can significantly reduce
the computation time since feasible AIR poses are not gen-
erated for assessing the reachability of the targets. However,
after determining the FBPs and during the optimization pro-
cess, accurate measures of coverage need to be made based
on the aforementioned lookup table. Note that although only
the internal surfaces of the structure need to be covered,
there are discrete base placements generated at the rear of
the structure, since some of the targets (such as the back-end
of the roof) can only be reached from the rear.

Based on the designed selection strategy (explained in
the next section), a solution from the Pareto front is selected
which is shown in Fig. 11b where the annotated and filled
black circles are the selected base placements for the AIRs.
The notation Ri:Bj represents the ith AIR at its jth base
placement to visit. Based on the chosen solution, 96.5% of
the reachable targets can be covered. Solutions with over
99% coverage can be obtained from the Pareto front; how-
ever at the cost of a significant increase to the makespan, as
will be explained in the next section.

4.3 Real-World Experiment Based on Two AIRs
Deployed to Perform Grit-blasting on a Vehicle

As shown in Fig. 12, a real-world experiment using two
AIRs and a vehicle (utility truck) is carried out. The experi-
ment resembles the one-off task of grit-blasting of vehicles
for removing of old paint from metallic surfaces as a prepa-
ration for new paint. After scanning and processing the
scan data, the point cloud that is shown in Fig. 12b can
be obtained, which represents the metallic surfaces of the
vehicle. The point cloud can then be used for target repre-
sentation of the vehicle as shown in Fig. 12c where 3270
targets (shown as the blue disks) are used to represent the
surfaces. In Fig. 12d, the circles on the ground are all the
discrete base placements, from which the 87 empty circles
(including the black filled circles) are the FBPs. The anno-
tated and filled black circles are the chosen base placements
for the AIRs.

Solutions with over 99% coverage can be obtained from
the Pareto front. However, based on the designed selection
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(a) A photo of the 
vehicle

(b) Point cloud and
triangle mesh

(c) Target represen-
tation of the vehicle

(d) A solution chosen from the Pareto front

Fig. 12 The vehicle, the point cloud representation and the target representation

strategy, a solution from the Pareto front is selected with
94% coverage of the reachable targets and a makespan of
3126 seconds. The difference between the completion times
of the AIRs is only 46 seconds (less than 1.5%).

5 Results and Discussion

In this section, a discussion is made on the selection of a
solution from the Pareto front for the grit-blasting appli-
cation, followed by detailed comparisons and evaluations
of the results. Discussions on the parameters effecting the
computation time and the calculation of feasible AIR poses
are also presented.

The selection strategy to be designed for selection of a
solution from the Pareto front is highly dependent on the
application being considered. For the autonomous and one-
off grit-blasting scenarios considered in the experiments,
achieving an above threshold coverage is vital. Hence, a
small subset of solutions are selected from the Pareto front
such that an acceptable coverage percentage of the sur-
faces is obtained, i.e. narrowing down the solutions based
on objective 1. Note that for some applications 100% cov-
erage is necessary. Hence, the selection strategy in these
applications must only select the solutions with 100% cover-
age. From this subset of solutions, a further subset is chosen
based on the makespan (objective 2). Finally, the weighted
average of the manipulability measure (objective 3) and the
torque (objective 4) can be the basis of choosing the final
solution from the reduced subset of solutions. Alternatively,

the final solution can be selected based on improving the
manipulability of the AIRs (i.e. objective 3) or minimizing
the torque experienced by the AIRs (i.e. objective 4) if the
joints condition of the AIRs is more critical.

5.1 Evaluation of the Simulated Experiment

In Table 2, three solutions from the Pareto front are pre-
sented. For clarity, solutions related to Objective 1 are
presented as the coverage percentage of the reachable tar-
gets rather than missed-coverage. As shown in the table,
99% coverage of the reachable targets is possible. However,
assuming a coverage threshold of 96% for this scenario,
and based on the selection strategy describe previously, then
solution 3 would be the final solution (Fig. 11b is based on
this solution). Solution 3 has a significantly better makespan
than the other two solutions. Of course, the selection strat-
egy can be changed to suit the desired expectations for the
application. As explained in Section 3.1, finer base place-
ment discretization will be needed if the desired threshold
is not met. It needs to be noted that a maximum of 93.5%
of the targets that represent the object can actually be cov-
ered based on a brute force search used to obtain the ground
truth. The rest of the targets, representing areas such as the
top and the bottom of the I-beam flange and the back end
of the roof, cannot be covered regardless of the base place-
ment of the AIRs (unless the AIRs are equipped with a base
that can move vertically). Hence, 96.5% of reachable tar-
gets correspond to 90.2% coverage of the entire object. Note
that the optimizer minimizes objectives functions; however,

Table 2 Three solutions from the Pareto front for the simulated experiment

Soln. # Obj. 1 (% coverage) Obj. 2 (makespan in sec.) Obj. 3 (manipulability) Obj. 4 (Torque in N.m)

1 99 3328 −459 1991

2 98.4 3261 −435 2565

3 96.5 2505 −374 1724
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Fig. 13 Results for objective 1
(percentage of missed-coverage)
and objective 2 (makespan in
seconds) of the 10 optimization
runs
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objective 3 (F3), which is related to manipulability measure,
has to be maximized. Thus, the optimizer minimizes −F3.

5.2 Solution Quality and Consistency

Tuning of optimization parameters have been briefly inves-
tigated and the default parameters for Matlab’s ‘gamulti-
obj’ function were found to perform well for the problem
under consideration. However, comparing between differ-
ent optimization algorithms that can solve the mathematical
model and a detailed investigation in further tuning the opti-
mization algorithm’s parameters are left for future work.
Henceforth is a demonstration that NSGA-II and the devel-
oped chromosome representation are suitable for solving
the proposed mathematical model. Solution quality and
consistency in obtaining acceptable solutions are checked
by repeating the optimization process for the simulated
experiment (10 times) and then evaluating the results.

Figure 13 shows the results for objective 1 (percentage of
missed-coverage) and objective 2 (makespan in seconds) of

the 10 optimization runs. The solutions are selected based
on the same selection strategy used before and all solutions
satisfy the 96% coverage threshold of the reachable targets.
Figure 13 shows that a near-optimal solution is found by
each optimization run, hence demonstrating the robustness
of NSGA-II and the developed chromosome representation
for the problem under consideration. The average of the 10
solutions for objectives 1 to 4 is 8.1%missed-coverage (cor-
responds to 98% coverage of the reachable targets), 2641
sec, −417 and 1605 N.m, respectively.

Figure 14a and b show the Pareto front for the first 2
optimization runs. It can be seen that there are a number of
solutions that meet the 96% coverage threshold (less than
or equal to 10% missed-coverage). Note that although the
Pareto front is shown with respect to objectives 1 and 2,
the Pareto front actually considers all four objectives, hence
some of the solutions are better in terms of objectives 3
and/or 4 rather than objectives 1 and 2. It was found that in
all 10 optimization runs, the optimization terminates due to
the average change in the spread of the Pareto front being

Fig. 14 Pareto fronts for the
first two optimization runs with
respect to objectives 1 and 2 only
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(a) Pareto front for the first
optimization run
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Fig. 15 a Average of distances
of individuals at each
generation; and b average of
distances of all individuals in
each generation to the selected
solution
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less than the default tolerance set in ‘gamultiobj’ function
of the Matlab optimization toolbox. The default maximum
number of generations calculated by the optimization solver
based on the number of design variables is 1200; however,
on average optimization terminates at 101 iterations.

Figure 15a and b are created from an optimization run.
Figure 15a shows the average of distances of individu-
als at each generation using the field ‘AverageDistance’ of
Matlab ‘gamultiobj’, which tends to favorably decrease as
the generation number increases. At each generation, the
average of distances of each member of the population to
the nearest neighboring member is calculated and saved
to the field ‘AverageDistance’. Figure 15b shows the aver-
age of distances of all individuals in each generation to the
selected solution from the Pareto front which was presented
in Section 5.1. The individuals in each generation were nor-
malized with respect to the selected solution. It can be seen
in Fig. 15b that for the first 45 generations, the average
of distances decreases with respect to the selected solution.
However, the average value then starts to slowly increase
which could be due to the optimizer attempting to further
diversify the population in the hope of arriving at better
solutions. These solutions may also be better with respect to
other solutions in the Pareto front.

The aim of the above investigations is to ensure consis-
tency and to test that the solutions are appropriate for the
problem under consideration. However, this information can
also be used for future studies as a means to investigate
faster convergence (e.g. using a hybrid optimization) and to
improve computation efficiency.

5.3 Evaluation and Comparative Study
of the Real-world Experiment

In Section 4.3, an experiment was presented where two
mobile AIRs were deployed to carry out the task of grit-
blasting on a vehicle (utility truck). Based on the designed

selection strategy presented previously and assuming a
coverage threshold of 90% for this scenario (one-off grit-
blasting of a vehicle), a solution from the Pareto front is
selected (Fig. 12d). The solution provided values of 20%,
3126 seconds, -186, and 507 N.m for objectives 1 to 4,
respectively. Note that 15% of the targets, which mostly rep-
resent the roof of the vehicle, can’t be covered by any AIR
regardless of the chosen base placement since these targets
are too high relative to the base of the AIRs. Thus, although
the value of objective 1 for the selected solution is 20%
(meaning that 20% of the total target were not covered), in
reality only 6% (1−0.8/0.85) of the reachable targets were
not covered. Based on the selected solution, the completion
time of AIRs 1 and 2 is expected to be 3088 and 3126 sec-
onds, respectively. A solution with over 99% coverage can
be obtained; however at a significant cost to makespan. This
is because the set-up time, t si is set to a conservative value
(10 minutes), and to cover a slightly larger percentage of
the reachable targets, the number of base placements to be
visited by at least one of the AIRs needs to be increased.
In some applications (e.g. autonomous and one-off grit-
blasting of objects), it can be more convenient and time
efficient for the missed out sections to be covered manually
by a human operator; otherwise, the selection strategy needs
to consider a 100% coverage threshold.

Figure 16 is created to illustrate the areas of the vehicle
that are reachable based on the selected solution by showing
the paths generated for both AIRs where the paths shown
as blue lines and red lines are associated with AIRs 1 and
2, respectively. The feasibility of the obtained solution and
the paths generated for both AIRs are checked using the
AIRs. As an example, the path that is generated on the bon-
net of the vehicle, which is associated with the first AIR at
its second base placement, is shown in Fig. 17a. The exper-
iment set-up at this base placement is shown in Fig. 17b.
To check for the correct coverage of the path by the AIR,
a laser is installed at the end-effector of the AIR and the
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Fig. 16 Paths of AIRs 1 (blue lines) and 2 (red lines)

laser point is tracked and compared to the simulated path.
The highlighted targets in the path shown in Fig. 17a cor-
respond to the laser point locations shown in Fig. 17c to
e. The actual completion time of AIRs 1 and 2 is found
to be 3080 and 3111 seconds, respectively. It is sometimes
not possible to generate paths that will appropriately and
completely cover all reachable targets, and as a result, a
small difference in completion times between the simula-
tion result and the experiment can be present. However, the
difference is insignificant (less than 15 seconds or 0.5%) for
this experiment.

Similar to the simulated experiment, to check for consis-
tency and to test that the employed optimization algorithm
can produce near-optimal results every time it is run, the

optimization process is repeated 10 times for this experi-
ment using the same procedure outlined in Section 5.2. A
near-optimal solution is found each time and the average of
the 10 solutions for objectives 1 to 4 is 21.6% (corresponds
to 92.2% coverage of reachable targets), 3170 sec, -181 and
498 N.m, respectively.

5.4 Summary of Main Results

For the steel bridge maintenance environment where three
AIRs were deployed, on average, 98% coverage of the
reachable targets was achieved. Similarly, for the grit-
blasting experiment carried out on a vehicle using two real
AIRs, on average, 92.2% coverage of the reachable targets
was achieved with near-optimal makespan (based on the
selection strategy designed and the coverage threshold con-
sidered for each scenario). For both experiments, a coverage
percentage greater than 99% could be achieved; however at
the cost of a substantial increase in the makespan. Note that
space discretization does effect the performance, hence if
the desired threshold is not achieved, then finer discretiza-
tion of the search space is needed as per the explanation
in Section 3.1. The optimization process was repeated 10
times for both experiments to ensure consistency in achiev-
ing acceptable results, and to check the suitability of using
NSGA-II and the developed chromosome representation for
the problem. Hence, the solutions are selected from the
Pareto front such that the coverage percentage satisfies the

Fig. 17 The coverage of the
path associated with the first
AIR at its second base
placement is checked using a
laser that is installed at the
end-effector of the AIR

(a) Three highlighted

targets on a path

(b) Set-up of the experiment

(c) Laser point at

the 1st target

(d) Laser point at

the 2nd target

(e) Laser point at

the 3rd target
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Table 3 Computation time for the experiments

Simulated
experiment

Real-world
experiment

Computation time 15.3 mins 5.9 mins

# of targets 7518 3270

# of base placements 18 87

threshold considered for the scenario while providing a
near-optimal makespan.

5.5 Computation Time

Table 3 provides the off-line computation time of the exper-
iments for running the optimization (average of 10 runs).
For comparisons, the number of targets representing the
objects, and the number of FBPs evaluated are also pro-
vided. Although the code is single threaded, it is recognized
that a multi-threaded implementation could potentially lead
to a significant reduction in computation time.

There is room for improving the computation efficiency,
and further research that focuses on the efficiency of the
approach can be carried out. For example, a benchmark
for assessing the discretization of the search space can be
developed with the aim of reducing the computation time.
Detailed studies on the tuning of parameters that effect the
multi-objective GA can also be made to compare time effi-
ciency against solution quality for the target application.
Moreover, the objects can be represented with fewer targets,
meaning that fewer AIR poses need to be found, which is
predicted to reduce the computation time.

6 Conclusions

An approach was presented to address the problem of
effective collaboration of multiple autonomous industrial
robots to perform manufacturing tasks such as grit-blasting,
spray-painting and other surface preparation tasks. More
specifically, the problem of collaboration through optimal
base placements of the autonomous robots that are equipped
with manipulators was investigated. The presented approach
enabled each robot to simultaneously determine: (i) an
appropriate number of base placements, (ii) the location
of the base placements, and (iii) the visiting sequence of
the chosen base placements, such that complete coverage
of the surfaces is obtained. The approach included search
space discretization and candidate base placements selec-
tion, followed by a mathematical model that takes into
account multiple objectives (i.e. maximal coverage, mini-
mal makespan, maximal manipulability measure and min-
imal AIRs’ joints torque). A minimum distance constraint

between robots is enforced by the mathematical model.
Simulated and real-world experiments were conducted to
compare the objectives and to validate the approach.

Future work includes finding optimal base placements
by accounting for the various uncertainties inherent to the
environment. Methods to improve the computation time
can also be studied. Developing criteria for measuring the
performance of the space discretization would also be of
interest. Variations of the approach can also be studied, e.g.
by accounting for the presence of immobile AIRs when
optimizing coverage for the mobile AIRs; and incorporat-
ing AIR path planning parameters, such as the actual path
traversal time of the base, while utilizing spatio-temporal
optimization.
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