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Abstract Cable robots are a type of parallel robots
where the rigid links are replaced by flexible cables.
This flexibility produces internal dynamic which chal-
lenges the rigid model based controller. In this paper,
the dynamic equations of cable robots with viscoelas-
tic cables are obtained. The Feedback Linearization
(FL) method is used to provide a linearized dynamic
error for the closed loop model of the system with
rigid cables. Using the Lyapunov criterion, the stabil-
ity analysis of the flexible system with the rigid FL
control input is performed. It is shown that consid-
ering a minimum damping coefficient and employing
the rigid FL controller, the system stability can be
guaranteed. In order to achieve a trade-off between
the control input and the tracking error, the FL gains
are obtained using LQR method. In practice, measure-
ment noise usually exists. On the other hand, the end-
effector vibration caused by the cables elasticity can
be considered as a process noise. Therefore, the LQG
approach is used to estimate the states in presence
of the process and measurement noise. Using simu-
lation, it is shown that in presence of measurement
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noise, the LQGmethod effectively controls the system
while the LQR and also the SMC approach, employed
in Korayem et al. (Robotica 33(3), 578–598, 2015),
lead to the system instability. Another simulation
demonstrates that the system with damping less than
the specified minimum value can be stable with the
LQG approach, in contrary to the LQR controller.
Moreover, in order to investigate the vibrational effect
of the cable stiffness and damping coefficient, a fre-
quency analysis is performed. Finally, experimental
result obtained by implementation on a manufactured
cable robot is presented and verified the approach.
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1 Introduction

Cable robots benefit from features such as low weight,
easy assembling, low production cost, and sufficient
accuracy in many applications like in cranes, studio
cams, medical equipment, etc. However, there is a
fundamental difference in the actuator mechanism of
these types of parallel robots and serial link robots, i.e.
in contrast to the serial link robots, the cable robots
can only tolerate tensile forces. In addition, cable
flexibility may result in the cable tension oscillation
and end-effector vibration. This can be more destruc-
tive in the under-constrained types, where the tension
of the cables cannot be increased using the system
redundancy.
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The cable flexibility increases the number of the
state variables. Thus far, control of flexible CDPRs
required auxiliary feedback in addition to the actuator
feedback, such as cable tension or the direct measure-
ment of the end-effector pose. Therefore, in addition
to more required sensors, the control input compli-
cation also enhances the processor computations. On
the other hand, in the case of rigid model based con-
troller, the system flexibility adds internal dynamic to
the closed loop system. Therefore, it should be shown
that the created internal dynamic is stable and also
it would not lead to instability of the system output.
This paper proposes a condition under which the flex-
ible CDPRs stay stable by solely a rigid model based
controller even in the presence of measurement noise.
Subsequently, it needs less feedback sensors to guar-
antee the system stability, compared with the previous
studies.

The cable flexibility has been incorporated into the
dynamic model differently. Diao studied the vibration
of cable-driven robots, caused by cables flexibility,
and showed that the cables lateral vibration com-
pared with the axial vibration can be ignored [1].
Zhang modeled the cables flexibility separately and
then combined the flexible cable model and the rigid
dynamic equations [2]. Miermeister et al. proposed to
obtain the cable force as a combination of nonlinear
spring and hysteresis force [3]. The hysteresis func-
tion was considered to be dependent on the excitation
amplitude and frequency. In applications with very
large workspace, the cable mass beside the flexibil-
ity should be taken into account. In [4], stiffness and
workspace analysis of a 3-dof spatial cable robot was
performed considering sagging effect caused by the
cable mass. In [5], Huang et al. modeled the cable in
the tethered space robots by a number of mass points
connected via massless linear springs.

In order to maintain the stability of the flexible
system, the researchers have incorporated the added
degrees of freedom in the flexible model based con-
troller. Korayem et al. obtained the dynamic equations
of a 6-dof cable-suspended robot with elastic joints,
and controlled the end-effector using a robust Feed-
back Linearization method [6]. They also modeled
the cables vibration with partial differential equations
(PDE) and used the tension obtained from PDE solu-
tion in the Sliding Mode controller (SMC) in order
to compensate for the flexibility uncertainties [7]. The
control laws proposed by the authors in [6, 7], need

the feedback obtained from motor rotations together
with the direct feedback of the end-effector pose. In
these control laws, the end-effector acceleration is also
required. This data can be supplied in two ways: 1)
By second derivative operation on the end-effector
pose [6]. In the implementation, this operation on
the data with the inevitable measurement noise can
cause significant error in the control input calcula-
tions. Therefore, the noise filtration should have been
applied. 2) By means of Load Cell sensors for mea-
suring the cable forces imposed on the end-effector,
the end-effector pose and the end-effector dynamic
equation [7]. In summary, the approach in [6] needs
two measurement data, i.e. motor rotations and the
end-effector precise pose, whereas the approach in
[7] needs the two measurement data together with the
Load Cell measurements.

Control of flexible cable robots can also be accom-
plished using the measurements of the cables tension.
Laroche et al. modeled the cables as springs and con-
trolled the robot by H∞ method, using the feedback
from the end-effector pose and the mean tension of
the cables for a 3-dof cable robot with a point mass
end-effector [8]. Meunier et al. derived the equations
of the reflector of a large radio telescope by discretiz-
ing the cables using lumped mass elements, where
springs and dampers are placed between them [9].
They employed a cascade approach, including cable
tension control using H∞ method in the inner loop,
and end-effector pose control using inverse dynamic
plus a PID in the outer loop. Lumped-mass method
was also employed by Caverly et al. in modeling the
cables of a 2DOF planar cable-driven robot [10]. In
this work passivity-based control method was applied
using the feedback from motor rotations as well as
the end-effector pose. In order to stabilize the internal
dynamic of cable robots with elastic cables, Khosravi
employed an auxiliary controller with the rate of the
feedback obtained from the cables tension [11]. In [8]
and [9] the additional feedback of the cable tension
was employed, whereas in [11] the time derivative of
cable tension has been used to guarantee the system
stability.

Due to the presence of measurement noise and high
frequency vibration in many robotic applications, the
feedback data and closed loop stability may encounter
difficulties. Therefore, the researchers address these
issues by a proper state estimation method or robusti-
fying the controller. State and parameter estimation of
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a cable-driven mechanism was performed by Kosari
et al. using Unscented Kalman filter and model pre-
dictive control [12]. This approach was also employed
for a cable based transmission system in a surgical
robot [13]. Tracking control of the constrained cable
robots in presence of noise and system uncertainties
was also addressed by Schenk using a robust adaptive
sliding mode control [14]. Control of linear systems
in presence of measurement and process noise can
be accomplished using LQG method. This controller
consists of LQR controller and Kalman state estima-
tor. In this regard, Ternero proposed a non-standard
LQG approach for path tracking of mobile robots [15].
Lambert compared PID and optimal LQG controllers
for positioning task of a three-cabled balloon with
elastic cables, and showed an improvement of 50%
with LQG method [16]. In [17], Berg et al. presented
the LQG based motion planning, where a-priori prob-
ability distributions of the state of the robot along the
desired path is used for computing the probability of
collisions. Their case studies included wheeled mobile
robots and a 6-dof articulated robot. For control of
cable transporter systems with longitudinal flexibil-
ity, Pota et al. proposed combined LQG/H∞ approach,
where the H∞ controller overcomes the system uncer-
tainty and LQG controller improves performance of
the system [18].

The existence of measurement noise can have
destructive impact on the closed-loop response of
the flexible systems, particularly during the deriva-
tive operations. In the control input calculations, the
required end-effector acceleration in [6, 7] and the
cable tension rate in [11], require derivative opera-
tion. The contribution of this paper in comparison
to the previous researches as well as the authors’
works in [6] and [7] are addressing the measurement
noise problem using Kalman filter and decreasing
the required feedback sensors. The Lyapunov stabil-
ity analysis ensures that considering a minimum cable
damping the system stability is achieved using only
the feedback for the rigid model based controller. This
feedback data is obtained from motor encoders and
the direct kinematic equation. Moreover, the stability
condition of the flexible system can be more relaxed
using the Kalman filter. This is shown in a simulation
by violation of the minimum damping condition.

The rest of this paper is organized as follows:
In Section 2, dynamics of under-constrained 6-dof
cable robots with viscoelastic cables is obtained. The

stability analysis using Lyapunov criterion is pre-
sented in Section 3. In Section 4, the LQG approach
is employed to address the measurement noise as well
as the process noise caused by vibrations. Compara-
tive simulations are provided in Section 5 to verify
the advantages of LQG method over LQR controller
as well as the SMC method employed in [7]. Also,
the effect of the end-effector position on the system
frequency and damping ratio is demonstrated using
a frequency analysis in Section 5. Finally, verifica-
tion of the approach by experiment is presented in
Section 6.

2 Kinematic and Dynamic Equations

In this paper, the under-constrained type of the cable
robots is investigated. However, the results can be
considered for the fully-constrained types, employing
the kinematic redundancy, to obtain optimal posi-
tive tension. The schematic view in Fig. 1 shows
the general location of the cable endpoints for an
under-constrained cable robot. Although these loca-
tions can be chosen arbitrarily, it has been observed
that when the geometrical shape changes from regular
hexagonal to triangular configuration, the workspace
volume increases. In this study, the triangular configu-
ration is considered in the simulation and experiment.
The triangular end-effector is moved by six flexible
cables. Each cable is modeled with a spring-damper
element where the elasticity and damping coefficient
have inverse relation with cable length. The center of
the coordinate system attached to the end-effector is
denoted by OB , where the Center of Gravity (C.G.)
of the end-effector is located. The position of the end-
effector OB expressed in the inertial frame N is given
by χ = [x , y , z]T . The vector ω shows the angu-
lar velocity of the end-effector expressed in the frame
attached to the end-effector. The position vectors of
the i-th cable’s upper and lower end-points in the iner-
tial frame and the frame attached to the end-effector
are denoted by rAi

and rBi
respectively. The i-th cable

length vector in inertial frame is expressed as follows

qi = χ + NRB rBi − rAi (1)

where NRB is the rotation matrix of the end-effector
frame with respect to the inertial frame. Considering
q0 and qu as the cable length vectors in initial and
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Fig. 1 Schematic picture of the 6DOF cable-suspended robot

unstretched state respectively, the following equations
can be expressed

qu = q0 − rpβ (2)

�q = q − qu (3)

β̇ = − 1

rp
q̇u = 1

rp
(�q̇ − q̇) (4)

where β denotes the rotation vector of the drums with
radius rp. The velocity vector of the end-effector, ˙̃x,
including the linear velocity in the inertial frame and
the angular velocity in the end-effector frame, is

˙̃x =
[

χ̇

ω

]
, where : χ = [x , y , z]T ,

ω = [
ωx , ωy , ωz

]T (5)

The time derivative of q is as follows

q̇ = −rpA1 ˙̃x (6)

where the matrix A1 is defined in the Appendix. The
dynamic equations of motion can be derived using
Euler-Lagrange formulation. The potential energy,
kinetic energy, dissipation function and the general-
ized work are defined as

UP = 1

2
�qT K(qu) �q − meg z ,

where : K(qu) = diag

(
EA

qu

)
(7)

T = 1

2
˙̃xT [Me] ˙̃x + 1

2
β̇

T
Imβ̇ ,

where : [Me

[
me I3 03
03 Ie

]
(8)

D = 1

2
�q̇TCd�q̇ ,

where : Cd(qu = diag

(
cd

qu

)
(9)

W = τT β̇ (10)

where E, A, cd and τ denote the Young’s modulus of
elasticity, cable section area, damping coefficient and
motor torques, respectively. The end-effector mass
and inertia tensor are represented by me and Ie. Also,
the elements of the diagonal matrix Im indicate the
moment of inertia of the set, consisting of the rotor,
gears and the output shaft of the motors, which is
expressed based on the output shaft rotation. The end-
effector angular velocity can be expressed in terms of
Euler angles as

ω = P�̇ , �̇ = [ψ, θ, ϕ]T (11)

Using Eq. 11, the velocity vector of the end-effector
can be expressed as

˙̃x = A3ẋ , ẋ =
[
χ̇T �̇

T
]T

(12)

where the matrix A3 is given in the Appendix.
Using Eqs. 7–12 and Euler-Lagrange formulation, the
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dynamic equations of the cable robot with visco-
elastic cables can be written as

Mζ̈ + C(ζ , ζ̇ ) + G =
[
01×6 τT

]T
,

ζ =
[
xT βT

]T
(13)

where

M=
[
A3

T[Me]A3 06
06 Im

]
,

C=
⎡
⎣A3

T
(

[Me]A4+
[

03×1

Pψ̇×IePψ̇

]
−rpA1

T(
K�q+Cd�̇q

))

rp
(
K�q + Cd�̇q

)
⎤
⎦,

G=
⎡
⎣ 02×1

−meg
09×1

⎤
⎦

In the case of rigid cables, q = qu, Eq. 13 becomes

M̄ẍ + C̄ + Ḡ = F̄τ (14)

where

M̄ = A3
T

(
[Me] + A1

TImA1

)
A3,

Ḡ = A3
T

⎡
⎣ 02×1
-meg
03×1

⎤
⎦ , F̄ = A3

TA1
T

C̄ = A3
T

(
[Me]A4 +

[
03×1

Pψ̇ × IePψ̇

]

+ A1
TIm (A1A4 + A2)

)

The overall motion of the end-effector is composed
of rigid motion and the vibrational motion caused
by the cables flexibility. The natural frequencies and
mode shapes of the end-effector vibration can be
obtained using the following linearized dynamic equa-
tion around each point of the workspace as

M̃ẍ + C̃ẋ + K̃x = 0 (15)

where the matrix C̃ is zero in the case of undamped
vibration. Considering the transient matrix of Eq. 15,
the Eigen values and Eigen vectors give the natural
frequencies and mode shapes of the system

A =
[

0 I
−M̃−1K̃ −M̃−1C̃

]
(16)

Az = λz (17)

where z and λ indicate the Eigen value and Eigen
vector, respectively.

3 Stability Analysis

Considering the rigid model in Eq. 14, the FL control
input is as follows

τ = F̄−1(M̄υ + C̄ + Ḡ
)

, υ = ẍ+Kpe+Kdė (18)

where the proportional gainKp and the derivative gain
Kd are positive diagonal matrices. Substituting the
nonlinear control effort, (18), in Eq. 14 results in the
linearized dynamic error as

ë + Kdė + Kpe = 0 (19)

The movement of the system only due to the rigid
model is called slow dynamic, whereas the vibration
caused by the flexible model is considered as fast
dynamic. While the FL controller leads to a stable lin-
earized dynamic error for the rigid system, it makes
the dynamic error of the flexible system partially lin-
earized. This dynamic error is composed of the slow
dynamic due to the rigid FL controller and the non-
linear fast dynamic caused by the system flexibility.
Since the stability of the closed-loop flexible system
is questionable, the stability analysis should be per-
formed. The dynamical behavior of the flexible system
can be investigated by dividing the dynamic equa-
tions into the slow dynamic and fast dynamics using
singular perturbation techniques. In order to express
the flexible system equations in the form of singu-
lar perturbations, the fast dynamic state u and small
parameter ε are defined as

u = EA �q (20)

ε2 = 1

EA
(21)

In addition, it is assumed that the order of the
damping coefficient, cd , in analogous to the mass-
spring-damper system, is proportional to the square
root of the spring constant as

cd = α

ε
, α = O(1) (22)

Using Eqs. 20 and 21, the angular acceleration
vector of the motors is obtained as

β̈ = ε2

rp
ü + A1 A3ẍ + A1 A4 + A2 (23)
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According to Tikhonov theory, the slow dynamic
state xand fast dynamic state ucan be approximated as
follows{
x = x0(t) + O(ε)

u = u0(t) + δ(η) + O(ε)
(24)

where η = t
ε
and δ are the time scale and the vari-

able corresponding to the fast dynamic of the system.
Ignoring the higher order terms, the first and second
derivatives of u are{

u̇ = u̇0 + 1
ε
dδ
dη

ü = ü0 + 1
ε2

d2δ
dη2

(25)

Ignoring the order ε2 and the fast dynamics, the
actuator equation, obtained from Eq. 13, can be rewrit-
ten as

u0 + α ε u̇0 = diag(qu)
rp

(
τ − Im

(
A10 A30 ẍ0

+A10 A40 + A20
))

(26)

Substituting Eq. 26 in the actuator equation,
obtained from Eq. 13, the fast dynamic equation can
be expressed as

Im
rp

d2δ

dη2
+ rpdiag−1(qu)

(
δ + α

d δ

dη

)
= 0 (27)

The state space representation of Eq. 27 is as
follows[

δ̇

δ̈

]
=

[
0 1

−K1 −K2

] [
δ

δ̇

]
,

K1 = r2pEA

Im diag(qu)
, K2 = r2p

√
EAα

Im diag(qu)
(28)

Using Eqs. 18, 20–23, the state space representa-
tion of the end-effector dynamic is given by
[
ė
ë

]
=

[
0 I

−Kp −Kd

] [
e
ė

]
+

[
0 0

Cδp Cδd

] [
δ

δ̇

]
,

Cδp = rp M̄−1 (A1A3)
T diag−1(qu),

Cδd = cdCδp (29)

Equation 29 shows that the bounded nonlinear term
included in the dynamic error of the closed-loop sys-
tem is due to the end-effector vibration. As shown in
Section 4, this fast dynamic term can be treated as a
process noise in the feedback linearized system.

The stability analysis is performed with the
Lyapunov candidate as

V = 1

2

(
ėT ė + eT Kp e + κ

[
δT δ̇

T
]

×
[

r2p

(
EA + √

EAα
)
I Imdiag(qu)

Imdiag(qu) Imdiag(qu)

] [
δ

δ̇

])
(30)

where κ > 0 is an arbitrary scalar. The first two terms
in Eq. 30 constitute a Lyapunov function for rigid
FL controller. Since all the state variables should be
considered in the constructed function, the weighted
quadratic form of the fast dynamic states is used in the
third term of Eq. 30. The derivative of Eq. 30 becomes

V̇ = −ėTKdė + ėT
[
Cδp Cδd

][ δ

δ̇

]
−

[
δT δ̇

T
]

×
[

r2pEA I 0
0 αr2p

√
EA I − Imdiag(qu)

][
δ

δ̇

]

+
[

δT δ̇
T

][ 0 Imdiag(q̇u)
Imdiag(q̇u) Imdiag(q̇u)

][
δ

δ̇

]
(31)

The system stability can be shown by obtaining
the necessary conditions to make V̇ negative semi-
definite. To this end, the upper bound of the terms
included in Eq. 31 should be specified. Considering
the smallest Eigen value of the positive definite matrix
Kd, the upper bound of the first term is

− ėTKdė ≤ −λmin (Kd) ‖ė‖ = −λmd ‖ė‖2 (32)

Indicating the maximum singular value of a matrix
by σmax(.), the upper bound of the second term is
obtained as

ėT
[
Cδp Cδd

] [
δ

δ̇

]
≤ ‖ė‖

∥∥∥∥
[

δ

δ̇

]∥∥∥∥ σmax
([
Cδp Cδd

])

= σme ‖ė‖
∥∥∥∥
[

δ

δ̇

]∥∥∥∥ (33)

Since qui
(t) > 0, i = 1..6 always holds during

the operation, assuming the following condition

cd >
Im
r2p

max
(
qui

(t)
)

(34)
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gives the upper bound of the third term in Eq. 31 as

− κ

[
δ

δ̇

]T [
r2pEA I 0

0 r2pcd I − Imdiag(qu)

] [
δ

δ̇

]

≤ −κλmin

([
r2pEA I 0

0 r2pcd I − Imdiag(qu)

])

×
∥∥∥∥
[

δ

δ̇

]∥∥∥∥
2

= −κλmδ

∥∥∥∥
[

δ

δ̇

]∥∥∥∥
2

, λmδ > 0 (35)

The vector of cable length rate, q̇u, depends on the
motor shaft speed, β̇. Therefore, considering the max-
imum allowable motor speed, denoted by ω > 0, the
last term in Eq. 31 has the following upper bound

[
δT δ̇

T
] [

0 Imdiag(q̇u)
Imdiag(q̇u) Imdiag(q̇u)

] [
δ

δ̇

]

≤
∥∥∥∥
[

δ

δ̇

]∥∥∥∥
2

σmax

([
0 Imrpω

Imrpω Imrpω

])

= σmq

∥∥∥∥
[

δ

δ̇

]∥∥∥∥
2

(36)

As a result the upper bound of V̇ is obtained as

V̇ ≤ −
[

‖ė‖
∥∥∥∥
[

δ

δ̇

]∥∥∥∥
] [

λmd −σme

2−σme

2 κλmδ − σmq

]

×
⎡
⎣ ‖ė‖∥∥∥∥

[
δ

δ̇

]∥∥∥∥
⎤
⎦ (37)

In order to hold V̇ ≤ 0, the following conditions
should be satisfied

λmd ≥ σ 2
m

4(κλmδ − σmq)
(38)

λmδ >
σmq

κ
(39)

Since the arbitrary scalar κ can be chosen large
enough to fulfill the conditions (38) and (39), the
derivative gain, Kd, only needs to be positive defi-
nite. Therefore, Eq. 34 and positive definiteness of the
derivative gain matrix are the only required conditions
to guarantee the system stability.

4 LQG Control Law in Presence of Noise

In Section 3, it is proved that a certain condition for the
damping coefficient ensures the stability of the closed-
loop dynamic of the flexible system. This condition
can be more relaxed by considering the fast dynamic

term in Eq. 29 as a process noise and filtering that
using the LQG approach. The LQG control method
is indeed LQR controller where the states used in the
control input are estimated using Kalman filter. Con-
sidering Eqs. 18 and 29, the state space representation
of the system can be expressed as follows

{
ξ̇ = Aξ + Bυ + w
y = Cξ + v

, ξ =
[
x
ẋ

]
,

A =
[
0 I
0 0

]
, B =

[
0
I

]
, C = I (40)

where y denotes the system output. The uncorrelated
zero mean vectors w(t) and v(t) represent the process
and measurement noise, respectively. Also, the pair
(A,C) is observable. Considering fulfillment of con-
dition (34), no restriction is needed for the control
gains. Therefore, ignoring the process and measure-
ment noise, the optimal gains can be obtained using
LQRmethod by minimizing the cost function given by

J =
∞∫
0

[ζ T Qζ + uT Ru]dt , ζ =
[
e
ė

]
,

u = − [
Kp Kd

]
ζ (41)

where Q and R are positive and semi-positive defi-
nite matrix, respectively. Therefore, the control gains
are determined considering a trade-off between the
system error and the control input of the outer loop.
The weighting matrices Q and R in Eq. 41 are used
to penalize the errors and the control input. Using
the Bryson’s rule [19], the diagonal elements of the
weight matrices can be determined as follows:

Q = diag

(
· · · ,

1

max(ξ2i )
, · · ·

)
,

R = ρ diag

(
· · · ,

1

max(u2j )
, · · ·

)
(42)

where ρ gives the relative weighting between the con-
trol input and state error. Although the Bryson’s rule
usually gives good results, it can be considered as a
starting point to a trial-and-error aimed at obtaining
desirable time performance of the closed-loop system.
The initial diagonal elements of the weighting matri-
ces can be tuned so that it meets some additional time
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optimality criteria in terms of overshoot, rise and set-
tling time, etc. In this regard, some researchers, as
in [20, 21], employed genetic algorithm to find out
the weighting matrices considering time domain cri-
teria. However, in this paper the weighting matrices
are determined only based on the Bryson’s rule. Next,
the optimal gains of the FL controller are obtained as
follows

[
Kp Kd

]
opt = R−1BT P (43)

where the matrix P is the solution of the algebraic
Riccati equation

AT P + PA + Q − PBR−1BT P = 0 (44)

Considering the covariance of the measurement and
process noise as

{
Q̄ = E

(
wwT

)
R̄ = E

(
vvT

) (45)

the control input can be computed using the estimated
state, obtained by solving the following equation

˙̂
ξ = Aξ̂ + Bυ + L(y − Cξ̂) (46)

The filter gain L is determined as follows

L = P̄CT R̄−1 (47)

where the matrix P̄ is the solution of the Riccati
equation

AT P̄ + P̄A + Q̄ − P̄BR̄−1BT P̄ = 0 (48)

5 Simulation

In general, the number of cables of an n-DOF cable
robot must be equal to or larger than n + 1 to sat-
isfy the force-closure condition. In fully-constrained
cable robots, where the number of cables exceeds the
number of DOF, the cables tension can be specified
for a given end-effector pose by calculating the null
space of the Jacobian matrix. An under-constrained
cable robot satisfies the force-closure condition if the
gravity is large enough to be dealt as a special cable
[22], otherwise the end-effector trajectory should be
redesigned. However, in both types of the cable robots
determining the force-closure workspace can help the
trajectory planning [23]. In this paper, the end-effector
trajectories are specified such that the positive cable
tension condition holds.

The simulations are performed using the dynami-
cal and geometrical parameters provided in Table 1.
The cable end points are located on the corners of
the triangular end-effector and platform. In the first
simulation, a frequency analysis around each point in
the workspace is performed. Existence of measure-
ment noise together with the fast dynamic movement
can lead to the system instability. Therefore, in the
second simulation, the effectiveness of the LQG con-
troller compared with the SMC method used in [7] as
well as the LQR controller, in the presence of mea-
surement noise, is demonstrated. In order to show
improvement of the system stability condition, the

Table 1 Geometrical
parameters Name Symbol Value Unit

Side length of the triangular plate of the platform – 1.19 m

Side length of the triangular end-effector – 0.17 m

Radius of the cable drums r 0.015 m

End-effector mass me 3.1 kg

Equivalent moment of inertia of the motors Im 0.003 I6 kg.m2

Moment of inertia tensor of the end-effector Ie diag(0.0018, 0.0018, 0.0037) kg.m2
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third simulation compares performance of the LQR
and LQG controllers while the minimum damping
condition is violated. Finally, the effect of modulus of
elasticity and damping coefficient on the cables ten-
sion and position error is investigated in the fourth
simulation.

5.1 Frequency Analysis

Considering Eqs. 16–17, six frequencies and damping
ratios are obtained for each point in the workspace.
By changing the mass matrix and observing the vari-
ation in the frequencies, it is found that these values
can be divided into four modes. This is due to the sig-
nificant interaction between horizontal coordinates, x

and y, and the first two Euler angle coordinates, ψ

and θ . The modes are named as translational mode
along vertical axis z, translational mode along hori-
zontal axes x and y, angular mode around vertical axis
ϕ and angular mode around horizontal axes ψ and θ .
The end-effector vibration is a weighted combination
of these modes.

A frequency analysis considering EA = 15000 and
cd = 20 is performed. As shown in Figs. 2 and 3,
near the height Z = 0.8 m, a peak value for the fre-
quency and damping ratio in the vertical translational
mode is reached. On the other hand, for translational
mode along horizontal axes, increase in Z, i.e. increase
in the distance between the upper plate and the end-
effector, decreases the frequencies and damping ratios.

(a) Frequency plot in the plane Z=0.4  

(b) Frequency plot in the plane Z=0.8  

(c) Frequency plot in the plane Z=1.2  

Fig. 2 Frequencies of translational mode
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(a) Damping ratio plot in the plane Z=0.4  

(b) Damping ratio plot in the plane Z=0.8  

(c) Damping ratio plot in the plane Z=1.2  

Fig. 3 Damping ratio of translational mode

According to Figs. 4, 5, the angular vibrations have
larger damping ratios and frequencies, in comparison
with the translational mode vibrations. This implies
that the vibratory response in the horizontally ori-
entated state of the end-effector is more dominated
by the translational modes. In practice, knowing the
damping and frequency modes in the workspace can
help to predict or reduce the vibrations by appropriate
trajectory planning.

5.2 Comparative Simulation I

In order to investigate the effective performance of the
LQG controller in comparison with the LQR as well
as the SMC method in [7] in presence of measurement

noise, a simulation is performed. The desired trajec-
tory is considered as follows

x =
[
0.2 sin

(
2πt

10

)
0.2 cos

(
2πt

10

)

1 + 0.05 sin

(
2πt

2

)
01×3

]T

(49)

The initial pose of the end-effector is

x0 = [0.02, 0.22, 1.05, 0, 0, 0]T (50)

The end-effector velocity at the start point is zero.
A zero-mean noise with the normal distribution and
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(a) Frequency plot in the plane Z=0.4

(b) Frequency plot in the plane Z=0.8  

(c) Frequency plot in the plane Z=1.2  

Fig. 4 Frequencies of angular mode

the following standard deviation is added to the mea-
surement output

σn = [
0.006I3 0.002I6 0.01I3

]T
(51)

The sliding surface of the SMC controller is con-
sidered as follows

s = ė + 11.8e (52)

In order to avoid chattering, the function “tanh(s)”
is employed instead of “Sgn(s)”. The control gain of
the SMC is considered as

K = diag(1.4, 1.4, 1.4, 3.5, 3.5, 3.5) (53)

The weighting matrices used in the LQR and LQG
methods are obtained using Eq. 42 and the maximum
value of the errors and control input of the outer loop

max(error) =
[

(0.05, 0.05, 0.05)m (3, 3, 3) deg

× (0.01, 0.01, 0.01)
m

s
(54)

× (0.6, 0.6, 0.6)
deg

s

]

max(input) =
[
(1, 1, 1) m

s2
(1, 1, 1) rad

s2

]
, ρ =1

The cable properties and the covariance matrices
used in the LQG controller are provided in Table 2, in
SI units.

As shown in Figs. 6 and 7, simulation with both
approaches, i.e. LQR and SMC, stops due to the
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(a) Damping ratio plot in the plane Z=0.4  

(b) Damping ratio plot in the plane Z=0.8  

(c) Damping ratio plot in the plane Z=1.2  

Fig. 5 Damping ratio of angular mode

cumulative errors, caused by the measurement noise.
Figure 8 shows failure of the tracking. As illustrated in
Figs. 9 and 10, both of the control inputs have diverged
and resulted in the system instability.

Employing the LQG approach, the tracking is per-
formed effectively. Figures 11 and 12 show the tracked
trajectory of the end-effector in comparison with the
desired and estimated trajectories. Figure 13 shows
that the position error has decreased from 57 mm at

Table 2 Simulation parameters

Name Symbol Value

Cable stiffness EA 15000

Damping coefficient cd 20

Covariance matrix of measurement noise Q̄ 1e-3 I12
Covariance matrix of process noise R̄ 1e-5 I12

the start point to below 1.5 mm. In addition, according
to Fig. 14 the norm of the Euler angle errors has
not exceeded 0.09deg. The control input is demon-
strated in Fig. 15. Due to the difference between the
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Fig. 6 Position error
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Fig. 7 Norm of Euler angle errors
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Fig. 8 Tracking failure

actual and desired initial velocity of the end-effector, a
damped tension oscillation can be observed in Fig. 16.

5.3 Comparative Simulation II

Considering Eq. 34, the minimum value of cd =13.3
is needed to guarantee the stability of the system.
In the case of lower damping, the tension oscillation
induced by the internal dynamics can increase and
lead to the system instability. The second term in the
right side of Eq. 29 can be considered as a process
noise, produced by the system flexibility, added to
the linearized close loop system. Therefore, the LQG
approach should act more effectively in comparison
with the LQRmethod where the noise compensation is
not taken into account. This matter is verified by sim-
ulation with damping coefficient of cd =10, i.e. lower
than the given value for the guaranteed stability. The
trajectory considered in this simulation is as follows

x=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ −0.1 + 0.2 t
2.5 −0.1 0.6 01×3

]T
, t ∈ [0, 2.5][

0.1 −0.1 + 0.2 t−2.5
2.5 0.6 01×3

]T
, t ∈ [2.5, 5][

0.1 − 0.2 t−5
2.5 0.1 0.6 01×3

]T
, t ∈ [5, 7.5][ −0.1 0.1 − 0.2 t−7.5

2.5 0.6 01×3
]T

, t ∈ [7.5, 10]

(55)

The initial pose of the end-effector is

x0 = [−0.08, −0.08, 0.65, 0, 0, 0]T (56)

Fig. 9 Control input with
LQR method

(a) 1st, 2nd and 3rd motor (b) 4th, 5th and 6th motor

Fig. 10 Control input with
SMC method

(a) 1st, 2nd and 3rd motor (b) 4th, 5th and 6th motor
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Fig. 11 Trajectory with LQG method

The rest of the parameters are according to Table 2.
Simulation using LQR method shows that the sys-
tem becomes unstable. As illustrated in Figs. 17,
the end-effector cannot converge to the desired tra-
jectory. However, using LQG controller the end-
effector approaches to the desired trajectory, (Fig. 18).
Figure 19 demonstrates the precise convergence in
Z direction. According to Fig. 20, the position error
decreases from 0.66m at initial position to below 8
mm. In addition, Fig. 21 indicates that during the sim-
ulation, the angular error is remained below 1.5e-3
rad. Since the desired trajectory is square, an over-
shoot is seen in the sharp corners of the path. This
is also observable in the control input, Fig. 22. The
sudden changes in the control input causes a damped
oscillation of cable tension (Fig. 23).

5.4 Comparative Simulation II

In order to demonstrate the effect of cable elasticity
and damping coefficient on the end-effector vibration
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Fig. 12 Trajectory in Z direction with LQG method
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Fig. 13 Position error with LQG method

and tension oscillation, four simulations considering
EA = 2000, 15000 and cd = 8, 20 are performed.
The desired trajectory and the rest of parameters are
similar to the previous simulation. Figures 24 and 25
show that vibration amplitude increases with decrease
of cable stiffness, and decreases with increase of
damping coefficient and cable stiffness. As shown in
Figs. 26, 27, this result can also be observed in the
tension oscillation.

Since the sudden changes in the desired trajectory
is in the horizontal plane, the translational mode along
horizontal axes x and y seems to be dominant during
the simulation. Furthermore, based on the workspace
analysis for EA = 15000 and cd = 20, in Section 5.1,
the damping ratio in the mentioned mode has the
lowest value, which in turn further supports the domi-
nance of this mode. According to Fig. 27, the vibration
frequency considering EA = 15000 and cd = 20 is
about 15 Hz, which is identical with the value obtained
for z = 0.6 m by interpolation between the second and
third columns of Fig. 2a–b.

6 Experimental Verification

Verification of the approach presented in this paper
is performed using a 6-dof cable-suspended robot
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Fig. 14 Norm of Euler angle errors with LQG method
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Fig. 18 Tracking with LQG method
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Fig. 17 a Position error
with LQR method. b
Tracking failure with LQR
method

0 0.5 1 1.5 2 2.5
0

0.1

0.2

Time(sec)

)
m(r

orr
E

n
oitis

o
P

a b



88 J Intell Robot Syst (2017) 88:73–95

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

Time(sec)

)
m.

N(e
u

qr
o

T

1 2 3
-0.2

0

0.2

0.4

0.6
4 5 6

Fig. 22 Control input with LQG method

0 2 4 6 8 10
5

10

Time (sec)

)
N(

n
ois

ne
T

1 2 3

5

10

4 5 6

5 6

4

8

7.5 8 8.5

5

10

Fig. 23 Tension with LQG method

0 2.5 5 7.5 10
0

20

40

60

Time (sec)

)
m

m( r
orr

E 
n

oitis
o

P

7.5 10

0

4

8

 

 

EA=2000 EA=15000

Fig. 24 Position error with cd =8
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Fig. 28 ICastBot
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Table 3 Motor Specifications

Name Symbol Value Unit

Stall torque of the platform motors τθStall
45.17 N.m

Stall torque of the CDPR motors τβStall
2.074 N.m

No load speed of the platform motors θ̇NoLoad 102 rpm

No load speed of the CDPR motors β̇NoLoad 250 rpm

manufactured in the robotic lab of Iran University
of Science and Technology, ICasBot (Fig. 28). The
cables of ICasBot are driven by PMDC motors. The
parameters of the motors are according to Table 3.
The rest of the robot specifications have been provided
in Table 1. The position feedback of the end-effector
is provided using the incremental encoders installed
on the motor output shaft and direct kinematics. The
implementation of the control law is performed in
Matlab software, where the calculated control efforts
are converted to the voltage values. These values
are then applied to the motors through PIC micro-
controllers and motor drivers.

The test is performed considering a spiral trajectory
as follows

x=[
0.05 sin(t) 0.05 cos(t) 0.8−0.032t 01×3

]T
(57)

Figures 29 and 30 show the trajectory tracking of
the end-effector in XYZ and Z direction, respectively.
According to the figures, the overall motion resulted
from the experimental results matches well with the
desired trajectory. The total trajectory length tracked
by the end-effector is L = 593.6 mm. As shown in
Fig. 31, the maximum position error of the experiment

Fig. 29 The end-effector trajectory

Fig. 30 The end-effector trajectory in Z direction

is 1 cm whereas the simulation figure shows that the
position error reaches 4 mm but decreases afterwards.
The angular tracking error is demonstrated in Fig. 32,
by the norm of Euler angle errors. It is shown that,
throughout the operation, the maximum angular error
does not exceed 3.5deg.

Control loop delay and limitation in applying the
PWM are the two main sources of the error in the sys-
tem. The delay time is about 30 ms, which is due to
the communication delay of serial protocol between
the computer and microcontrollers. On the other hand,
the internal friction between the gears of the motors
limits the minimum required PWM signal. The con-
trol signal below the minimum PWM cannot rotate the
motor. Specifically, the conventional DC motors used
in this study could not reach a speed between a certain
minimum value and zero. This status causes an uncer-
tainty for the system model. In addition to the Columb
friction between gears, a part of the internal friction
also depends on the motor speed. In order to protect
the motors, the upper bound of the PWM is restricted.
The limitation bound of the 6 motors in the test is as
follows

PWMmin = [
251×6 101×2

]T
(58)

PWMmax = 808×1 (59)

For further verification of the approach using a
measurement system different from the device used
for the feedback, another experiment with the follow-
ing trajectory is performed

x =
[
0 0 0.75 20π

180 sin( 2π10 t) 20π
180

(
cos( 2π10 t) − 1

)
0

]T

(60)
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Fig. 31 Position error
(P.E.) per total length of
trajectory (L)

Fig. 32 Norm of Euler
angle errors (A.E.) per total
length of trajectory (L)

Fig. 33 The IMU mounted on the end-effector

Fig. 34 Roll angle

Fig. 35 Pitch angle

Fig. 36 Yaw angle
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Fig. 37 Roll angle error

According to Eq. 60, the end-effector position
should be maintained constant while its attitude
changes periodically. Measurement of the end-effector
orientation is performed using an IMU sensor, GY86-
MPU 6050, mounted on the end-effector (Fig. 33).
Figures 34, 35, and 36 demonstrate that the Euler
angles, obtained based on the encoders and IMU,
match the desired trajectory with some small errors.
According to Figs. 37, 38, and 39, the angular
errors estimated using encoders does not exceed 1deg,
whereas the errors estimated using IMU sensor reach
up to 2deg for the pitch and yaw angles and 3deg
for the roll angle. Moreover, it can be observed that
the difference between the encoder and IMUmeasure-
ments is less than 2.5deg. By performing numerous
tests, it is observed that the IMU sensor used in
this application has repeatability accuracy of nearly
1 deg. Aside from IMU accuracy, the geometrical
uncertainties, initial estimate of the end-effector posi-
tion in workspace and IMU positioning error on the
end-effector are the other reasons for the small mea-
surement errors.

Fig. 38 Pitch angle error

Fig. 39 Yaw angle error

It is known that the end-effector position cannot
be estimated using only a low-cost IMU. However,
the stationary state of the end-effector position can be
demonstrated by mapping the end-effector accelera-
tion from the local frame into the global frame. The
percentages of the accelerations per gravity acceler-
ation are shown in Figs. 40, 41, and 42. The noisy
state of the accelerations is an intrinsic property of
the accelerometers. Nevertheless, the accelerations are
very small which shows that the C.G. of the end-
effector does not move considerably.

7 Conclusions

In comparison with other types of robots used in
load carrying applications, cable robots have larger
workspace with lower manufacturing cost. However,
larger workspace characteristic may result in more
flexibility, due to the increase in the cables length.
This issue can lead to the system vibration and degrade
the positioning accuracy. Due to the cable flexibility,
the number of state variables of the CDPR increases.
Therefore, to control the system based on the flexi-
ble model, additional feedback such as cable tension
or the direct measurement of the end-effector pose as
well as the actuator feedback are required. In com-
parison with rigid controllers, flexible model based
controllers requires more sensors and the control input
complication enhances the processor computations.
On the other hand, in the case of rigid model based
controller, the system flexibility adds internal dynamic
to the closed loop system. Therefore, it should be
shown that the created internal dynamic is stable and
also it would not lead to instability of the system
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Fig. 40 Translational acceleration ax

Fig. 41 Translational acceleration ay

Fig. 42 Translational acceleration az



J Intell Robot Syst (2017) 88:73–95 93

output. To the authors’ knowledge, thus far the condi-
tions required for utilizing rigid controllers for flexible
CDPRs has not been studied. Therefore, the contribu-
tion of this paper compared with the previous studies,
is proposing the condition under which the system is
stable by solely a rigid model based controller even
in the presence of measurement noise. For any con-
troller even robust types, it should be investigated if
this condition holds or another condition which guar-
antees the stability should be found. In addition, the
effect of noise uncertainty should be considered in
deriving the control laws. In Section 5.2, it is shown
that the robust SMC in [7] leads to the system insta-
bility in the presence of measurement noise, while the
FL+LQGmethod effectively controls the flexible sys-
tem. However, to improve the performance of the slow
dynamic response of the system the authors are going
to develop the controller to an adaptive robust type, as
a future work.

In this study, first, the dynamic equations of a
cable-suspended robot with viscoelastic cables are
obtained. Next, it is shown that using FL controller,
obtained based on the rigid model, and fulfillment of
a minimum damping coefficient, the system stabil-
ity is guaranteed. The optimal gains of the controller
are obtained using LQR method. The vibration can be
considered as a process noise. In addition, measure-
ment noise in the feedback signal is another source of
reducing the tracking accuracy. Therefore, in order to
compensate for the measurement and process noise,
the FL controller is combined with LQG approach. In
the simulation section, it is shown that measurement
noise or violation of Eq. 34 destabilizes the sys-
tem controlled by SMC [7] and LQR methods, while
LQG method controls the system effectively. More-
over, another simulation demonstrates that the system
with damping less than the specified minimum value
can be stabilized with the LQG approach, in contrary
to the LQR controller.

Verification of the approach is performed by imple-
mentation on a laboratory robot manufactured in Iran
University of Science and Technology, i.e. ICastBot.
In the first test, it is shown that the simulation and
experimental results are well matched. The position
and angular errors of the experiment are remained
below 10 mm and 3.5deg, respectively. The reasons

for small errors of the test are identified as the commu-
nication delay and restriction in applying the control
signal. For further verification, in the second test an
attitude control task is performed, where the sys-
tem output, measured via encoders and IMU sensor,
are compared. It is demonstrated that the difference
between the Euler angles obtained by the two mea-
surement systems is less than 2.5deg.
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Appendix

Using Eqs. 11 and 12, the acceleration vector ¨̃x can be
expressed considering the Euler angles as

¨̃x = A3ẍ + A4 (61)

where

A3 =
[
I3 03
03 P

]
,A4 =

[
03×1

Ṗψ̇

]
(62)

Considering the Jacobian matrix � as

� =
[

. . . − Nq̂i . . .

. . . −( NRBrBi×Nq̂i) . . .

]
6×6

(63)

the matrices A1 and A2 are obtained from

A1 = 1

rp
�T N R̄B where : NR̄B =

[
I3 03
03 NRB

]
(64)

A2 = 1

rp
�̇

TN
R̄B ˙̃x (65)

where Nq̂i is the unit vector along the ith cable, from
motor side to the end-effector side, expressed in the
inertial frame. NRB is the rotation matrix of the frame
attached to the end-effector with respect to the inertial
frame.
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