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Abstract This paper investigates the leader–follower
formation control problem for a group of networked
nonholonomic mobile robots that are subject to
bounded time-varying communication delays and an
asynchronous clock. First we convert the formation
control problem into a trajectory tracking problem,
and then a fully distributed unified control framework
based on the receding horizon control is implemented
to converge the tracking errors. By adding an auxil-
iary acceleration term into the receding horizon con-
troller, the framework is able to solve the impractical
velocity jump problem. Considering the time-varying
delays, the timing and order features of the messages
are utilized to guarantee their logical correctness. To
compensate for the delay effect, an improved control
framework that exploits the predictability of the reced-
ing horizon controller is proposed. The asynchronous
clock problem, which makes the communication delay
unmeasurable, is studied. We give a definition of the
syn point that is inspired from investigation of the
property that messages are received out of order in
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a bounded time-varying delayed network. A novel
method that detects the occurrence of syn points is
integrated into the control framework to solve the
asynchronous clock problem. Finally the effectiveness
of the proposed approaches is demonstrated in the
Player/Stage simulation environment.
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1 Introduction

A multi-robot system, with its intrinsically distributed
and concurrent characteristics, is deemed to be more
robust and efficient than a single versatile robot when
performing some cooperative tasks such as search and
rescue, surveillance, construction, and sampling [2, 17,
26, 35, 39]. An interesting and significant issue in this
realm is to drive multiple autonomous robots to form,
andmove in, a specific geometric shape: this is referred
to as formation control. Over the past two decades, a
great number of studies have been devoted to this prob-
lem, mainly focusingon three approaches: the behavior-
based approach [1, 40], the virtual structure approach
[22, 30, 43], and the leader–follower approach [7, 16,
28, 32, 41]. Due to its simplicity and scalability, the
leader–follower approach is widely adopted and has
become predominant. Within this approach, the inter-
action between a group of n robots can be modeled
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as a tree structure. One robot is designated as the root
node, which determines the trajectory of the whole
group. Each of the other robots, referred to as a “child”
node in the tree, will maintain the desired separation
and relative bearing angle from its “father” node. In
all, there are n − 1 father–child pairs, i.e., leader–
follower relationships. As a result, the formation can
be achieved by locally coordinating each follower’s
velocity according to its own state and the leader’s state.
When implementing the leader-follower approach,
there are generally two categories with respect to the
control architecture. They are referred to as central-
ized and decentralized architectures. In a centralized
architecture, a central monitoring node is assigned to
acquire the state information of all the group mem-
bers, compute the commands, and communicate with
each robot. In a decentralized architecture, each robot
calculates control commands by employing its own
processing capacity according to its leader’s state, and
moves autonomously without resorting to the cen-
tral node. The decentralized solution outperforms the
centralized one in terms of reliability and scalabil-
ity [29, 34, 41]. The central monitoring node impacts
on the reliability of the whole system as it is a sin-
gle point of failure, and impacts on the scalability of
the system as the number of robots is limited by the
communication bandwidth and processing power of
this central node. Therefore, this paper focuses on the
decentralized leader-follower approach.

Following the leader–follower pattern, the forma-
tion control problem is naturally an extension of a tra-
ditional trajectory tracking problem, where the way-
points of the trajectory of the follower are calculated
based on the state of its leader. Various novel track-
ing control strategies have been proposed to guarantee
the stability of the system, such as I/O linearization [9,
41], backstepping [23, 28], sliding mode [10, 31], and
receding horizon [4, 7, 12]. To achieve decentralized
formation control, one fundamental requirement must
be met: every follower must be aware of information
about its leader’s state. To obtain such information,
one general approach is to measure the leader’s state
with the follower’s onboard vision sensor [9, 16, 32,
38]. However, due to the rapid development of wire-
less communication technologies, it is desirable to
endow the autonomous robots with the capability of
communicating. Thus, the leader is able to measure its
state information by using its local sensors and send
it to the followers. In real implementations, a problem

that can not be ignored is the delay in the exchange of
information between the robots. Without deliberately
taking this into account, the communication delay will
not only degenerate the performance of the system,
but also affect its stability when the delay is large
enough [21, 33, 41]. For instance, in the I/O lineariza-
tion and backstepping techniques, the velocity control
commands are directly related to the tracking errors.
Large initial velocities can be generated when there
are large initial tracking errors, and a sharp velocity
jump could happen when sudden tracking errors arise.
As a result, the required acceleration could exceed the
physical specification of the robot, which makes the
robot suffer from the impractical velocity jump prob-
lem [28, 36]. The communication delay could make it
even worse as it further augments the tracking errors.
Especially when the communication delay is varying
over time, impractical velocity jumps could happen
frequently, even though there are no tracking errors.

The effect of communication delays on the stability
problem has been extensively studied in multi-agent
systems [11, 25, 27, 37]. Jiang et al. [21], follow-
ing the approach in [25], exploits a predictive term in
the control law to get more accurate position infor-
mation provided that every robot is fully aware of
the fixed reference velocity. Izadi et al. [19, 20] pro-
poses a fault-tolerant receding horizon controller to
cope with the communication delays of predicted
states of the leader robot. It requires transmitting the
predicted states over the whole prediction horizon,
and also estimating the tail part of the leader robot’s
state that is unavailable due to communication delays.
Concerning the leader–follower formation control of
nonholonomic robots, Xu et al. [41] proposes a PD-
type controller based on previous states to compensate
for the delayed effect, which conforms to the work in
[11, 27]. However, to the best of our knowledge, there
is nothing in the literature that treats the asynchronous
clock problem for formation control in a distributed
environment. In a multi-robot system that uses embed-
ded processors, the robots are likely to have different
internal clocks and timing mechanisms, which makes
the communication delay difficult to measure.

This paper studies the leader–follower formation
control problem of a group of networked nonholon
omic mobile robots subject to bounded time-varying
communication delay and asynchronous clocks. The
main contributions of this paper can be summarized as
follows.
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– Based on the receding horizon control princi-
ple and ACADO tool [18], we implement a
fully distributed unified control framework to
address the leader–follower formation control
problem. By adding an auxiliary acceleration
term into the receding horizon controller, the
framework solves the impractical velocity jump
problem.

– To solve the bounded time-varying communica-
tion delay problem, an improved framework that
exploits the predictability of the receding horizon
control is proposed. As the delay is time-varying,
the follower will receive messages out of order.
The timing and order features are utilized to guar-
antee the correct temporal order of messages on
the follower side.

– The feature that at a sampling time the follower
may receive several messages in a bounded time-
varying communication network is analysed. We
give the definition of a syn point. By detect-
ing the occurrence of syn points, the framework
solves the formation control problem regardless of
having asynchronous clocks among the robots. In
other words, there is no need to strictly synchro-
nize the clocks by using a delicate clock synchro-
nization protocol for a fully distributed networked
robotic system that are subject to bounded time-
varying communication delay and asynchronous
clocks.

The rest of the paper is organized as follows. In
Section 2 we describe the kinematic model of the non-
holonomic robot, and formulate the leader–follower
formation control problem. The general form of the
receding horizon control is presented in Section 3,
and then the unified control framework integrating a
receding horizon control scheme is presented, as well
as the algorithms proposed to solve the communica-
tion delay and the asynchronous clock problems. The
simulation results are reported in Section 4, followed
by some concluding remarks in Section 5.

2 Leader–follower Formation Control

2.1 Mathematical model of the mobile robot

Throughout this paper, we consider a multi-robot sys-
tem with N mobile robots. Every Ri (1 ≤ i ≤ N), as

shown in Fig. 1, is a differential driven robot. The pos-
ture state pi of Ri is fully described by a 3-D column
vector

pi = [xi, yi, θi]T , (1)

where xi and yi denotes the coordinates of the mid-
point between the two wheels with respect to an
inertial coordination frame, and θi is the orientation
angle.

We assume that each robot moves under pure
rolling and non-slipping conditions [8], whereby the
robot Ri has the following nonholonomic kinematic
constraint:

ẋi sin θi − ẏi cos θi = 0. (2)

Therefore, the kinematic model ofRi can be described
by

ṗi =
⎡
⎣

ẋi

ẏi

θ̇i

⎤
⎦ =

⎡
⎣
cos θi 0
sin θi 0
0 1

⎤
⎦

[
υi

ωi

]
, (3)

where υi and ωi are the linear velocity and the angular
velocity, respectively.

2.2 The leader–follower control objective

In the leader–follower formation scheme, the follower
in each leader–follower pair is required to maintain
the desired separation and relative bearing angle with
respect to the leader. To be more specific, consider
the leader–follower pair in Fig. 2. The desired separa-
tion, respectively, bearing angle, between the follower

x

y

o

Θi
Ri

yi

xi

Fig. 1 The model of the nonholonomic robot



468 J Intell Robot Syst (2018) 89:465–484

Ri and the leader Rj are denoted by ρd , respectively,
ϕd , while ρ, respectively, ϕ, are the actual values. As
a result, the control objective is to control the input
[υi, ωi]T of Ri in such a way that
{

ρ − ρd→0
ϕ − ϕd→0

(4)

as t→∞.
From Fig. 2, it is obvious that ρd and ϕd uniquely

determine the desired position of Ri . Besides, it is also
desired that Ri maintain the same orientation angle as
Rj . Therefore, the desired posture pd of Ri can be
calculated by

pd =
⎡
⎣

xd

yd

θd

⎤
⎦ =

⎡
⎣

xj − ρd cos(ϕd + θj )

yj − ρd sin(ϕd + θj )

θj

⎤
⎦ . (5)

The control objective can also be described as con-
trolling [υi, ωi]T to make pi ([xi, yi, θi]T ) track the
desired reference trajectory determined by the kine-
matics of the point pd ([xd, yd, θd ]T ).

In order to exploit feedback linearization, it is con-
ventional to consider the kinematics of a handling
point p′

i that lies on the orientation axis at a distance

d from pi [9, 32]. In this way, the kinematics of a
robot’s coordinates is explicitly related to its angu-
lar velocity. Following this convention, the control
objective is changed into controlling [υi, ωi]T to make
p

′
i track the desired reference trajectory of point p′

d ,
where

p′
i =

⎡
⎣

x′
i

y′
i

θ ′
i

⎤
⎦=

⎡
⎣

xi + d cos θi

yi + d sin θi

θi

⎤
⎦ (6)

and

p′
d =

⎡
⎣

x′
d

y′
d

θ ′
d

⎤
⎦=

⎡
⎣

xj − ρd cos(ϕd + θj ) + d cos θj

yj − ρd sin(ϕd + θj ) + d sin θj

θj

⎤
⎦ .

(7)

Thus, the tracking error e can be defined as

e =
⎡
⎣

ex

ey

eθ

⎤
⎦ = A(p

′
d − p

′
i ) (8)

where

A =
⎡
⎣

cos θi sin θi 0
− sin θi cos θi 0

0 0 1

⎤
⎦ . (9)

Fig. 2 A leader–follower
pair
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As A is invertible, it is obvious that e → 0 implies
(p

′
d − p

′
i ) → 0. Combining (6), (7), (8), and (9), the

tracking error can be rewritten as

ex = (xj − xi) cos θi + (yj − yi) sin θi

−ρd cos(ϕd + θj − θi) + d cos(θj − θi) − d,

ey = (yj − yi) cos θi − (xj − xi) sin θi

−ρd sin(ϕd + θj − θi) + d sin(θj − θi),

eθ = θj − θi . (10)

By taking the derivative of Eq. 10 and using Eq. 2, the
dynamics of the tracking error can be obtained as

ėx = υj cos eθ + eyωi − υi

+ρdωj sin(ϕd + eθ ) − dωj sin eθ ,

ėy = υj sin eθ − exωi − dωi

−ρdωj cos(ϕd + eθ ) + dωj cos eθ ,

ėθ = ωj − ωi. (11)

We rewrite the dynamics of the tracking error as a
general nonlinear system

ė(t) = fe(e(t), ui(t)), t ≥ 0, (12)

where the input vector ui(t) = [υi, ωi]T .

3 Controller Design

3.1 Receding horizon control principle

Receding horizon control, also referred to as model
predictive control (MPC), aims to solve a finite hori-
zon open-loop optimal control problem that is subject
to system dynamics and input and state constraints
[3]. Figure 3 shows the general principle of reced-
ing horizon control. At time tk (tk = t0 + kδ, where
t0 is the initial time, δ is the sampling period, and
k ∈ N), according to the current state of the system,
the controller predicts the future state trajectory over a
prediction horizon (Tp), and also generates the future
input trajectory over a control horizon (Tc ≤ Tp; for
simplicity, we assume Tc = Tp in this paper) with
the purpose of minimizing a cost function J , while
the evolution of the system is subject to the system’s

past future

reference state point

predicated state trajectory 

predicated input trajectory 

tk tk+1 

u

x 

closed-loop state
trajectory x 

closed-loop input
trajectory u 

t+Tc t+Tp
control horizon

Fig. 3 General receding horizon principle

dynamic model and state and input constraints. Due
to the idealization of the model and the uncertainty
of the disturbances, in most cases the real state tra-
jectory will not follow the predicted one. As a result,
the generated input is only applied to the system over
the sampling period δ, after which the receding hori-
zon control algorithm is executed again with the new
system state.

To be more specific, consider a general nonlinear
system described by

ẋ(t) = f (x(t), u(t)), x(0) = x0, (13)

and subject to the state and input constraints

x(t) ∈ X, ∀t ≥ 0 (14)

u(t) ∈ U, ∀t ≥ 0, (15)

where X ⊂ R
n and U ⊂ R

m. At the sampling time
tk , the receding horizon control solves a finite horizon
open-loop optimal control problem, formulated as

min
u(·) J (x(tk), u(·)) (16a)

with

J (x(tk), u(·)) =
∫ tk+Tp

tk

F (x(τ ), u(τ)) dτ

+ E(x(tk + Tp))

(16b)
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subject to

ẋ(τ ) = f (x(τ), u(τ ))), x(tk) = x(tk) (16c)

x(τ) ∈ X, u(τ) ∈ U, τ ∈ [tk, tk + Tp] (16d)

x(tk + Tp) ∈ 	, 	 ⊆ X, (16e)

where x(·) is the predicted state trajectory over the
prediction horizon driven by u(·) : [tk, tk + Tp] → U ;
F : X × U → R

+ is called the stage cost function: it
is assumed to be continuous. Usually F is expressed
as a quadratic form:

F(x(τ), u(τ)) = x(τ)T Q x(τ) + u(τ)T R u(τ), (17)

where Q ∈ R
n×n and R ∈ R

m×m are positive-
definite and positive-semidefinite weighting matrices,
respectively; E and 	 denote the terminal penalty
function and terminal region, respectively. These two
parameters need to be carefully chosen in order to
guarantee close-loop stability. Theorem 1 below states
the stability conditions.

Theorem 1 ([13]) Consider the design parameters:
the prediction time horizon Tp, the stage cost func-
tion F , the terminal penalty term E, and the terminal
region 	, which satisfy

1. 	 ⊆ X is closed with 0 ∈ 	. E is positive semi-
definite;

2. ∀x(0) ∈ 	 there exists an input u	 : [0, δ] → U

such that

x(τ) ∈ 	, ∀τ ∈ [0, δ] (18)

and

∂E

∂x
f (x(τ), u	(τ))+F(x(τ), u	(τ))≤0, ∀τ ∈[0, δ];

(19)

3. The finite horizon open-loop optimal problem
(16a) is feasible (has a solution) at t = 0.

Then Eq. 16a is feasible for all t ≥ 0 and x(t) will
converge to zero as t → ∞ when repeatedly applying
the optimal solution produced by solving (16a) at each
sampling time tk, k ∈ N.

Proof See [13].

3.2 Delay-free receding horizon leader–follower
control framework

With an ideal communication channel, the communi-
cation delay between the leader and follower can be
ignored. We also assume that the robot is equipped
with sensors making state (posture and velocity) mea-
surement feasible. In this situation, we propose a dis-
tributed control framework without considering com-
munication delay as shown in Fig. 4. The low level
controller is in charge of adjusting the robot’s velocity
assigned by the high level controller, as well as mea-
suring its state according to the sensor data. Taking
only the kinematics of the robot into account, the high
level controller employs the receding horizon con-
troller to calculate its velocity according to the state
information at each sampling step.

The leader robot moves at a reference velocity
(υr, ωr ), while the follower is required to converge to
and then maintain a desired distance and bearing angle
relative to the leader. It is obvious that they have dif-
ferent control objectives, which are deemed to be diffi-
cult to implement by using the same receding horizon
controller. However, the proposed approach in Fig. 4 is
a unified one that can be applied to both the leader
and the follower. To be more specific, all the robots
have the same receding horizon approach that accepts
unified parameters. The high level logic supplies the
receding horizon controller with different values adap-
tively according to the specific control objective. The
overall method is detailed in Algorithm 1. The core
idea is to imagine a virtual leader that always has the
same position as the leader robot, but moves in terms
of (υr, ωr ). The leader robot’s control objective is to
track the virtual leader with zero separation and zero
bearing angle. In this way, we are able to implement
the same receding horizon controller in both the leader
and the follower. Despite its high computational and
memory cost, a receding horizon controller outper-
forms a generic PID controller in terms of state and
input constraints and the prediction capability. Fur-
thermore, its prediction capability makes it natively
capable of handling the communication delay problem
as detailed in Section 3.3.
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Regarding the implementation, we use the ACADO
toolkit [18] to generate portable, self-contained C code
for the receding horizon controller as shown in Fig. 5.
To solve the impractical velocity jump problem [28],
we change the error dynamics by introducing auxil-
iary acceleration terms. Accordingly, υi and ωi are
treated as state variables, and the accelerations are
considered as the inputs (lines 3 and 5 in Fig. 5). In
this way, the changing rate of velocity is constrained

by the acceleration value (line 12), which naturally
prevents the velocity from jumping too sharply. Addi-
tionally, Lines 29 and 30 express the acceleration and
velocity constraints. We also regard ρd and ϕd as vari-
ables instead of constants (line 4), making the system
adaptable to diverse formation objectives at run-time.
For the cost function J , we only take the error states
and accelerations into account (lines 17–21). Such
a configuration makes the tracking error dominant
in the cost function, since the main objective is to
minimize the tracking error. Meanwhile, it also makes
the acceleration converge to zero. In other words,
it will keep the velocity as stable as possible while
minimizing the tracking error.

3.3 Improved control framework subject
to communication delay

The control framework proposed in Section 3.2
assumes that the follower can receive the leader’s
state messages without delay and loss. However, this
assumption is not sustainable in most real systems,
wherein the system inevitably suffers from constant
or time-varying delays due to an imperfect commu-
nication network. Without taking the communication
delay into account, it is very possible that the tracking
error will not converge to zero, because the follower
will always track a delayed leader. More specifi-
cally, when the delays are time-varying, the follower
will receive the state messages in a random order,
which results in instability (see the simulation result
in Section 4).

In this paper, we deal with a multi-robot system
subject to time-varying but bounded communication
delay. First, we follow the approach in [24] to model
the communication delay problem from the the fol-
lower’s perspective. For simplicity, we suppose that
msgk is the latest message the leader has sent at
the sampling instant tk for the follower, and use
msgk.stime to denote its sending time. We also
assume that the leader and the follower have the same
logical clock. As Algorithm 1 describes, at time tk , the
follower is supposed to receive msgk from the leader.
However, due to the time-varying delay, msgk is likely
to be received after tk , whereas at time tk the fol-
lower may receive several messages prior to msgk , or
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High level RH-based controller

Low level controller

High level RH-based controller

Low level controller

robot state (in)

robot state (out)velocity (in)

velocity (out)

receding horizon controller

reference velocity (in)

robot state (out) velocity (in)

leader state (in)

follower state (in)

receding horizon controller

(ρd, φd)

velocity (out)

Leader Follower

(xj, yj, θj, vj, wj) 
desired formation (in)

(xj, yj, θj, vj, wj) 

Fig. 4 The unified distributed leader–follower control framework without considering communication delay

even receive nothing. For a message msgi received at
time tk , we use an auxiliary variable di , the number of
sampling periods, to indicate its delay. As the delay is
bounded, we suppose that

D ≤ di ≤ D, D ∈ N, D ∈ N, (20)

where D and D are the minimum and maximum
delays, respectively. Since the receding horizon con-
troller is implemented discretely, di is calculated
approximately by

di = � tk − msgi.stime + 0.5 ∗ δ

δ

. (21)

In order to compensate for the delay effect, in
general there are two kinds of approaches: introduc-
ing a self-delay [5, 11, 37, 41], and introducing a
prediction term [21, 25] in the control laws. In this
paper we employ a prediction approach that seam-
lessly integrates with the receding horizon controller
due to its inherent prediction capability. The state
and input trajectories, as a byproduct of the reced-
ing horizon control, can provide us with a reliable
future state of the leader robot. In principle, the pre-
diction can be embedded into the control framework
either on the leader’s side or on the follower’s side. If
implemented on the follower’s side, the control archi-
tecture of the leader needs no modification, and the
follower will receive a delayed state from the leader.

Therefore, the receding horizon controller of the fol-
lower should consider the delay of messages. Not too
much effort is needed to achieve this. However, it is
simplistic and incomplete in this case without con-
sidering unforeseen situations on the leader side. For
instance, if the leader encounters an obstacle, its future
state will possibly deviate from that estimated by the
follower, whereas the follower is unaware of the situa-
tion, which consequently results in a deviation for the
formation. In contrast, if implemented on the leader
side, the obstacles can be detected and avoided using
an on-line receding horizon strategy [14, 42], which,
of course, provides more accurate future states. We
prefer to implement the prediction strategy on the
leader’s side, although avoiding obstacles is not the
focus of this paper.

Figure 6 shows the improved distributed control
framework with the prediction capability embedded.
In order to get the robot’s predicted state trajectory,
we modify the receding horizon controller just by
adding the dynamics of the robot to the ACADO
code. After the trajectory is calculated, the next step
is to determine which element of the predicted states
should be sent to the follower. However, this is a
dilemma for the leader, because it is incapable of
knowing the actual delay in advance. We solve this
problem by sending the predicted state that is exactly
beyond D, the upper bound of the communication
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Fig. 5 The ACADO code to generate the source code for the leader–follower control problem

Fig. 6 The improved
distributed leader–follower
control framework
embedded with prediction
capability to compensate for
the effects of
communication delay
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delay. With this strategy, in most cases the data
received at time tk by the follower is not the imme-
diate desired state data, thus a loop message buffer
MsgBuf (see Fig. 6) is employed to cache the data,
the size of which depends on D. At each sampling
time, the follower will get the immediate predicted
state of the leader from the buffer.

Due to the randomness of communication delay,
there are two issues that must be addressed: 1) sort-
ing the messages received in the order of their sending
time in the buffer; 2) putting a message into its cor-
rect position in MsgBuf . We denote the position for
a message msgi in the buffer by posi . At first sight,
the two issues can be easily solved by utilizing the
time-stamps of the messages. Suppose that at the sam-
pling time tk , an index variable idx, which moves at
the sampling rate, points to the right message that con-
tains the leader’s state information in MsgBuf . When
receiving a message msgi , posi can be calculated by

posi = (idx + D − di) mod (D + 1), (22)

where di is the communication delay and is obtained
from Eq. 21. The correctness of Eq. 22 is, inevitably,
decided by the accuracy of Eq. 21. If the leader
sends messages strictly according to the sampling rate,
namely, for two sequential messagesmsgi andmsgi+1

we have
msgi+1.stime = msgi.stime + δ, (23)

then, after some calculations, we have

posi+1 = (posi + 1) mod (D + 1). (24)

In this manner all the messages are correctly sorted
and settled in MsgBuf . However, Eq. 24 will not be
valid when there are some little jitters with the sending
time. Figure 7 illustrates the scenario.

The two sequential messages are received at sam-
pling time tk+1 and tk , respectively. The little jitters

leader

follower

�m
eline

msgi msgi+1

tk tk+1

Fig. 7 An example that generates the same position for two
sequential messages. msgi is sent a little late, while msgi+1 is
sent a little early

will definitely make their positions identical by simply
applying (22). Actually the analysis above only relies
on the timing feature of the messages, without tak-
ing their sending order into account. To solve this
problem, we endow the messages with an additional
auxiliary field seq that indicates their sending order.
For any two sequential messages msgi and msgi+1

sent by the leader, they always have

msgi+1.seq = msgi.seq + 1. (25)

Algorithm 2 shows the pseudo code that utilizes the
timing and order features of messages to insert them
into MsgBuf correctly. The first message received is
used to initialize pos and seq, and its position is cal-
culated individually by Eq. 22. Subsequent messages
are placed according to sequence number relative to
that of the first message, which guarantees their timing
order in MsgBuf .
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3.4 Asynchronous clock problem

To the best of our knowledge, when studying the
effect of communication delays on the formation
control problem, nearly all the existing literature
assumes either that the communication delay is con-
stant between two robots (agents), or that it is mea-
surable if time-varying. As stated before, this paper
considers the case of bounded time-varying delay,
which is more general in real situations. In a cen-
tralized control framework or in a simulated environ-
ment, all the controllers are implemented in the same
machine. They can share the same clock to obtain
the interval between any two time-stamped events,
and therefore we can utilize (21) to measure the
delay of messages. However, in a distributed environ-
ment, except when the two robots have synchronized
clocks, it is no longer correct to calculate the delay by
means of Eq. 21 directly. Their local internal clocks
may differ, which is referred to as the asynchronous
clock problem, making the the communication delay
unmeasurable. In this case, even a clock drift of one
second could make the formation unstable. To solve
this problem, a bunch of synchronization protocols
have been designed to synchronize the asynchronous
clocks. In this paper, instead of embedding a specified
synchronization protocol into the control framework,
we propose a syn point based algorithm to solve the
asynchronous clock problem. The algorithm does not
rely on the timing feature of the messages, and thereby
it can work without any synchronization protocol. The
efficacy and efficiency of this algorithm depends on
the order feature of the messages and the distribution
of the communication delays. To clarify the algorithm,
we first give the definition of the syn point.

Definition 1 (Syn point). For the follower robot, a
sampling time tk is said to be a syn point if at time
tk it receives at least two messages, and there are two
messages msgm and msgl such that

msgm.seq − msgl.seq = D − D. (26)

The example in Fig. 8 shows that the sampling time
tx is a syn point, while tx−2 is not a syn point, even
though the follower receives three messages at time
tx−2. It also shows that dl (the delay of msgl) is D,and
that dm is equal to D.

Theorem 2 For two messages msgm and msgl

received at time tk , dl − dm = D − D if and only if
dl = D and dm = D.

Proof First, if dl = D and dm = D, it is clear that
dl − dm = D − D.

Second, if dl − dm = D − D, then dl = D +
(dm − D). According to Eq. 20, we have dm ≥ D, so
dl ≥ D. As dl ≤ D, we can only have dl = D, as well
as dm = D.

Lemma 1 tk is a syn point if and only if at time tk the
following hold: 1) the follower receives at least two
messages; 2) one message received has the maximum
delay D; 3) one message received has the minimum
delay D.

Proof According to Definition 1, if tk is a syn point,
there are two messages msgm and msgl that satisfy

msgm.seq − msgl.seq = D − D.

⇐⇒ msgm.stime − msgl.stime = δ ∗ (D − D).

⇐⇒ msgm.stime = δ ∗ (D − D) + msgl.stime.

(27)

It follows from Eq. 21 that

dm = � tk − msgm.stime + 0.5 ∗ δ

δ

. (28)

Combining (27) and (28), we get

dm = � tk − δ ∗ (D − D) − msgl.stime + 0.5 ∗ δ

δ

.

⇐⇒ dm = � tk − msgl.stime + 0.5 ∗ δ

δ

 − (D − D).

⇐⇒ dm = dl − (D − D).

⇐⇒ dl − dm = (D − D).

(29)

Using Theorem 2 and Eq. 29, we get dl = D and
dm = D.

Lemma 1 gives the impression that we are able to
get the delay of messages through detecting the occur-
rence of syn points regardless of any synchronization
protocols. Furthermore, a syn point can be easily
identified by utilizing the seq field of the messages
according to its definition. This is the key idea of
Algorithm 3, which integrates the syn point method
into the control framework. When a syn point is iden-
tified at time tk , it indicates that the follower receives
a message msgl with the maximum delay D. The
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leader’s state insidemsgl , which was predicted exactly
beyondD at time (tk−D), is what the follower expects
at time tk . Therefore, we can adjust the index idx to
make it point to the position where msgl is stored in
MsgBuf .

leader

follower

�m
eline

msgl msgm

txtx-2

Fig. 8 An example that illustrates the occurrence of a syn point
with δ = 100 ms, the minimum delay = 100 ms (D = 1), and
the maximum delay = 500 ms (D = 5)

Compared to embedding a specified synchroniza-
tion protocol, the syn point based method is more
lightweight. However, its efficiency depends on the
distribution of the delays. Suppose that the delay
variable di follows a discrete uniform distribution in
[D, D]. Then the probability of the occurrence of

a syn point at tk is 1/(D − D)
2
. In this situation,

one syn point is deemed to appear within the time

δ(D − D)
2
. For instance, consider the configuration

in Fig. 8. We can expect the occurrence of a syn point
within 1.6 seconds.

4 Simulation Results

In this section, we present several simulations to
validate the efficacy and effectiveness of the pro-
posed three leader–follower formation control algo-
rithms. The simulation experiments were carried out
with several simulated Pioneer 2-DX robots using the
Player/Stage software tools [6, 15]. The Stage simula-
tion environment enables the robot to change its speed
instantly, so the low level controller in Fig. 4 is imple-
mented quite straightforwardly. It directly sends the
velocity commands and gets the states of the robots
via the Player/Stage APIs. The distance d of the han-
dling point is chosen as 0.2 m. The sample period δ is
configured as 0.1 s. The weighting matrices in Eq. 17
are chosen as

Q =
⎡
⎣
0.8 0 0
0 0.8 0
0 0 0.4

⎤
⎦ , R =

[
0.2 0
0 0.2

]
. (30)

4.1 Validation of the unified delay-free control
framework

In this simulation, we aim to demonstrate the effec-
tiveness of the proposed control framework in Fig. 4
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Fig. 9 The real-time
trajectories of the three
robots. The control
Algorithm 1 is only adopted
by the leader robot and the
follower F1, whereas the
controller described in Eq.
31 is applied to the follower
F2 for comparison

(a) (b)

and Algorithm 1. Three robots are used, with one act-
ing as the leader. the other two robots, indexed as
F1 and F2, are the followers who receive state infor-
mation from the leader. The initial postures of the
leader, F1, and F2, are specified as [0, 0, π/4]T ,
[0, −8.0, 0]T , and [−8.0, 0, π/2]T . For the follower
F1, the desired distance and bearing angle are speci-
fied as 1 m and π/6, while for F2 the desired values
are 1 m and −π/6. For highlighting the novelty of
Algorithm 1, only the leader and F1 are deployed with
the control framework. Considering the actual situa-
tion, the velocity and acceleration constraints for them
used in Fig. 5 are assumed to be

−2.0 m/s <= υi <= 2.0 m/s,

−2.0 rad/s <= ωi <= 2.0 rad/s,

and

−5.0 m/s2 <= aυi <= 5.0 m/s2,

−5.0 rad/s2 <= aωi <= 5.0 rad/s2.

For comparison, the follower F2 is equipped with an
ordinary controller based on the Input-Output Lin-
earization [32] as follows:

υi =K1(xr −xo) cos θi +K2(yr −yo) sin θi

+υj +ωj ρd sinϕd,

ωi = 1

ρd cosϕd

(−K1(xr −xo) sin θi +K2(yr −yo) cos θi

−υj sin(θi −θj )−ρd sinϕdωj sin(θi − θj )),

(31)
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Fig. 10 The tracking errors (ex, ey, eθ ) of the followers, which move in a straight line
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Fig. 11 The linear and angular velocities of the three robots, which move in a straight line. The reference linear and angular velocities
of the leader are 1.0 m/s and 0.0 rad/s, respectively
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Fig. 12 The tracking errors (ex, ey, eθ ) of the followers, which move in a circular way
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Fig. 13 The linear and angular velocities of the three robots, which move in a circular way. The reference linear and angular velocities
of the leader are 1.0 m/s and 0.1 rad/s, respectively
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Fig. 14 The real-time circular trajectories of the three robots
that are subject to bounded time-varying communication delay

where K1 and K2 are constants and are selected as
K1 = K2 = 1, and xr , yr , xo, yo are calculated by

xr = xj + ρd sinϕd sin θj ,

yr = yj + ρd sinϕd cos θj ,

xo = xi + ρd cosϕd sin θi,

yo = yi + ρd cosϕd cos θi .

(32)

The simulation results from Figs. 9, 10, 11, 12 and
13 show the trajectories, tracking errors, and veloci-
ties of the three robots in which the leader is specified
to move in a straight line with a fixed linear velocity
and angular velocity described as (1.0 m/s, 0.0 rad/s),

as well as to move circularly with the linear and angu-
lar velocities (1.0 m/s, 0.1 rad/s). In the simulations,
the leader robot starts moving and sends its state infor-
mation to its followers after a period of time, so we
observe constant errors and velocities in the figures at
the beginning.

The real-time trajectories in Fig. 9 from the
Player/Stage simulation environment verify that the
follower F1 is well able to track the leader with both
the desired distance and the bearing angle by using
the unified leader–follower formation control method
proposed in Algorithm 1 that integrates the receding
horizon controller. The tracking errors (ex, ey, eθ )

shown in Figs. 10 and 12, which converge to zero
over time, further confirm the effectiveness of Algo-
rithm 1. It is obvious that the tracking errors of F2
converge much faster than those of F1 in both scenar-
ios, because there are no state and input constraints for
the controller (31). As a result, we inevitably observe
abrupt changes of the tracking errors of F2 as shown
in Figs. 10b and 12b. In contrast, the tracking errors of
F1 in Figs. 10a and 12a change smoothly with time,
which is more reasonable and more practical. This
proves the novelty of Algorithm 1, which is natively
capable of taking the constraints into account. The lin-
ear and angular velocities shown in Figs. 11 and 13
also reveal the novelty of Algorithm 1. The veloci-
ties of F1 always change gradually and smoothly from
zero, while the velocity commands generated from the
controller (31) suffer impractical jumps from zero to
a high value. Overall, the simulation results validate
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Fig. 15 The tracking errors (ex, ey, eθ ) of the followers, which calculate their velocity commands according to the delayed
information from the leader
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Fig. 16 The linear and angular velocities of the three robots that are subject to communication delay

that the control algorithm 1, combining the receding
horizon control principle, is an available and practical
solution to the distributed leader–follower formation
control problem.

4.2 Validation of the improved control framework
subject to bounded time-varying communication
delay

This simulation shares the same initial configuration
with the previous one. To validate the efficacy of han-
dling bounded time-varying communication delays by
using the control framework in Fig. 6 and Algorithm
2, we only apply the improved control framework to
the leader and F1, whereas F2 still sticks to Algo-
rithm 1. In other words, F1 will receive delayed pre-
dicted future state information from the leader, and F2
will receive delayed current state information. In this
simulation, the delays are assumed to be evenly dis-
tributed from 0 to 15δ (0 ∼ 1.5 s). For F2, if it receives
more than one message at a sampling instant, it uti-
lizes the latest one to calculate the tracking error. If
no message is received, F2 keeps the previous velocity
commands.

Figures 14–16 show the simulation results where
the leader is assigned to move in a circular way with
the reference linear velocity 1 m/s and angular velocity
0.1 rad/s. Figure 14 shows their trajectories. Since it
always receives delayed state information from the
leader, we can notice that F2 is a bit behind its desired
trajectory from Fig. 14 . As a result, the tracking
errors of F2 do not converge to zero over time, as

shown in Fig. 15b. Even worse, because of the ran-
domness of the delay, F2 is likely to receive messages
out of their sending order, which results in an insta-
bility of the formation (see the linear and angular
velocities of F2 in Fig. 16). In contrast, the tracking
errors of F1 in Fig. 15a show that the improved con-
trol framework together with Algorithm 2 solves the
leader–follower formation problem that is subject to
a time-varying communication delay. The linear and
angular velocities of F1 in Fig. 16 also indicate that
the improved control framework is able to keep the
formation stable.
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Fig. 17 Initial postures and formation configuration of the
three robots
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Fig. 18 The simulation results of five robots that are subject to time-varying communication delays and asynchronous clocks

4.3 Validation of the control framework subject
to asynchronous clocks

To clearly verify the significance of the syn-point
method when coping with the asynchronous clock

problem among robots, this simulation employs five
robots to form a shape, but is slightly different from
the previous two simulations. The initial postures
and formation configuration are shown in Fig. 17.
Compared with the previous two simulations, their
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initial postures are configured to clearly show the
tracking errors. F1 and F2 are assigned to track the
leader robot in this simulation, while F3 and F4 are
assigned to track F1 and F2, respectively. For F1 and
F3, the desired distance and bearing angle are 2.0
m and π/6 rad. For F2 and F4, the desired distance
and bearing angle are 2.0 m and −π/6 rad. The
communication delay for all leader–follower pairs is
assumed to be time-varying from 0 to 10δ (0 ∼ 1.0
s). The reference linear and angular velocities for the
leader robot are 1.5 m/s and 0.1 rad/s, respectively. All
the robots are equipped with the distributed control
framework described in Fig. 6 and Algorithm 3.

Figure 18 presents the simulation results. Their
real-time trajectories in Fig. 18a show the effective-
ness of Algorithm 3 at dealing with bounded time-
varying communication delays and the asynchronous
clock problem. Moreover, their tracking errors, shown
in Fig. 18b, c, and d, which converge to zero over time,
confirm the feasibility and effectiveness of Algorithm
3 that adopts the syn-point based approach. Figure 18e
shows that their linear velocities start from zero, and
converge to the desired values gradually. The angu-
lar velocities of F1, F2, F3, and F4, shown in Fig.
18f, converge to the angular velocity of the leader
gradually.

Let us further analyse Fig. 18b and e to see how
Algorithm 3 works. The leader robot starts to move
at time 0.0 s, at which time it also sends its predicted
state information to F1 and F2. Due to the asyn-
chronicity of clocks, F1 and F2 will not know the exact
delay of the first message from the leader. Algorithm
3 always assumes that the delay of the first message
is zero, so it will be stored in a position with 2 ∗ D

(2.0 s) delay compared to the current position. As a
result, F1 and F2 start to move and send messages
to F3 and F4 at time 2.3 s. Analogously, F3 and F4
starts to move at time 3.3 s. The tracking errors of F1
and F2 become nearly stable at times 11.7 s and 10.1
s. However, their tracking errors cannot converge to
zero completely until a syn point is detected. F1 and
F2 both finally detect a syn point at times 18.8 s, and
then they begin to speed up to catch up with the leader.
For F3 and F4, we do not observe the effects of the
syn-point based approach from the figures, as the syn
points are detected when they are both in full speed
during 0 ∼ 10 s. At time 30.3 s, the desired formation
is achieved, and becomes stable after that.

5 Conclusion and Future Work

In this paper, based on the receding horizon control
principle, we have implemented a fully distributed
control framework integrating several techniques to
solve the leader–follower formation control prob-
lem for a group of networked nonholonomic mobile
robots that have asynchronous clocks and suffer from
bounded time-varying communication delays. The
framework can be deployed indiscriminately on both
the leader and the follower sides, to make them con-
verge to and move as a desired formation. By adding
an auxiliary acceleration term to the receding hori-
zon controller, the framework solves the impractical
velocity jump problem, as well as meets the state and
input constraints. To solve the communication delay
problem, we propose an improved control frame-
work that deliberately utilizes the predictability of the
receding horizon controller. As the messages may be
received out of order on the follower side, a novel
technique that combines the timing and order features
of messages is exploited to guarantee the logical cor-
rectness of the messages. We carefully analysed the
characteristics of a bounded time-varying communi-
cation delay, and propose a syn point based method
to solve the asynchronous clock problem, which can
be natively integrated into the framework. As a result,
there is no need to integrate a delicate time synchro-
nizing protocol into the robots in a fully distributed
environment. The simulation results demonstrate the
effectiveness of the proposed approaches.

The control framework proposed in this paper
employs simplified models for the world and the
robots, and only focusses on the bounded time-varying
delay and asynchronous clock problems. However,
there are some issues that should be further con-
sidered, such as communication losses and obsta-
cles avoidance. Communication losses could happen
inevitably, for example due to block and congestion of
the communication channel. The control stability con-
ditions and laws subject to communication losses need
to be carefully derived, especially under the scheme
of receding horizon control. In a real environment,
the working space is usually scattered with obstacles
that could alter the trajectories of the robots. There-
fore, some obstacle avoidance mechanisms should be
integrated into the receding horizon control scheme.
In future work, we will investigate these issues, and
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give a more practical solution to the formation control
problem.
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24. Liu, J., Muñoz de la Peña, D., Christofides, P.D., Davis,
J.F.: Lyapunov-based model predictive control of nonlinear
systems subject to time-varying measurement delays. Int. J.
Adapt. Control 23(8), 788–807 (2009)

25. Münz, U., Papachristodoulou, A., Allgöwer, F.: Delay-
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Wouw, N., Kostić, D., Nijmeijer, H.: A virtual structure
approach to formation control of unicycle mobile robots
using mutual coupling. Int. J. Control 84(11), 1886–1902
(2011)

31. Sanchez, J., Fierro, R.: Sliding mode control for robot
formations. In: 2003 IEEE International Symposium on
Intelligent Control, pp. 438–443. IEEE (2003)

32. Shao, J., Xie, G., Wang, L.: Leader-following formation
control of multiple mobile vehicles. IET Control Theory
Appl. 1(2), 545–552 (2007)

33. Sipahi, R., Niculescu, S.I., Abdallah, C.T., Michiels, W.,
Gu, K.: Stability and stabilization of systems with time
delay. IEEE Contr. Syst. Mag. 31(1), 38–65 (2011)
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