
J Intell Robot Syst (2018) 89:387–401
DOI 10.1007/s10846-017-0567-9

Faster RRT-based Nonholonomic Path Planning in 2D
Building Environments Using Skeleton-constrained Path
Biasing

Yiqun Dong ·Efe Camci ·Erdal Kayacan

Received: 23 January 2017 / Accepted: 2 May 2017 / Published online: 27 May 2017
© Springer Science+Business Media Dordrecht 2017

Abstract This paper presents a faster RRT-based path
planning approach for regular 2-dimensional (2D)
building environments. To minimize the planning
time, we adopt the idea of biasing the RRT tree-growth
in more focused ways. We propose to calculate the
skeleton of the 2D environment first, then connect a
geometrical path on the skeleton, and grow the RRT
tree via the seeds generated locally along this path.
We conduct batched simulations to find the univer-
sal parameters in manipulating the seeds generation.

Electronic supplementary material The online version
of this article (doi:10.1007/s10846-017-0567-9) contains
supplementary material, which is available to authorized
users.

Y. Dong · E. Camci · E. Kayacan (�)
School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore 639798,
Singapore
e-mail: erdal@ntu.edu.sg

Y. Dong
e-mail: dongyq@ntu.edu.sg

E. Camci
e-mail: efe001@e.ntu.edu.sg

Y. Dong
ST Engineering-NTU Corporate Laboratory, School of
Electrical and Electronic Engineering, Nanyang
Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore

We show that the proposed skeleton-biased locally-
seeded RRT (skilled-RRT) is faster than the other
baseline planners (RRT, RRT*, A*-RRT, Theta*-RRT,
and MARRT) through experimental tests using dif-
ferent vehicles in different 2D building environments.
Given mild assumptions of the 2D environments,
we prove that the proposed approach is probabilisti-
cally complete. We also present an application of the
skilled-RRT for unmanned ground vehicle. Compared
to the other baseline algorithms (Theta*-RRT and
MARRT), we show the applicability and fast planning
of the skilled-RRT in real environment.

Keywords Path planning · Rapidly-exploring
random tree (RRT) · Skilled-RRT · Unmanned
ground vehicle

1 Introduction

Navigating through 2-dimensional (2D) building envi-
ronments is a challenging task for ground vehicles.
Prior work advocates to use vision or simultaneous
localization and mapping (SLAM) algorithms. In our
work, we propose to stop the vehicle in front of the
2D building map (i.e., fire-escape plan), use scanning
devices (i.e., camera) to extract the specifics of the
environment, and conduct the path planning on the
2D map. To complete the overall process as quick
as possible, fast path planning is our key concern.
Besides, since we aim for the real time applicat

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-017-0567-9&domain=pdf
http://dx.doi.org/10.1007/s10846-017-0567-9
mailto:erdal@ntu.edu.sg
mailto:dongyq@ntu.edu.sg
mailto:efe001@e.ntu.edu.sg


388 J Intell Robot Syst (2018) 89:387–401

ions, we adopt the Rapidly-exploring Random
Tree (RRT) based planning approach in order to
account for nonholonomic constraints from vehicle
geometries/dynamics.

Firstly proposed in [23], RRT is a sampling-based
motion planning algorithm which finds a path by
growing a tree from the root (qroot ) towards unex-
plored regions. The key advantage of RRT-based
planning is that it can incorporate the nonholo-
nomic constraints. The planning time, path length
and clearance, however, hinge on the randomized
nature of the seeds generation. Although, there are
a number of works in literature to circumvent this
issue, including human-robot interaction concept for
biasing the planning algorithm as in [10, 33], the
authors advocate to address the issue in a more inte-
grated way comprehending path length, path clear-
ance, and planning time individually. For path length,
RRT* in [20] rewires the tree based on the length
cost, and [2, 6, 13, 14] propose to refine the path
after a feasible one is found. The returned paths
from these algorithms are shorter. For path clear-
ance, [17] proposes Transition-based RRT which
considers a user-defined cost function as an addi-
tional input to the standard path planning problem,
which can be defined for the distance to be maximized
between the vehicle and obstacles in order to find
high-clearance solution paths. As another approach,
[9] proposes MARRT which pushes all configura-
tions on the RRT tree towards the medial-axis. This
work compares MARRT with other baseline planners
including RRT, RRT*, OBRRT in [32] and RRTObst
(see [9]), and shows that MARRT has the maxi-
mum path clearance. Specifically for planning time,
[21] proposes growing two different trees from start
and goal points, while continuously trying to con-
nect them with a greedy heuristic called Connect .
They determine that Connect improves the running
time especially for uncluttered environments. [19]
proposes to filter non-viability nodes on the tree. [1]
proposes Targetless-RRT to discard the need of target
configuration; thus, improving the planning time for
disassembly planning. [3] advocates to grow the tree
into more promising regions. In [27], Theta*-RRT uti-
lizes Theta* in [8] to find a geometrical path first, and
then biases the RRT tree-growth along this path. Com-
pared to the other baseline planners (RRT, RRT*, and
A*-RRT in [5]), Theta*-RRT yields faster planning
time.

In our work, to minimize the planning time, we
follow Theta*-RRT idea; i.e., we find a geometri-
cal path on the map first, then we use this path to
bias the RRT tree-growth. Literature review indicates
that similar approaches have appeared; apart from
Theta*-RRT and A*-RRT, readers might refer to [4,
7, 28–31] for more details. The geometrical-path find-
ing in most of these algorithms, however, yields a path
that grazes the obstacles, wherein the RRT tree-growth
can be hindered. Overall performance (planning time,
path clearance) of these algorithms are therefore
degraded.

In order to grow the RRT tree rapidly, the tree
should keep away from the obstacles. For such
purpose, we refer to the skeleton concept for 2D
environments, which represents a homography class
that keeps as far away as possible from the obsta-
cles. Some skeleton-based path planning approaches
such as [9, 15, 16, 18, 24, 26, 34] have appeared
in literature, but there is no analysis on their per-
formance for different agent vehicles in complex
environments, especially regarding the path planning
time.

In our work, particularly in order to address the
path planning time issue, we combine the skeleton
with RRT-based path planning: we extract the skele-
ton of the 2D building environment first, then connect
the skeleton-constrained path. We generate sampling
configurations for the RRT tree-growth locally within
a strip along the path. We name this approach as
skeleton-biased locally-seeded RRT (skilled-RRT). To
be specific, the contributions of this work are:
– We use the skeleton-constrained path to bias the

RRT tree growth. Under mild assumptions, we
prove that the proposed algorithm is probabilis-
tically complete. Via experimental tests, we also
show that the planning time, path length and
clearance are superior compared to other baseline
algorithms.

– Compared with other path-biasing approaches
(A*-RRT, Theta*-RRT, etc.) we propose to use
skeleton to bias the tree growth; i.e., we find the
skeleton-constrained path first, then the RRT tree
growth is biased locally along this path.

– Compared with other skeleton-based approaches,
we also combine the RRT framework into the
algorithm. In this manner, we take the advantage
of the RRT as it returns a feasible path regarding
the nonholonomic constraints from the vehicles.



J Intell Robot Syst (2018) 89:387–401 389

We note that our work is intended for real applica-
tions. Different (realistic) vehicles are used in regular
2D building environments in the simulation tests. We
also note that we intend to minimize the planning time
using all possible approaches, should they have been
theoretically proved or experimentally justified.

2 Related Work

Previous research has combined path-biasing with
RRT. In [28, 29], decomposition is adopted to find a
sequence of regions to guide the RRT tree-growth. The
informed subdivision in [4] utilizes an adaptive sub-
division that updates the algorithm in exploring the
entire environment. [7] proposes to implement a graph
search algorithm first, and then use a low-level plan-
ner is used the nonholonomic constraints. In [30, 31],
the exploring/exploiting tree is proposed, which trades
the probabilistic completeness for computational effi-
ciency. Different from all these planners, the skilled-
RRT explores only the neighbouring regions of the
skeleton-path. We use a continuous controller to sat-
isfy nonholonomic constraints, and we prove (under
mild assumptions) that the algorithm is probabilistic
complete in our application scenarios.

A*-RRT in [5] and Theta*-RRT in [27] are similar
to the skilled-RRT proposed herein: both approaches
utilize the discrete search algorithm to find a geo-
metrical path first, the tree growth is then biased by
this path. However, the path generated by A*/Theta*
locates close to the obstacles, which might hinder the
RRT tree expansion. In contrast to these two plan-
ners, the tree growth in the skilled-RRT is faster as
the skeleton-path stays away from the obstacles (see
Fig. 1 1). Also, in both A*-RRT and Theta*-RRT,
seeds to bias the tree growth are generated globally
in the geometrical path neighbourhood. In the skilled-
RRT, the seeds are generated locally in the nearest
configuration (qnear ) neighbourhood.

Several researchers have implemented the skeleton
(or medial-axis) in path planning [9, 15, 16, 18, 24, 26,
34]. However, all of the aforementioned papers except

1For all the environment plots in this paper, black regions rep-
resent the obstacles and white regions the free space. Blue cross
denotes the start, and red circle the goal.

the second one consider only (unrealistic) simple envi-
ronments or simplified vehicles without aiming to
minimize the planning time. In [9] (which can be the
most similar work to our method), path planning for a
point robot is conducted by the generation of sampling
configurations globally, while the primary concern
being path clearance. In contrast to all these works,
the skilled-RRT is utilized for the path planning of
three different vehicles in three different (2D regular
building) environments by locally seeding. An exten-
sive experimental report of our algorithm is presented
regarding planning time, path length and clearance.

3 Combining Skeleton with RRT

3.1 Problem Statement

Let χ ⊂ Rd be the environment, μ ⊂ Rm the control
space, χobs ⊂ χ the obstacles, and χf ree = χ \ χobs

the free space. The dynamics of the agent vehicle �

are:

ẋ(t) = f (x(t))u(t) + e(t), x(0) = xinit (1)

wherein x(t) ∈ χ is the state, and u(t) ∈ μ is the
control input; f denotes the system dynamics, and e is
the error in dynamics. In this work, we follow the def-
inition of small-time controllable system in [27]. The
dynamical system is small-time controllable from χ

if, for any time T , the set of states reachable from χ

before the moment T contains a neighbourhood of χ .
For the skilled-RRT proposed in this paper, it needs to
plan a path for small-time controllable nonholonomic
systems; i.e., it finds a trajectory that connects a fea-
sible path from xinit ∈ χf ree to goal x(T ) ∈ χf ree,
wherein the dynamics subject to (1) are satisfied.

3.2 Algorithm Flow of the Skilled-RRT

See Algorithm 1 for the pseudo-code of the skilled-
RRT. It first calculates the skeleton S from the
workspace (line 1), then it connects the skeleton-
constrained path P from the start to the goal (line 2).
After this, the skilled-RRT finds a feasible path by
growing a tree locally seeded along P (lines 6-17).
In the beginning, the root configuration qroot is added
onto the tree (line 6). For every new configuration
(qnew in lines 6, 12), the algorithm examines whether



390 J Intell Robot Syst (2018) 89:387–401

(a) RRT (b) RRT* (c) A*-RRT (d) Theta*-RRT (e) MARRT

(f) S killed RRT

Fig. 1 Office environment: Path planning results using differ-
ent planners. Cyan dot lines represent the RRT tree, red lines
indicate the geometrical path used for tree-growth biasing, and
blue lines are the planned path. We note that A* and Theta*

paths locate close to the obstacles, MARRT grows the tree
on the entire skeleton, and skilled − RRT expands along the
skeleton-constrained path only

or not it is located in an obstacle-free region of the goal
configuration qgoal (line 7). If yes, qgoal is added to
the tree (line 15), and the path is generated (line 17). If
not, the RRT tree growth is performed locally along P

(lines 7-14). This tree-growth will be repeated till qnew

falls into an obstacle-free region of the goal (line 7).
Then, qgoal and the vehicle response history are added
onto the tree (lines 15-16) as edges, and the final path
is connected (line 17). In following, we detail each of
the functions in Algorithm 1.

FindSkeleton(χ) calculates the skeleton of the
workspace. The flowchart of this function is briefly
illustrated in Function 1. The skeletonization in this
paper follows the wavefront algorithm; readers might
find details and more explanations in [22].

SkeletonPath(S, qroot , qgoal) finds the skeleton-
constrained path on S connecting from qroot to qgoal .
See the flow chart illustrated in Function 2. For all
the points on S, we first find the closest ones (qr , qg)
to qroot and qgoal (line 3). Given the total distance
between each point on S to qroot and qgoal , starting
from the qroot (qr ), we perform the path expansion
to the direction which corresponds to the shortest

Algorithm 1 skilled-RRT(χ, qroot , qgoal)

1: S ← FindSkeleton(χ)
2: P ← SkeletonPath(S, qroot , qgoal)
3: if P = ∅ then
4: return: failure
5: end if
6: τ .AddNode(qroot )
7: while τ .AddNode /∈ ObstacleFree(qgoal) do
8: SeedL ← LocationSeed(P, Xgoal, W)

9: qnear ← NearestNeighbor(τ, SeedL)

10: SeedN ← Navigation-
Seed(qnear , W, �SR, �HB)

11: qnew ← Navigate(�, qnew, SeedN, �q)

12: τ .AddNode(qnew)
13: τ .AddEdge(qnew)
14: end while
15: τ .AddNode(qgoal)
16: τ .AddBranch(qgoal)
17: return: ConnectFeasibleTrajectory(τ )

distance (lines 10-11), till the final goal configuration
(qg) is reached. We then add the final connection
from qg to qgoal , and the skeleton-constrained path is
returned.



J Intell Robot Syst (2018) 89:387–401 391

Function 1 FindSkeleton(χ)

1: S ← ∅,Dχ ← χ,L ← ∅
2: for q in Dχf ree, do
3: U(q) ← inf

4: end for
5: for q in Dχobs, do
6: q ′ ← N (q)

⋂
Dχf ree

7: if q ′ �= ∅ then
8: d1(q) ← 0, O(q) = q

9: L.Add(q)

10: end if
11: end for
12: while L �= ∅ do
13: for q in L do
14: q ′ ← N (q)

⋂
Dχf ree

15: if d1(q
′) = inf then

16: d1(q
′) ← dimL, O(q ′) ← O(q)

17: L.Add(q ′)
18: elseif D1(O(q ′), O(q) > α) then
19: if q /∈ S then S.Add(q)
20: end if
21: end for
22: end while
23: return: S

ObstacleFree(qgoal) represents the set of state x ∈
χf ree wherein an obstacle-free path can be connected
from x to qgoal in the configuration space. In the
beginning of while loop (line 6), the vehicle is driven
by the controller from qnew to qgoal . If a collision-
free path exists, qgoal is added to the tree, and the
path is connected. As discussed in the authors’ previ-
ous work [11, 12], this “navigate-to-connect” strategy
significantly expedites the RRT tree growth.

LocationSeed(P, qgoal, W ) generates the location
seed which is used to find the qnear . This seed gen-
eration follows the original RRT; i.e., 7.5% of the
generation uses qgoal as the seed directly, while in
other cases we follow [5, 27]; seeds are generated ran-
domly from a strip around the skeleton-path P , and
the width of the strip is W (see the left plot on Fig. 3).

NearestNeighbor(τ, SeedL) searches for the nearest
configuration (qnear ) in the tree (τ ). We follow the
original RRT; i.e., all the nodes on the tree are
inspected, and the one closest to SeedL (Euclidean
distance) is returned as qnear .

Function 2 SkeletonPath(S, qroot , qgoal)

1: P ← ∅
2: for q in S do
3: qr ← min dis(qroot , q), qg ←

min dis(qgoal, q)

4: US(q) = US(q, qr) + US(q, qg)

5: end for
6: P .Add(qroot ), P .Add(qr )
7: q ← qr

8: while q �= qg do
9: for q ′ ∈ N (q) do

10: q ← min(US(q ′))
11: P .Add(q)
12: end for
13: end while
14: P .Add(qg)
15: return: P

NavigationSeed(qnear , W, �SR, �HB ) generates the
sampling configuration (SeedN ) that is used to guide
the RRT tree growth. Different from [5, 27], this con-
figuration is generated from the neighbouring region
(�SR) of qnear . Normally, this strategy might result
in a local-minimum problem. However, we propose
to sample this configuration along the skeleton-path
(strip width: W ). Since the skeleton-path connects a
global geometrically-feasible trajectory to the goal,
local minimum problem can be solved.2 Also to avoid
the turning-back growth of the RRT tree (see Fig. 1),
only the configuration within a heading bias �HB is
adopted (see Fig. 3).

Navigate(�, qnear , SeedN, �q) drives the vehicle
(dynamics: �) from qnear to SeedN directly without
using any smoothing method such as Bézier curve as
in [25] or spline curve as in [35]. The controller will
be detailed in following, here we define the stop con-
ditions. Similar to [11, 12], the vehicle will stop if a)
SeedN is approached, b) collision is detected, or c)
maximum step (�q) is reached. The vehicle stop con-
figuration is designated as qnew, and is added onto the
tree.

ConnectFeasibleTrajectory(τ ) returns the planned
path from the grown RRT tree (τ ). When the tree
growth is completed, qgoal is added to the tree as the

2Some assumptions need to be addressed to make this claim,
see the following subsection.



392 J Intell Robot Syst (2018) 89:387–401

Fig. 2 Lab environment:
Generation of the
skeleton-constrained path.
Left: Wavefront expansion
process, the blue lines
indicate the image obtained
at each step of the
expansion. Right: Blue
lines represent the skeleton,
and the
skeleton-constrained path is
connected in solid red lines

last node. Starting from qgoal , we connect qgoal to its
parent, and then we repeat this process to connect to
the parent nodes till the start of the tree (qroot ). The
planned path from the algorithm is then returned.

3.3 Analysis of the Skilled-RRT

We note that from lines 1-5 in Algorithm 1, a skeleton-
constrained path is extracted in the environment (work
space). However, for the ground vehicle we are using
in real applications, two problems might arise: a)
the skeleton-constrained path might go through nar-
row entrances, which is too tight for the vehicles to
pass through; b) the skeleton-constrained path might
bias the tree into narrow passages, wherein a feasi-
ble solution in the vehicle configuration space does
not exist. For a), we advocate to follow [27]; i.e., the
obstacles are inflated first to take into account the
vehicle geometrical dimensions, path planning is then
conducted (as if for a 2D point). As for the second
problem, however, considering the regular 2D build-
ing environments of interest, we make the assumption
that a feasible solution exists in the configuration
space3; i.e., for any feasible path that can be con-
nected in the work space, a close-enough path also
exists in the vehicle configuration space. Given this
assumption, below we prove that the skilled-RRT is
probabilistically complete.

Theorem 1 For the workspace χ , via mild assump-
tions, a geometrically-feasible skeleton-constrained
path χpath can be connected in χf ree. After the root
qroot is added as the first node on the RRT tree, we will
grow the RRT tree via both location and navigation

3In real applications, it is either feasibility in both work space
and configuration space, or mission failure.

seeds (SeedL, SeedN ). Given the sampling strategies
illustrated in above contents, we first prove that the
generation of SeedL and SeedN is complete.

Proof For ∀xp ∈ χpath, let ε(xp, ρ) be the ball with
radius ρ > 0 centered on xp. For all xp, since the
volume � = ε(xp, ρ) is non-zero in the Lebesgue
metric (2-dimensional area in our case), the event of
generating a location seed SeedL in � will happen
with probability 1 asymptotically; i.e., we can find
a SeedL which locates in the strip (width W ) along
the skeleton-constrained path χpath. After SeedL is
found, given the Euclidean distance metric we adopted
in our work, the node to be expanded (nearest con-
figuration qnear ) can be found. Given the sampling
strategy for SeedN in Fig. 3, we note that the valid
area �N (green lines) for SeedN is again non-zero by
Lebesgue metric, the event of generating a navigation
seed SeedN in �N will also happen with probability
1 asymptotically. To summarize, given the sampling
strategies in above contents, the generation of both
SeedL and SeedN is complete.

Given the generated seeds SeedL and SeedN , the
RRT tree is expanded gradually via agent vehicle
navigation. We then prove that this tree growth is prob-
abilistically complete; i.e., a trajectory from qroot to
qgoal can be connected via this tree expansion.

Theorem 2 Consider the (small-time controllable)
agent vehicle with dynamics �; we have proved
that both location and navigation seeds (SeedL and
SeedN ) exist following the sampling strategy illus-
trated in above. Biased by these seeds, the skilled-RRT
is probabilistically complete since the probability of



J Intell Robot Syst (2018) 89:387–401 393

HB

SR

W

Fig. 3 Floor environment: Left: Strip for Floor environment.
Right: Generation of the navigation seed. On the right plot,
cyan dot lines indicate RRT tree, black dot to the right is
qnear . Navigation seeds are generated from the region �SR . The

red line is the skeleton-path. The seed should fall in the strip
(magenta, width: W ), and the heading bias within �HB . The
area for valid generation is marked in green lines

connecting the root qroot ∈ χpath to goal qgoal ∈
χpath approaches 1 asymptotically.

Proof Given qnear and SeedN , the agent vehicle
is navigated from qnear to SeedN to construct the
RRT tree branch. Provided that the dynamical system
(agent vehicle) is small-time controllable, the connec-
tion from qnear to SeedN can be found in the vehicle
configuration space. The vehicle response history will
be added onto the RRT tree (τ ) as branch, and the
vehicle stopped point is designated as node. The set
χ̄path = {x ∈ χpath|∀x /∈ τ } represents the uncov-
ered part of the χpath by τ . The volume of χ̄path

will approach 0 when the RRT tree growth iterations
approaches infinity. Since the skeleton-path χpath is
connected from qroot to qgoal , the goal configuration
qgoal will fall into a close-enough neighbourhood of
a certain node on the RRT tree (the last added node
on the tree), and qgoal will be added onto the tree
with probability 1. Given the trajectory path connec-
tion function illustrated above, the path from qroot

to qgoal can be connected; i.e., the skilled-RRT is
probabilistically complete.

4 Experimental Setup

We compare the performance of the skilled-RRT with
five other baseline planners via simulation. All plan-
ners use the same collision-detection or any other
functions applicable. All the simulations are carried

out in Matlab (2015a) environment on a computer
with Ubuntu system. This computer is equipped with
a 2.60 GHz Intel i7 quad-core processor and 8 GB
RAM.

4.1 Nonholonomic Agent Vehicles

Three agent vehicles (see Fig. 4) are used in the simu-
lations: an omnidirectional round car, a nonholonomic
car, and a truck-tractor system. We detail each in the
following.

Omnidirectional car This vehicle is driven by omni-
directional wheels. The diameter of the vehicle is
1.5.4 Given the vehicle state (x, y, θ ), wherein (x, y)
∈ R2 is Cartesian coordinates and θ ∈ [0, 2π) is the
orientation, the equations of motion are:

ẋ(t) = Vccos(θ)

ẏ(t) = Vcsin(θ) (2)

where Vc is the vehicle speed as 1.5, and �q for the
RRT is 2.0.

Nonholonomic car This vehicle has been used in
the real applications in [11, 12]. Differential driving
wheels are fixed to the front axle to control orien-
tation, while rear wheels are used only for balance
support. The length and width of the car are 1.5 and

4In this paper we omit the specification of units, all the values
are normalized.



394 J Intell Robot Syst (2018) 89:387–401

cV

(a) Omnidirectional Car

cV
LV

RV

(b) Nonhonolomic Car

cV

0

1

(c) Truck-tractor system

Fig. 4 Agent vehicles used in the simulation tests

1.0. Given the vehicle state (x, y, θ), wherein (x, y)
∈ R2 is Cartesian coordinates and θ ∈ [0, 2π) is the
orientation, the equations of motion are:

ẋ(t) = 0.5(VL + VR)cos(θ)

ẏ(t) = 0.5(VL + VR)sin(θ)

θ̇(t) = (VR − VL)/W (3)

wherein VL and VR are the speeds of the car left and
right wheels, and W width of the car. The controller
follows [11, 12], and in the RRT tree growth, �q is
2.0.

Truck-tractor system We adopt this vehicle from
[27]. Coordinates of the truck’s midpoint is (x, y), θ0

and θ1 is the heading of truck and tractor, δ is the trac-
tor steering angle, d0 is the distance between truck and
hitch joint on tractor rear axle and d1 is the distance

between front and rear axles of the tractor. The equa-
tions of motion are:

θ̇1(t) = Vctan(δ)/d1

θ̇0(t) = Vcsin(θ1 − θ0)/d0

ẋ(t) = Vccos(θ1 − θ0)cos(θ0)

ẏ(t) = Vccos(θ1 − θ0)sin(θ0) (4)

wherein Vc is the vehicle speed, and �q for the RRT
is 2.0.

4.2 Test Environments

Three environments are included in the tests (see Figs.
1–3). We note that this work is intended for real appli-
cations; thus, we use environments that are similar to
regular 2D building maps. The Office environment has
a narrow passage in the entrance, and several obsta-
cles are laid between the start and goal (see Fig. 1). In
the Lab environment, the vehicle needs to find a path

2.5 5.0 7.5 10.0 12.5

Seed Region

0

1.0

2.0

3.0

T
im

e
 (

s
)

(a) O ce

2.5 5.0 7.5 10.0 12.5

Seed Region

0.5

0.6

0.7

0.8

0.9

T
im

e
 (

s
)

(b) Lab

7.5 10.0 12.5 15.0 17.5

Seed Region

3.2

3.4

3.6

3.8

4.0

T
im

e
 (

s
)

(c) Floor

Fig. 5 Planning time of the skilled-RRT for different environments using different seed regions. All the simulation runs are conducted
using omnidirectional car (W = 1.0 and �HB = 50◦). Results are averaged over 100 runs



J Intell Robot Syst (2018) 89:387–401 395

30deg 40deg 50deg 60deg

1.0 2.0 3.0 4.0 5.0
0

1

2

3

4

5

Ti
m

e 
(s

)

1.0 2.0 3.0 4.0 5.0
0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

1.0 2.0 3.0 4.0 5.0
0

10

20

30

40

Ti
m

e 
(s

)

1.0 2.0 3.0 4.0 5.0
2

3

4

5

6

7

Ti
m

e 
(s

)

1.0 2.0 3.0 4.0 5.0
80

100

120

140

Ti
m

e 
(s

)

1.0 2.0 3.0 4.0 5.0
400

500

600

700

800

Ti
m

e 
(s

)
1.0 2.0 3.0 4.0 5.0

Strip Width

0

10

20

30

40

Ti
m

e 
(s

)

1.0 2.0 3.0 4.0 5.0
Strip Width

75

100

125

Ti
m

e 
(s

)

(b) Lab

1.0 2.0 3.0 4.0 5.0
Strip Width

200

400

600

800

1000

Ti
m

e 
(s

)

(c) Floor(a) O ce

Fig. 6 Planning time of the skilled-RRT with different strip width and heading bias. Top row: Omnidirectional car. Middle row:
Nonholonomic car. Bottom row: Truck-tractor system. Results are averaged over 100 simulation runs

around multiple obstacles, and pass through a narrow
entrance to the goal (see Fig. 2). The Floor environ-
ment is the most complex one, which consists of many
narrow passages and deadlocks (see Fig. 3). The sizes
of Office, Lab, and Floor are 50 × 50, 100 × 100, and
200 × 200, respectively.

4.3 Baseline Algorithms Specifics

All the planners in this paper use the same functions
wherever applicable. For A*-RRT and Theta*-RRT,
we need to find the A* and Theta* paths first. In both,
the environment needs to be discretized, and the grid
size to be specified first. In literature, there is not a
universal standard for this discretization. In this paper,
following [27], we use the grid size of 10.0 for all

environments. For MARRT it is crucial to decide the
parameters including �q, �I , and ε (see [9]). Some
rules are mentioned in [9] for point robot, but it is
not clear how these rules are decided, and whether or
not they are adaptive to other environments. In this
work, we apply MARRT to the OmniCar only (which
is dynamically similar to the point robot). Also via
extensive experimental test, we use �q as 5% of the
environment diagonal, �I = �q/10, and ε = 0.01
for all simulations.

4.4 Parameters of the Skilled-RRT

Some manipulation parameters are defined for the
skilled-RRT: �SR , W , and �HB (see Fig. 3). In real
work, it is not practical to tune these parameters on



396 J Intell Robot Syst (2018) 89:387–401

Table 1 Performance of different planners

Planner Planning
Time [s]

Maximum
Clearance

Average
Clearance

Path Length Success
Rate [%]

Environment: Office

Omnidirectional Car RRT 3.5043 9.0190 3.0141 114.6482 100

RRT* 12.7975 8.6180 3.0534 108.5156 100

A*–RRT 14.2492 7.2440 2.3743 107.3675 100

Theta*–RRT 17.7873 7.1400 2.3525 104.8204 100

MARRT 1.4902 11.9160 4.2441 103.3086 100

skilled–RRT 0.5162 11.6030 4.2036 102.9865 100

Nonholonomic Car RRT 44.4661 9.7450 3.0650 127.1183 100

RRT* 404.4246 9.2383 3.1933 130.6678 47

A*–RRT 85.0271 7.2430 2.1245 103.9476 100

Theta*–RRT 63.7884 7.3510 2.1424 103.8430 100

skilled–RRT 2.5950 11.8840 4.3201 100.2080 100

Truck-tractor System RRT 182.0177 8.6143 3.1259 102.9232 7

RRT* 307.4787 8.0800 3.3063 105.2596 10

A*–RRT 213.9533 7.6211 2.5534 94.4167 19

Theta*–RRT 379.9821 7.8667 2.5817 95.1164 15

skilled–RRT 5.2325 11.9820 4.4681 100.4303 100

Environment: Lab

Omnidirectional Car RRT 3.6788 13.6110 5.7871 149.0386 100

RRT* 9.9743 13.7070 6.0123 147.2040 100

A*–RRT 3.7124 13.4750 4.2712 127.7310 100

Theta*–RRT 3.7837 14.0290 4.4892 125.4271 100

MARRT 1.2342 14.4960 8.2802 139.0930 100

skilled–RRT 0.4901 14.3800 8.4311 124.6266 100

Nonholonomic Car RRT 254.3144 14.0042 5.8927 149.7167 96

RRT* 401.8987 14.0038 6.0220 152.0703 78

A*–RRT 188.0022 13.6760 4.3108 123.1798 100

Theta*–RRT 236.8468 14.4731 4.4935 119.9984 100

skilled–RRT 77.3323 14.5610 8.4557 124.2744 100

Truck-tractor System RRT 201.5992 14.0598 6.2296 126.6071 92

RRT* 211.4062 14.0011 6.3443 125.1061 95

A*–RRT 235.0171 13.1753 4.7741 111.4925 73

Theta*–RRT 120.9394 14.4250 5.0578 107.7357 96

skilled–RRT 72.0536 14.5500 8.8520 117.8359 100

Environment: Floor

Omnidirectional Car RRT 162.4284 8.1083 2.0876 373.2479 24

RRT* – – – – 0

A*–RRT 8.3006 7.9330 2.2126 350.8917 100

Theta*–RRT 10.4602 7.9330 1.7261 342.9732 100

MARRT 123.4594 8.5000 4.0191 339.7822 100

skilled–RRT 3.8091 8.4640 3.6469 326.6068 100



J Intell Robot Syst (2018) 89:387–401 397

Table 1 (continued)

Planner Planning
Time [s]

Maximum
Clearance

Average
Clearance

Path Length Success
Rate [%]

Nonholonomic Car RRT – – – – 0

RRT* – – – – 0

A*–RRT 871.5369 5.9344 2.5388 355.5575 32

Theta*–RRT 785.1456 4.6017 2.1932 348.4687 26

skilled–RRT 381.0321 8.6001 3.6901 324.0090 100

Truck-tractor System RRT – – – – 0

RRT* – – – – 0

A*–RRT 878.7168 5.5743 2.5436 329.8238 6

Theta*–RRT – – – – 0

skilled–RRT 324.7729 8.5970 3.8173 324.7729 100

the field, we hope to find “universal” parameters/rules
which are adaptive to all vehicles/(regular 2D build-
ing) environments. In this work, we first fix W and
�HB at 1.0 and 50◦, and measure the time of the
skilled-RRT for the three environments using omnidir
ectional car (see Fig. 55). This plot corresponds to the
physical intrinsics of �SR . If the region is small, it is
less probable that the seed is laid within the strip and
heading bias. Or if the region is large, the seed may
lead the vehicle into a collision. In either case, plan-
ning time will increase. We select the seed region that
corresponds to the fastest solution; i.e., for Office 5.0,
Lab 7.5, and Floor 10.0. Note that the dimensions of
Office, Lab, and Floor are 50, 100, and 200, a mathe-
matical rule to decide the seed region can be regressed
as:

�SR = 5.0 + 2.5 × logD/50
2 (5)

where D represents the dimension of the environ-
ment.6

Strip width and heading bias are more closely
related. As in Fig. 3, if the strip width is narrow, large
heading bias is needed to generate the seed to track
the sharp turning on the skeleton path. Or if the head-
ing bias is small, wide strip is needed for the vehicle
to manoeuvre around the sharp turning. In order to
find the optimal value, we compute the average time
over multiple runs (see Fig. 6). Using the seed region

5The SeedRegion represents half of the �SR square width in
Fig. 3.
6Although in real work the rule could be different, this equation
proves that it is possible to find one.

determined from Fig. 5, strip widths from 1.0 to 5.0
and heading bias angles from 30o to 60o are exam-
ined. Based on Fig. 6, W = 1.0 and �HB = 50o are
considered to be the best.

5 Experimental Tests

5.1 Planner Performance Metrics

For each environment, we perform 100 runs using dif-
ferent planners via different vehicles. Final results are
obtained based on an averaged value from the 100
runs, and we are concerned with the planning time
and success rate (which represents the reliability in
real applications), maximum and average clearance
(following [9]), and length of the path. For A*-RRT,
Theta*-RRT, MARRT, and skilled-RRT, we need to
extract the geometrical path first, the time consumed
for which is then added to tree-growth to account
for the total time. Moreover, we implement a time
limit of 1,000 seconds; i.e., planning time below 1,000
seconds is considered as success.

See Table 1 for the final simulation results. For all
performance metrics, smaller values are preferred for
planning time and path length, and larger values are
better for maximum and average clearance.

5.2 Simulation Test Results and Discussion

We note again that we intend to minimize the plan-
ning time. As in Table 1, for all cases, skilled-RRT



398 J Intell Robot Syst (2018) 89:387–401

(in shadow) yields the fastest planning time. For the
success rate, in all cases skilled-RRT successfully
finds the path within the time-limit. Based on Table 1,
with respect to planning time and success rate, skilled-
RRT is considered to be the best. Additionally, it is
also to be noted that skilled-RRT claims favourable
results on path length and clearance. Below we discuss
these results via the analysis on skilled-RRT and each
baseline planners.

For RRT and RRT*, no geometrical path is
involved; sampling configurations are generated ran-
domly. It is to be noted that theoretically RRT*
yields the shortest path if the nodes number is high
enough. In our simulation tests, however, the RRT tree
size is not large, and the “rewire” cannot be fully
achieved. The path returned from RRT*, therefore, can
be longer. Also, as RRT* needs to rearrange the tree
edges, it is computationally heavier than RRT. The
planning time of RRT*, therefore, is longer which can
even go beyond 1,000 seconds which means failure
decreasing the success rate.

A*-RRT and Theta*-RRT utilize the A* and Theta*
path to bias the RRT tree growth. As can be seen
in Fig. 1, the returned path from A* and Theta*
must graze the obstacles, which might hinder the RRT
tree growth. Planning time of A*-RRT and Theta*-
RRT, therefore, can be longer. In some extreme cases
(Floor), however, the purely-random RRT and RRT*
fails to find a feasible solution (due to too many

deadlocks in this environment), A*-RRT and Theta*-
RRT is more applicable: success rate is higher, while
planning time and clearance being fairly reasonable.
This actually illustrates the advantage of biasing the
RRT tree growth—the randomized nature can be
attenuated and better performance can be yielded.

Both MARRT and skilled-RRT bias the RRT tree
growth using skeleton. However, in contrast to the
skeleton-constrained path in skilled-RRT, MARRT
uses the entire skeleton. Some additional efforts need
to be allocated for exploring ineffective regions. Plan-
ning time of MARRT, therefore, can be longer. Also
note that in MARRT, qrand is randomly generated, and
is used also for vehicle navigation. In skilled-RRT,
however, we use SeedL to decide qnear , and we gen-
erate the navigation seed SeedN to the front of the
RRT tree. Tree growth in skilled-RRT, therefore, is
smoother and hence faster. With respect to planning
time and reliability, as can be seen in Table 1, although
MARRT is also reliable (100% success rate for all
cases), skilled-RRT is comparably faster.

The MARRT claims the best results of clear-
ance due to its tree being located at ε close to
the skeleton. In skilled-RRT, however, the sampling
configurations are generated at the neighbourhood
of qnear , and the tree is restricted within a W

width along the skeleton. Path clearance is therefore
also comparable (second place after MARRT in all
cases).

Fig. 7 Real test results.
Top: Test environment and
the UGV. Bottom left:
Wave-front algorithm (blue)
and the
skeleton-constrained path
(red). Bottom middle:
Growth of the skeleton
path-biased RRT tree (cyan
dot), feasible path (blue dot)
and optimized path (green
circle) generation. Bottom
right: Green circle lines
denote desired path, and red
lines represents vehicle
tracking results



J Intell Robot Syst (2018) 89:387–401 399

Table 2 Planning time for three algorithms

Planner Theta*–RRT MARRT skilled − RRT

Planning time [s] 0.8561 0.7492 0.6136

In skilled-RRT, although no manipulation with
respect to path length is deployed, we note that
the length is also creditable (especially when com-
pared to RRT* and RRT). This is mainly because the
skilled-RRT biases the tree growth along the skeleton
(W = 1.0); on one hand the zigzag from the original
RRT/RRT* can be avoided, and on the other hand the
path is allowed to take more short-cuts compared with
MARRT (ε = 0.01).

To summarize, the exclusive features of skilled-
RRT which make the method superior present them-
selves as:

1) Compared to RRT and RRT*, the random nature
of the seeds generation is attenuated. The skilled-
RRT tree-growth is more focused.

2) Compared to A*-RRT and Theta*-RRT, the
skeleton-path locates away from the obstacles,
and the tree expands to the front only. The tree-
growth is therefore smoother.

3) Compared to MARRT, the skilled-RRT propa-
gates along the skeleton path, while MARRT
inspects the entire skeleton and some ineffec-
tive explorations might be involved. Moreover,
skilled-RRT explores only ahead of the RRT tree,
which also expedites the tree growth.

6 Test in Real Environment

In this section, we present and discuss our experimen-
tal tests using an unmanned ground vehicle (UGV) in
an indoor environment. See the general work space
in Fig. 7; we build up a 2D obstacles maze first,
then measure the position of the obstacles using the
OptiTrack system. The main objective of this test is
to find a path which can guide the vehicle from the
start point (bottom right green cross) to the goal (top
left red circle). In our test, we deploy the skilled-
RRT for this navigation task, and we also include
Theta*-RRT and MARRT as baseline planners for
the comparison and discussion on overall planning
performance.

A video file recording the final experimental test
has been posted online.7 For both baseline planners
and the skilled-RRT, we need to extract a geometrical
path first, then the RRT tree is grown along this path.
We compute the overall planning time of each algo-
rithm by adding the time needed for both the search
of the geometrical path and the RRT tree growth. In
the posted video and also in Table 2 above, the over-
all planning time which is needed for the baseline
planners (Theta*-RRT, MARRT) and skilled-RRT are
characterized. As shown by the results, skilled-RRT is
faster than both Theta*-RRT (claimed as the fastest so
far) and MARRT (the most similar to skilled-RRT).

We note that from the skilled-RRT, we have the
feasible path only. In our test, we adopt the “off-
line” path-optimization approach; i.e., we firstly find
the feasible path using skilled-RRT, then we run the
optimization to shorten the overall path length; see
[11, 12] for more details. Generally, by randomly pick-
ing up two points on the feasible path by skilled-RRT,
we strive to connect them directly using the vehicle
navigation controller. If the navigation is successful
(collision-free), and the returned path length is shorter
than the original (skilled-RRT) path, the original path
will be replaced. In this manner, we are trying to tune
the overall path in a non-increasing manner, and after
sufficient tuning trials, the resultant path is returned
as the optimal one. As in Fig. 7, given the optimized
path (green circle lines), ROS (Python)-based com-
munication is used to control the vehicle to track the
waypoints (green circles) on the path till the final goal
point.

7 Conclusions

In this work, for faster path planning in 2D building
environment, we propose to combine the skeleton-
constrained path biasing with RRT-based nonholo-
nomic motion planning, and we introduce the skilled-
RRT algorithm. Compared to the other five baseline
(RRT-based) planners (RRT, RRT*, A*-RRT, Theta*-
RRT, and MARRT), the skilled-RRT yields faster
planning time and higher path planning success rate,
while the path length and path clearance also being
fairly reasonable. Under mild assumptions, we prove

7Please see this video at: https://www.youtube.com/watch?
v=-gvrtqVmQJk.

https://www.youtube.com/watch?v=-gvrtqVmQJk
https://www.youtube.com/watch?v=-gvrtqVmQJk


400 J Intell Robot Syst (2018) 89:387–401

that the skilled-RRT retains the probabilistic com-
pleteness of the original RRT for small-time control-
lable systems. As a continuation of this work, we plan
to examine the reliability of the skilled-RRT algorithm
more extensively. Following the experiments in this
paper, more real-vehicle tests will be conducted using
different vehicles in various environments.

Acknowledgements The research was partially supported by
the ST Engineering-NTU Corporate Lab through the NRF cor-
porate lab@university scheme. The authors are also indebted
to Mr. Mohhamadali Askari Hemmat from Department of
Mechanical and Industrial Engineering in Concordia Univer-
sity Canada for the discussion on this idea, and Mr. Reinaldo
Maslim from School of Mechanical and Aerospace Engineering
in Nanyang Technological University for the real test.

References

1. Aguinaga, I., Borro, D., Matey, L.: Parallel rrt-based path
planning for selective disassembly planning. Int. J. Adv.
Manuf. Technol. 36(11-12), 1221–1233 (2008)

2. Alterovitz, R., Patil, S., Derbakova, A.: Rapidly-exploring
roadmaps: Weighing exploration vs. refinement in opti-
mal motion planning. In: 2011 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 3706–3712
(2011)

3. Arslan, O., Tsiotras, P.: Dynamic programming guided
exploration for sampling-based motion planning algo-
rithms. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4819–4826 (2015)

4. Bekris, K., Kavraki, L.: Informed and probabilistically
complete search for motion planning under differential
constraints. In: First International Symposium on Search
Techniques in Artificial Intelligence and Robotics (STAIR),
Chicago, IL (2008)

5. Brunner, M., Brüggemann, B., Schulz, D.: Hierarchical
rough terrain motion planning using an optimal sampling-
based method. In: 2013 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5539–5544 (2013)

6. Choudhury, S., Gammell, J.D., Barfoot, T.D., Srinivasa,
S.S., Scherer, S.: Regionally accelerated batch informed
trees (rabit*): A framework to integrate local informa-
tion into optimal path planning. In: 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 4207–4214 (2016)

7. Cowlagi, R.V., Tsiotras, P.: Hierarchical motion planning
with dynamical feasibility guarantees for mobile robotic
vehicles. IEEE Trans. Robot. 28(2), 379–395 (2012)

8. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*:
Any-angle path planning on grids. J. Artif. Intell. Res. 39,
533–579 (2010)

9. Denny, J., Greco, E., Thomas, S., Amato, N.M.:
Marrt: Medial axis biased rapidly-exploring random
trees. In: 2014 IEEE International Conference on

Robotics and Automation (ICRA), pp. 90–97 (2014).
doi:10.1109/ICRA.2014.6906594

10. Denny, J., Colbert, J., Qin, H., Amato, N.M.: On the theory
of user-guided planning. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 4794–4801. IEEE (2016)

11. Dong, Y., Zhang, Y.: Application of rrt algorithm to
unmanned ground vehicle motion planning and obstacle
avoidance. In: Proceedings of International Conference on
Intelligent Unmanned Systems, vol. 11 (2015)

12. Dong, Y., Zhang, Y., Ai, J.: Experimental test of unmanned
ground vehicle delivering goods using RRT path plan-
ning algorithm. Unmanned Syst. 5(1), 45–57 (2017).
doi:10.1142/S2301385017500042

13. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed
rrt*: Optimal sampling-based path planning focused via
direct sampling of an admissible ellipsoidal heuristic. In:
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2997–3004 (2014)

14. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Batch
informed trees (bit*): Sampling-based optimal planning
via the heuristically guided search of implicit random
geometric graphs. In: 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 3067–3074
(2015)

15. Garrido, S., Moreno, L., Abderrahim, M., Martin, F.: Path
planning for mobile robot navigation using voronoi diagram
and fast marching. In: 2006 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 2376–2381
(2006). doi:10.1109/IROS.2006.282649

16. Geraerts, R.: Planning short paths with clearance using
explicit corridors. In: 2010 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1997–2004. IEEE
(2010)

17. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path plan-
ning on configuration-space costmaps. IEEE Trans. Robot.
26(4), 635–646 (2010)

18. Jalel, S., Marthon, P., Hamouda, A.: A new path
generation algorithm based on accurate nurbs curves.
International Journal of Advanced Robotic Systems 13,
doi:10.5772/63072 (2016)

19. Kalisiak, M., van de Panne, M.: Faster motion planning
using learned local viability models. In: Proceedings 2007
IEEE International Conference on Robotics and Automa-
tion, pp. 2700–2705 (2007)

20. Karaman, S., Frazzoli, E.: Sampling-based algorithms for
optimal motion planning. Int. J. Robot. Res. 30(7), 846–894
(2011)

21. Kuffner, J.J., LaValle, S.M.: Rrt-Connect: an efficient
approach to single-query path planning. In: Proceedings.
ICRA’00. IEEE International Conference On Robotics
and Automation, 2000, vol. 2, pp. 995–1001. IEEE
(2000)

22. Latombe, J.: Robot Motion Planning. The Springer Inter-
national Series in Engineering and Computer Science.
Springer, USA (2012)

23. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic
planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

24. Mirtich, B., Canny, J.: Using skeletons for nonholo-
nomic path planning among obstacles. In: Proceedings

https://doi.org/10.1109/ICRA.2014.6906594
https://doi.org/10.1142/S2301385017500042
https://doi.org/10.1109/IROS.2006.282649
https://doi.org/10.5772/63072


J Intell Robot Syst (2018) 89:387–401 401

1992 IEEE International Conference on Robotics
and Automation, vol. 3, pp. 2533–2540 (1992).
doi:10.1109/ROBOT.1992.220060

25. Neto, A.A., Macharet, D.G., Campos, M.F.: On the gener-
ation of trajectories for multiple uavs in environments with
obstacles. In: Selected papers from the 2nd International
Symposium on UAVs, Reno, Nevada, USA June 8–10,
2009, pp. 123–141. Springer (2009)

26. Oriolo, G., Vendittelli, M., Ulivi, G.: Path planning for
mobile robots via skeletons on fuzzy maps. Intell. Autom.
Soft Comput. 2(4), 355–374 (1996)

27. Palmieri, L., Koenig, S., Arras, K.O.: Rrt-based non-
holonomic motion planning using any-angle path biasing.
In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2775–2781 (2016)

28. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Discrete search
leading continuous exploration for kinodynamic motion
planning. In: Robotics: Science and Systems, pp. 326–333
(2007)

29. Plaku, K.L.E.E., Vardi, M.Y.: Motion planning with dynam-
ics by a synergistic combination of layers of planning. IEEE
Trans. Robot. 26(3), 469–482 (2010)

30. Rickert, M., Brock, O., Knoll, A.: Balancing exploration
and exploitation in motion planning. In: IEEE International
Conference on Robotics and Automation, 2008. ICRA,
pp. 2812–2817 (2008)

31. Rickert, M., Sieverling, A., Brock, O.: Balancing explo-
ration and exploitation in sampling-based motion planning.
IEEE Trans. Robot. 30(6), 1305–1317 (2014)

32. Rodriguez, T.X., Lien, J.M., Amato, N.M.: An obstacle-
based rapidly-exploring random tree. In: Proceedings
2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006, pp. 895–900 (2006).
doi:10.1109/ROBOT.2006.1641823

33. Taı̈x, M., Flavigné, D., Ferré, E.: Human interaction with
motion planning algorithm. J. Intell. Robot. Syst. 67(3),
285–306 (2012)

34. Yang, D.H., Hong, S.K.: A roadmap construction algorithm
for mobile robot path planning using skeleton maps. Adv.
Robot. 21(1-2), 51–63 (2007)

35. Yang, K., Moon, S., Yoo, S., Kang, J., Doh, N.L., Kim,
H.B., Joo, S.: Spline-based rrt path planner for non-
holonomic robots. J. Intell. Robot. Syst. 73(1-4), 763 (2014)

Yiqun Dong Born in 1990, Dr. Dong completed his Bachelor
in Fudan University Shanghai China in 2010, he then moved
on to the graduate school in the same place till 2016 with a
Ph.D. in Aerospace Control. From 2014 October to 2016 March,
Dr. Dong was an exchange Ph.D. student in Concordia Univer-
sity, Montreal, Quebec Canada. Dr. Dong’s research is focused
on path planning, bottom-level control, and image-based posi-
tioning/localization, etc. Now he is also working on the Deep
Learning-based applications. For more information please see
www.yiqundong.com.

Efe Camci was born in Izmir, Turkey. He went to Izmir Ataturk
High School, Izmir, Turkey. He received his B.Sc. degree in
Aerospace Engineering at Middle East Technical University,
Ankara, Turkey. He is currently pursuing his research as a Ph.D.
candidate in School of Mechanical and Aerospace Engineering
at Nanyang Technological University, Singapore. His research
areas are flight control, reinforcement learning, and unmanned
aerial vehicles.

Dr. Erdal Kayacan holds a PhD in Electrical and Electronic
Engineering from Bogazici University (2011). He was a vis-
iting scholar in University of Oslo in 2009 with the research
fellowship of Norway Research Council. After his post-doctoral
research in KU Leuven at the Division of Mechatronics, Bio-
statistics and Sensors (MeBioS), Dr. Kayacan went on to pursue
his research in Nanyang Technological University at the School
of Mechanical and Aerospace Engineering as assistant professor
(2014–current).

His current research projects focus on the design and devel-
opment of ground and aerial robotic systems, vision-based
control techniques and artificial intelligence. Dr. Kayacan is
co-writer of a course book “Fuzzy Neural Networks for Real
Time Control Applications, 1st Edition Concepts, Modeling and
Algorithms for Fast Learning”, Butterworth-Heinemann, Print
Book ISBN:9780128026878. (17 Sept 2015). He is a Senior
Member of Institute of Electrical and Electronics Engineers
(IEEE). From 1st Jan 2017, he is an Associate Editor of IEEE
Transactions on Fuzzy Systems.

https://doi.org/10.1109/ROBOT.1992.220060
https://doi.org/10.1109/ROBOT.2006.1641823
www.yiqundong.com

	Faster RRT-based Nonholonomic Path Planning in 2D Building Environments Using Skeleton-constrained Path Biasing
	Abstract
	Introduction
	Related Work
	Combining Skeleton with RRT
	Problem Statement
	Algorithm Flow of the Skilled-RRT
	FindSkeleton()
	SkeletonPath(S, qroot,qgoal)
	ObstacleFree(qgoal)
	LocationSeed(P,qgoal,W)
	NearestNeighbor(,SeedL)
	NavigationSeed(qnear,W,SR,HB)
	Navigate(,qnear,SeedN,q)
	ConnectFeasibleTrajectory()


	Analysis of the Skilled-RRT

	Experimental Setup
	Nonholonomic Agent Vehicles
	Omnidirectional car
	Nonholonomic car
	Truck-tractor system


	Test Environments
	Baseline Algorithms Specifics
	Parameters of the Skilled-RRT

	Experimental Tests
	Planner Performance Metrics
	Simulation Test Results and Discussion

	Test in Real Environment
	Conclusions
	Acknowledgements
	References


