
J Intell Robot Syst (2017) 88:19–35
DOI 10.1007/s10846-017-0532-7

Hexapod Adaptive Gait Inspired by Human Behavior
for Six-Legged Robot Without Force Sensor

Yilin Xu · Feng Gao ·Yang Pan ·Xun Chai

Received: 17 June 2016 / Accepted: 8 March 2017 / Published online: 2 April 2017
© Springer Science+Business Media Dordrecht 2017

Abstract Legged robots are usually installed with
force sensors in order to negotiate with the uneven
ground. To eliminate the risk of force sensor failure,
adaptive gaits integrating indirect force-estimation are
of great importance. Robot Octopus III is a robot
designed for carrying a payload in the harsh envi-
ronment. There is no electric device installed on the
lower limb of the robot. The indirect force-estimation
method, which is based on its spatial parallel mecha-
nism leg, can estimate the external force exerted on the
foot tip. In this paper, an adaptive gait is designed after
observing human actions. Experiments are carried out
to observe how a human walks through the uneven
ground when his/her eyes are covered. A static tri-
pod gait mimics the human behavior during the blind
walking. When the foot collides with the obstacle, the
robot will adjust the foot’s height and try to over-
come the obstacle. Just like human blind walking, the
robot foot tries different locations before it steps on
somewhere. The gait also detects if the robot is fac-
ing a ditch too deep to step or an obstacle is too high
to step on. The gait is implemented in the real-time
control system. Experiments are carried out to val-
idate the proposed gait. The robot walked through
the uneven ground with maximum obstacle height of
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0.2m successfully. The proposed gait enables the robot
without foot tip force sensors to walk through the field
with obstacles.

Keywords Hexapod · Adaptive gait · Blind
walking · Bio-inspired

1 Introduction

Wheeled locomotion is very efficient on flat ground,
but legged locomotion has better adaptability on
uneven terrain. There is in fact much uneven terrain
not only in the nature world but also in the human
resident environment. Much effort has been devoted
to legged locomotion to improve the mobility of the
robot in these environments. Robots with a different
number of legs have been designed and manufac-
tured. Currently, there have been one leg robots, biped
robots, quadruped robots, hexapod robots, octopod
robots, etc. A variety of gait generation methods have
been developed on these robots.

The Zero Moment Point (ZMP) constraint has been
widely used in the trajectory generation for biped
robots or humanoid robots [1], since biped robots usu-
ally have a plantar foot. If the moment about the center
of the pressure at the supporting foot of a biped robot
is zero, then the robot is stable. Park [2] integrated
fuzzy-logic with ZMP trajectory generator. The pro-
posed generator reduced the swing motion of the trunk
significantly. Some researchers have also explored
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the possibility of applying ZMP on quadruped robots
or hexapod robots. Kalakrishan et al. [3] designed a
body trajectory optimizer based on ZMP constraint
for quadruped robots. The trajectory optimizer was
integrated into a control system implemented on the
quadruped robot LittleDog. It realized fast quadruped
locomotion over rough terrain. Moosavian et al. [4]
applied ZMP to check the stability of a hexapod robot
during its planned motion. As if [5] used ZMP in the
generation of the trajectory of a fault-tolerant adaptive
gait for a hexapod robot.

The research in the neuroscience also has affected
the robotics. The concept of Central Pattern Generator
[6] (CPG) originated from neuroscience. Biological
CPGs are the neural networks that generate rhythmic
signals to drive cyclic activities such as breathing and
walking. These neural networks do not need any pat-
terned input or central control to generate rhythmic
motor patterned outputs [7]. However, the output of
the CPG are determined by some parameters. Efforts
have been devoted to finding appropriate methods
to determine the CPG parameters. Inada [8] used
a genetic algorithm to search the CPG parameters.
Nakamura et al. [9] used standard policy gradient
methods to train CPG controller for a biped robot.
The evolving of these parameters enabled the robot to
adapt to the changing terrain. Chen [10] used CPG to
archive smooth transition between different gaits of a
hexapod robot. Makarov [11] incorporated CPG with
the actuator dynamics on a hexapod robot.

Beside CPG, Neural Network is also a concept
originating from neuroscience. The difference is that
Neural Network usually requires more input signals
for the input layer while CPG only requires simple,
low-dimensional input signals [6], and CPG is more
of an oscillator. The Neural Network can generate new
trajectory which has not appeared in the training pro-
cess, which brings Neural Network certain robustness.
Sabourin [12] has trained CMAC neural networks to
control a biped robot. The experiment shown that the
robot realized stable dynamic walking although the
trajectory was different with the simulation result. In
fact, training plays a significant role in the applica-
tion of Neural Networks [13]. The Neural Networks
can be trained on-line [14] or off-line [15]. When
off-line training is employed, some researchers use
time-consuming optimization methods such as genetic
algorithms [16], to produce training data.

The aim of this research is to develop an adap-
tive gait for the hexapod robot Octopus III. The
robot is designed to carry high payload and traverse
uneven terrain. Many robots use a variety of sen-
sors to enhance their ability to negotiate with the
unconstructed environment. These sensors could be
IR sensors, laser scanners, cameras, force sensors,
IMUs, etc. In this research, to eliminate the risk of
breaking an expensive force sensor, the robot uses
indirect force-estimation model [17, 18] to evaluate
the external forces applied to the foot-tip. This indi-
rect force-estimation model takes the motor current
as the input data. Besides, an IMU is also installed
on the robot body to detect the attitude of the robot
body.

As the origin of legged locomotion, nature inspires
researchers. In this research, a robot walking without
computer vision is, to some extent, similar to human
blind walking. Thus, experiments are performed to
observe how a human traverse uneven ground with
eyes covered. Some researches are conducted to find
a method that enables the robot to imitate human
motion. Inamura et al. [19] has proposed a mathemati-
cal model based on hidden Markov model. This model
realized motion recognition and motion generation.
However, in our research, the robot did not merely
regenerate trajectories generated in human blind walk-
ing, but actually changed the trajectories according to
the obstacles it encountered. The robot faced different
obstacles in different experiments. Thus, we exam-
ined the human blind walking to find inspirations that
can be integrated with the gait generation mechanism,
such as reactions to the obstacles, in consequences the
way which human moves legs and body. Then, based
on these conclusions, the hexapod robot adaptive gait
is designed. With the help of this gait, the robot can
overcome obstacles.

This paper is organized as follows. In Section 2,
the robot Octopus III is described, including hardware,
software structure, and mathematic model. Section 3
describes the human blind walking experiments and
analyzes the results, exploring the inspirations in
hexapod locomotion. In Section 4, an adaptive gait
for the hexapod robot is proposed based on the analy-
sis in Section 3. Experiments conducted on the robot
are described in Section 5. The experiment results
are also provided and discussed. Finally, in Section 6,
conclusions of this research work are discussed.
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2 Robot Octopus III

2.1 Hardware and Software

Robot Octopus III [20, 21] is a hexapod robot
designed for rescue tasks performed in a nuclear
power plant. Figure 1 is a photo of the robot. Figure 2
illustrates the system structure of the complete robot
system, including a remote terminal. The task requires
the robot to carry high payload during its walking on
uneven terrain. Thus, the robot is designed to use legs
based on a spatial parallel mechanism (UP-2UPS).
Each leg has 3 degrees of freedom. The parallel mech-
anism makes the robot competent to carry a payload
of 400kg, while the robot weighs about 270kg.

To make sure there is no electric device near the
hazard environment which the foot-tip may expe-
rience, the servo motors that actuate the legs are
installed on the upper side of the leg, which is also
an advantage of the parallel mechanism. The hexapod
robot has 18 servo motors in all. Each of them is a
400 Watts 3-phase BLDC (Brushless Direct Current)
motor. The nominal torque of the motor is 0.747 Nm.
Each servo motor has an independent drive that con-
trols the motion. This demands for exchanging data
between the controller and the drives at high band-
width. Thus, the EtherCAT real-time industrial field
bus is used to connect all the drives and the controller.
The bandwidth of the bus is 100 Mbps. The real-time
hardware is only fully-functional under the real-time

Fig. 1 Robot Octopus III is a robot designed for carrying high
payload when traversing uneven terrain. It has unique parallel
mechanism legs

software. Hence, the controller is an industrial PC
running a Linux operation system with a patched
real-time kernel. All the motion control algorithms,
kinematics model and dynamics model are imple-
mented and optimized in the real-time domain. All of
these require a high-performance computer. Currently,
the industrial PC has a 2249 MHz quad-core x86-
64 CPU and 8 Gb memory. With this computer, the
robot model can be computed in less than 0.3 ms. The
control loop frequency is 1000 Hz. There is no force
sensor or other sensor mounted on the foot-tip, which
increases the risk of system failure. Home switches
also have been removed to reduce the complicacy of
the robot. The robot is connected to a remote computer
wirelessly; the industrial PC can be accessed through
a GUI program designed to communicate with the
control program. For the robot, four 24V lithium-ion
batteries serve as the power source of all electric parts.

2.2 Mathematical Model

The mathematical model helps planning the motion
of the robot and identifying the state of the robot.
As mentioned before, kinematics model and indirect
force estimation model are implemented in the real
time robot control system. These models are estab-
lished in unified coordinate frames attached to the
robot, as shown in Fig. 3. There are three coordinate
frames in the figure. Cw represents the world coordi-
nate frame. The y-axis of the world coordinate frame
is parallel to the gravity direction. Cr represents the
robot coordinate frame. It is attached to the robot body.
Ci

l represents the single leg coordinate frame attached
to the i-th leg. As the robot has six legs with same
structure and dimension, the single leg kinematics
model is described.

2.2.1 Kinematics Model

The UP-2UPS mechanism of the leg is a spatial
parallel kinematics mechanism. It has 3 degrees of
freedom. The electric motor is connected to the ball
screw through belt and gears. Thus, the three prismatic
joints of a leg are the active joints. The direct kinematics
model takes the length of the prismatic joint as the input.
The output is the coordinates of the foot-tip (Eq. 1).

[Ex, Ey, Ez]T = f (l1, l2, l3) (1)
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Fig. 2 The system structure
of the robot Octopus III.
There is no wire connected
to the robot when it is
running. Four lithium-ion
batteries are the power
source of all electric devices
installed on the robot. The
core of the control system is
an industrial PC running
real-time Linux. Each limb
has one corresponding
drive. The drive controls the
motor of the limb. The
motor thus controls the
displacement of the
prismatic joint of this limb
through a reducer, a toothed
belt, and a ball screw. All
drives are connected
through the EtherCAT
real-time network
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where
Ex, Ey, Ez– coordinates of the foot-tip,
lp1, lp2, lp3– length of the prismatic joints.

Observing the mechanism’s UP limb, it can be
found that the relation between two different positions
of a same point on the foot can be described by three

Fig. 3 Coordinates frames of the robot model. In the robot
body coordinate frame Cr , the sagittal plane is the yz-plane;
the xy-plane is the frontal plane; the zx-plane is the transverse
plane. The legs are label as LF(Left Front), LM(Left Mid-
dle), LR(Left Rear), RF(Right Front), RM(Right Middle), and
RR(Right Rear)

transform matrices, see Eq. 2. Two rotation matrices
are produced by the universal joint. One transition
matrix is the result of the prismatic joint. The three
lengths, lp1, lp2 and lp3 can be used to calculate the
two rotation matrices. The transition matrix can be
easily calculated from lp1. Thus, after some calibration
on the real robot, thedirect kinematicsmodel is established.

[Ex, Ey, Ez]T = M1
rot · M2

rot · Mtran · [E0
x, E

0
y, E

0
z ]T
(2)

The inverse kinematics model takes foot-tip posi-
tion as the input. The output consists of the displace-
ments of the three prismatic joints. Again, the deriva-
tion starts from the UP limb. With the coordinates of
the foot-tip, two rotation angles of the universal joint
of the UP limb are calculated. The displacement of
the prismatic joint of the UP limb can also be com-
puted. Thus the transform matrix can be derived. By
the transformation matrix, the displacements of the
two prismatic joints in UPS limbs can be computed.
Finally, the inverse kinematics model is established.

2.2.2 Indirect Force Estimation Model

Based on this robot, an indirect force estimation model
is developed [17]. As illustrated in Fig. 4, the external
force n is applied to the foot tip. To balance this force,
forces f1, f2 and f3 will generated on the prismatic
joints.
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Fig. 4 Indirect force estimation. The three motors torque data
are used to estimate the external force exerted on the foot. It is
a linear transformation M : �n → �f , �n ∈ R3, �f ∈ R3

These three forces can be estimated from the motor
current. The indirect force estimation model uses the
force Jacobian matrix of the leg mechanism is used to
map these three force to the external force. The force
Jacobian can be derived after the kinematics model is
established.

[nx, ny, nz]T = MJac · [f1, f2, f3]T (3)

Thus, the six legs of the robot become six three-axis
force sensors. Then the robot can detect obstacles
and ground. The proposed gait is also based on these
implementations.

3 Human Experiment

3.1 Human Blind Walking

For a normal human being, the locomotion involves
three systems, which are the visual system, the
vestibular system, and the somatosensory system [22].
The visual system plays a crucial part in human life.
We do most activities at daytime and switch on the
light at night so we can see. During the walking, we
look ahead to regulate our foot trajectories before we
step on somewhere [23, 24]. The vestibular system
consists of the balance organs in the inner ear [25].

The system senses rotational movements and linear
accelerations. Research reveals that vestibular system
may be functional when leg muscles control the bal-
ance [26]. The somatosensory system provides the
central nerve system the image of our body. It takes
both exteroceptive inputs and proprioceptive inputs
[27]. During the walking process, the somatosensory
system provides feedback about the contacts, joint
angle, muscle tension, etc.

Components with similar functions can be found
on the robot Octopus III (Fig. 5) – a vision module
uses a Kinect [28]; a “vestibular system” is realized
by an IMU; a partly-implementation of a “somatosen-
sory system” is archived by resolvers and the indi-
rect force-estimation model. Table 1 compares the
involved sensory systems in the normal walking and
the blind walking of the human and the robot. To
obtain some ideas that shed light on the robot gait
design, an experiment is designed and performed to
observe how human walks without vision.

3.1.1 Experiment Settings

Figure 6 shows the snapshots taken from the video
footages of two experiments (one on the uneven
terrain and one on the flat ground). For the uneven

Fig. 5 Human walking involves three systems, the vestibu-
lar system, the vision system and the somatosensory system.
The robot walking involves devices with similar functions. The
depth camera measures the distance just like the binocular
vision system of a human. The IMU measures the gravity ori-
entation, angular movement and attitude, which is similar to
the vestibular system. Resolvers and motor currents provide the
position and force information of the moving limb, which is the
role played by the somatosensory system in a human body
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Table 1 Involved sensory systems in the normal walking and blind walking of the human and the robot

Normal walking Blind walking

Human Robot Human Robot

Path Vision system Computer vision Not available Not available

Balance Vision system IMU Vestibular system IMU

Vestibular system Somatosensory system

Somatosensory system

Proprioception Somatosensory system Resolver Somatosensory system Resolver

Current Current

In the nighttime or a dim environment, the computer vision system may not as effective as in an illuminated environment. Thus, in this
paper, the robot Octopus III is regarded as a robot without any vision system. As a result, the robot walks in such a condition that it
uses its legs more like a human without vision. The comparison shows the similarity between human blind walking and robot “blind”
walking. It is reasonable to investigate human blind walking when we are trying to design a gait for the robot without the vision

situation, the obstacles were constructed by a pile of
bricks. Each brick was about 0.1m in height, 0.3m
in width and 0.6m in length. Along with the walk-
ing direction, there was a thin string hanging over the
obstacles. This string was there to make sure volun-
teers keep walking in the right direction. Meanwhile,
it did not provide any other support to volunteers. In

Fig. 6 Experiment settings. Two ground conditions are used to
observe human blind walking. A flat ground and some obsta-
cles constructed by piles of bricks were used in the experiments.
Comparing human blind walking on the flat ground and the
uneven ground helps us understanding human behavior on the
uneven ground

the experiment, the volunteer was required to walk
from the right side of the obstacles to the left side.
The volunteer wore an eye mask from the beginning
to the end. Thus, there was no vision during the walk-
ing. First attempts of the experiments revealed that any
glance at the obstacles would help the volunteer plan-
ning the locomotion. The final experiment procedure
required the volunteer to wear the eye mask from the
very beginning to the end. In this way, the volunteer
had no prior knowledge about the obstacle. There was
also a small light ball attached to foot as an indication
of the foot-tip position. This was for the convenience
of tracking the trajectory of the foot-tip.

3.1.2 Experiment Results

In all, thirteen experiments have been performed with
five healthy volunteers. Each of them was told about
the experiment process before the experiment and
signed an informed consent form. The study protocol
was approved by the local Ethics Committee of Shang-
hai Jiao Tong University. Each time the obstacles were
different. The rest figures in this section are captured
on the video footages from the experiments. These
video footages have been processed by digital image
processing technology, and the foot-tip trajectories are
added to each frame of the video. Figure 7 illustrates
the trajectories gathered from the experiments.
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Fig. 7 Foot-tip trajectories gathered in the experiments. The
above two trajectories were collected during blind walking on
the flat ground. The bottom two were obtained on uneven
ground. The trajectories from the flat ground are more like a
recurrence of the same pattern

Figure 8 compares the walking properties in the two
walking conditions. Figures 9, 10, 11, and 12 describe
the trajectories in details.

Figure 11 shows the trajectories during the vol-
unteers stepping on the obstacles. It’s obvious that
the volunteer raised his foot higher than before. But
what interests us are the trajectories highlighted by
the red boxes. After the first contact with the obstacle
top, the volunteer did not stop and switch the swing
foot immediately. The volunteer used the swing foot
to make another small motion, which could help the
volunteer to gather more information about the sur-
roundings near the first ground contact point. After
this motion, the volunteer placed the foot to a “safer”
position. For example, at first, the volunteer placed
the foot right on the edge of the obstacle. Then he or
she moved the foot-tip around that point. Finally, the
volunteer placed the foot-tip away from the edge. So
the volunteer would not fall because of the ditch in
front of him. This small motion caught the eye of us
because normally, with the help of the vision, people
do not walk in this way. We believed that this phe-
nomenon reveals the way human deal with walking
without vision on the uneven ground.

Fig. 8 The round markers represent the data gathered on the
uneven ground. The square markers represent the data gathered
on the flat ground. The different colors differentiate between
different samples. Figure 8a compares the step height and the
step time. The average of the sample standard deviations of
the step height (σhu = 0.13) and step time (σ tu = 0.66)
from the uneven ground were bigger than those from the flat
ground(σhf = 0.02, σ tf = 0.08). These imply that both
the step height and the step time varied more on the uneven
ground. Figure 8b compares the step length and the step time.
The step length of flat walking varied more than walking on
uneven ground (The average of the sample standard deviations
of the step length on the flat ground was σ lf = 0.24, and
on the uneven ground σ lu = 0.12.). While walking on the
uneven ground, the step length (Average length lu = 0.29m)
was shorter than walking on the flat ground(Average length
lf = 0.83m). Meanwhile, the average step time on the uneven
ground was longer(tu = 1.32s, tf = 0.74s)
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Fig. 9 Foot-tip trajectories on the flat sections. The red boxes
mark sections of interest. At first, the step height is rather low.
The volunteers were not likely to use larger step height before

any contact with an object. However, if the previous situation
has convinced the volunteer that there would be an obstacle
ahead, then the volunteer will raise the leg more than ordinary

4 Gait

In the previous section, experiments on human have
been discussed. Based on the observation and analy-
sis of these experiments, a set of rules are designed to
generate adaptive gait for the robot Octopus III. With
this gait, the robot can traverse through certain uneven
terrain.

4.1 Inspired by Human Blind Walking Experiments

In the human blind walking experiment, it can be con-
cluded that static gait is applied to get better stability
on uncertain terrain. Thus, for the six-legged, a static
tripod gait is chosen as the basic gait for its stabil-
ity. Using this gait, the robot can easily put its center
of gravity into the support polygon. Then variations
are added to the basic gait to increase its flexibility to
adjust the trajectory during the walking on the uneven
terrain.

Figure 13 illustrates different single foot trajecto-
ries. When there is no feedback from the foot-tip, rect-
angle gait could be more robust than semi-ellipse gait
on rough terrain. However, the semi-ellipse gait has a
smoother velocity curve than the rectangle gait. Here,
the semi-ellipse gait is chosen for its better veloc-
ity property. Then, with the help of the foot-tip force

feedback provided by the indirect force-estimation
model, the semi-ellipse gait becomes more adaptive,
as described in the following paragraphs.

Figure 14a describes the gait designed for over-
coming obstacles. Subfigure (1) and subfigure (2)
illustrates how the gait trajectory changes when the
foot collides an obstacle. The robot will move back its
leg when the steep increase of external force occurs.
After the foot is withdrew, the robot will raise its
foot, trying to step on the obstacle. Subfigure (2) illus-
trates that the robot will try more than once to step
on the obstacle. It is clear that the robot could not
raise its foot unlimitedly, a fuse protection mechanism
will be discussed later. Subfigure (3) illustrates when
the robot foot is on the obstacle, it will move like on
the ground; the trajectory is almost the same except
there exists an offset about the body coordinate frame.
Subfigure (4) illustrates how the robot steps down
from the obstacle. The robot uses the indirect force-
estimation model to detect if the foot-tip has contacted
the ground. Also, the supporting force provided by the
ground is calculated.

In the human blind walking experiment, it is
observed that the volunteers used some small motions
to detect the structure of the terrain near the foot.
This mechanism has been added to the basic gait.
Figure 14b illustrates how this small motion functions

Fig. 10 Foot-tip trajectories during touching the obstacle. After
contacting with an obstacle, the volunteer adjusted the step
height once or more times to step on the obstacle. In this
process, some volunteers moved back their feet a little and
increased the step height, and some volunteers moved their feet

along the obstacle surface to find out the size of the obstacle
then stepped on the obstacle. To be clear, in these experiments,
all the obstacles were limited at a suitable height for volunteers
to step on
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Fig. 11 Foot-tip trajectories during stepping on the obstacle. After the volunteer had stepped on the obstacle, a tentative movement
(trajectories marked with the red boxes) of the foot helped the volunteer to step on the safer place, where was not too close to the edge

during the robot walking. As mentioned before, the
trajectory starts from the left side of the figure. In sub-
figure (1), the simplest situation is illustrated, where
the terrain is flat. The blue trajectory is the basic gait,
and the yellow trajectory is employed to do the detec-
tion. In this situation, after the green trajectory, the
foot will finally stop in the middle of the two ground
contact points. In subfigure (2), there is an obstacle.
After raising the height, the leg steps on it. However,
the first contact point is very close to the edge. With
the small motion, the foot’s final position is away from
the edge, which prevents the foot from slipping off the
edge. On the other hand, there is a possibility that the
foot is at first stopped just a little behind an edge. In
this situation, the detection trajectory will find there is
a ditch in front of it. Then the end point of the green
trajectory is behind the end point of the blue trajectory.
This is also a mechanism to avoid the foot slipping off
the edge. Subfigure (4) illustrates how the foot steps
down from the edge with small motion trajectories.

Fig. 12 Foot-tip trajectories during stepping down the obstacle.
The step length was short during walking on uneven ground. It
is worth noticing that the center of the body did not move out of
the supporting foot until the swing foot had actually stepped on
the stable ground, which implies that the volunteer was using a
static gait while there was no vision system to help him to plan
the next step

In human experiments, when the volunteer found
there is an obstacle ahead, he or she would adjust the
foot height of next step. Figure 14c illustrates a sit-
uation that small motion detects an obstacle. In this
condition, the robot has the perception that there is an
obstacle ahead. So in the next gait, the robot will raise
its foot higher than before directly, trying stepping on
the obstacle.

Figure 14d illustrates the fuse protection mech-
anism of the proposed gait. Two situations are
described in the figure. If the obstacle is too high (if
an obstacle is too high to climb, then it is referred as a
wall.) or the ditch is too deep then the robot will stop
its motion, avoiding the useless attempts.

4.2 Adaptive Gait for Robot Octopus III

Figure 15 illustrates the transitions of gait trajectories
by the proposed rules. The blue box represents the
leg supporting the body. The blue circle represents the
leg swinging. A wall or a deep ditch stops the robot.
Otherwise, the leg motion is a loop of swinging and
supporting. And during this process, the proposed gait
has variations to overcome obstacles, giving the robot
capability to walking through uneven terrain.

For each foot in each step, the swing trajectory is
a sequence of curves. These curves could be arcs of
ellipses or straight lines. Because the real-time control
cycle is 1ms, the generating method of the trajectory

Fig. 13 Different gait trajectories. The trajectory is composed
of one or more curves. The leg trajectory is a half ellipse as no
sudden change in position and velocity is expected unless the
foot contacted with the environment
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Fig. 14 Gait patterns inspired by human blind walking behav-
iors. Figure 14a illustrates that the robot will adjust its trajectory
when the foot contacts with an obstacle. The foot will move
back immediately after contacted with the obstacle. The direc-
tion is determined by the force direction from the indirect
force-estimation. Figure 14b is based on Figure 14a. The ten-
tative motion is added to avoid standing too close to the edge.
Figure 14c illustrates another use of the tentative motion. It
helps to determine the height of the next step. Figure 14d illus-
trates the behavior when the obstacle reaches the limit of the
leg workspace; the robot will stop trying to walk through the
obstacle

cannot be complicated. Thus, the algorithm uses a triv-
ial way to regulate the trajectory. Firstly, the length
of the trajectory is calculated. For the ellipse arc, a
numerical method is used to evaluate the length unless
the curve is a semi-ellipse or a quarter-ellipse. In these
situations, the arc length can be derived from the cir-
cumference of the ellipse, which can be computed by
Ramanujan’s approximation formula (Eq. 4).

Sell = π(a + b)(1 + 3h2

10+
√

4−3h2
)

h = a−b
a+b

(4)

After obtaining the trajectory length S, a trapezoidal
velocity profile is used to calculate the duration of the
swing (Denoted as tswing). For a given max velocity

Fig. 15 Gait trajectory transitions. Each blue circle represents a
curve in the swing state of the leg, while blue box represents the
support state of the leg. The trajectory of each foot is controlled
by a finite state machine. The trajectory consists of a group of
curves. These curves must be continuous in position. The veloc-
ity may experience a change when the foot-tip contacts with the
ground or the obstacle. The loop in these transitions represents
the way robot walks. In all, six loops are formed in this transi-
tions. The variations give the robot ability to negotiate with the
environment

vm, acceleration aa , and deceleration ad , tswing is
calculated by Eq. 5.

S = ∑
Si

tswing =
√

2S(aa+ad )
aaad

, S ≤ vm
2(aa+ad )
2aaad

tswing = S
vm

+ vm(aa+ad )
2aaad

, S >
vm

2(aa+ad )
2aaad

(5)

During the walking process, the trajectory is gener-
ated as T (t), t ∈ [0, tswing]. As a group of curves,
the trajectory is a piecewise smooth function of time.
The trajectory has C0 continuity. The discontinuity in
speed occurs when the foot collides with the ground or
the obstacle. After these events, the trajectory gener-
ator regenerates a new trajectory based on the current
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Fig. 16 The ground contact transitions of each leg set. The
proposed alternating tripod gait divides the legs into two sets.
These sets swing and stand alternatively. The first set consists of
leg LF, RM and LR (Subfigure (a)). The rest legs form another
group (Subfigure (b)). Here, the contact means that the leg
begins to support the body weight

Fig. 17 Robot control process. The gait transitions described in
Fig. 16 are implemented in the trajectory generator. The foot tra-
jectories are generated in the Cartesian coordinate system. Thus
these points are mapped to the joint space by the inverse kine-
matics model. Then the joint space data are sent to the drives
on the robot. On the other hand, the feedback joint space data
are mapped to the Cartesian coordinate system by the direct
kinematics model

foot position and contact condition. For the trajec-
tory T (t), a mapping q(t) is introduced to mapping
[0, tswing] to I (Unit interval [0,1]) as described in
Eq. 6. Thus, the same trajectory can be expressed
as S (q), q ∈ I . For each single curve Si in the
trajectory, the parameter also runs over I (Eq. 7).

T (t) = S (q(t))

t ∈ [0, tswing], q(t) ∈ [0, 1] (6)

S (q) = Si (
q−qi−1
qi−qi−1

)

qi−1 ≤ q < qi, i = 1 . . . n, q0 = 0, qi ≤ 1
(7)

Johnson and Koditschek proposed the ground reac-
tion complex [29] to describe the possible ground
contact transitions of a legged robot. In our research,
the robot has six legs arranged in an axial-symmetric
way. Thus, we have an index set J := {F,M,R} ×
{L,R}, where F, M, R represent “front”, “middle”
and “rear”. L, R represent “left” and “right”. For J,
the subscript j is a binary sequence sorted by (LF,
LM, LR, RF, RM, RR) corresponding to each foot of
the robot. Thus, J means leg LM, RF and RR con-
tact with the ground. Figure 16 illustrates the possible
transitions of ground reaction conditions of the pro-
posed gait.

The algorithm is implemented in the real time con-
trol program. Figure 17 describes the structure of the
control system software used in the experiment.

Fig. 18 Experiment settings. The uneven ground is constructed
with two layers of the bricks, which is not as high as the obsta-
cle in the human blind walking experiment. This is because the
workspace of the leg mechanism is smaller than the serial limb
of the human. The max displacement of the prismatic joint is
0.3m, while the height of the brick pile is 0.2m. Moreover, the
pile of bricks is placed on the right side of the walking direc-
tion, which makes the obstacle not symmetric about the sagittal
plane
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Fig. 19 Snapshots from the
experiment video. The
Robot walked through the
uneven ground using the
proposed alternating tripod
gait. The RF foot was
attached with a blue mark.
By tracing the blue mark,
the trajectory was plotted as
the yellow curve

Fig. 20 Trajectories of robot legs in the world coordinate frame
Cw . Curve with ifferent color represents different leg of the
robot. The robot control program will record the data uploaded
by the drives. This figure shows the position data gathered dur-
ing the experiment, although the trajectory of each step was
planned under body coordinate frame (See Fig. 3) during the

walking. The above trajectories are plotted in the world coor-
dinate frame of the robot coordinate system. Obviously, on the
right side of the walking direction, the ground contact points of
the three legs envelop the obstacle. On the other side, the ground
is much more flat
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5 Experiment on the Robot

This section describes the experiments on the robot.
Results of the experiments are also plotted and analyzed.

5.1 Experiment Settings

In the first experiment, an uneven ground was con-
structed from a pile of bricks. Figure 18 is a photo

Fig. 21 Positions and estimated forces of the LR(left rear) leg
in one cycle. The Py curve shows that the foot stepped on an
obstacle during this cycle. Before 95th second, the leg experi-
enced a sudden change in the estimated force along y-axis(Fy ).
This is because the 3 degrees of freedom of the leg are coupled
with each other. If we look at Fig. 21b, there was a much larger
force change before 95th second. This indicates the robot foot
has contacted with an obstacle in the walking direction. Thus
the leg moved back a little and adjusted its height as shown in
the above figure. After 105th second, the leg was in support-
ing state. Although the estimated force changed several times,
which were caused by the motion of the other legs, the leg
stayed at the same position

of the experimental environment. The robot walked
through these bricks during the experiment using the
proposed method. After that, the proposed gait was
also tried on different obstacles, including a slope,
sandbags, etc.

5.2 Experiment Results

Figure 19 provides a set of snapshots from the video
footage of the experiment.

One leg was traced by the computer vision pro-
gram. Its trajectory is illustrated in the pictures.
The robot gradually stepped on the obstacles, then
walked on the obstacle, and finally, walked through
it. Figure 20 illustrates the trajectories of all legs dur-
ing the experiment. The data were returned by the
resolvers installed on the robot. Legs on the left side
walked through the obstacles one by one, while legs

Fig. 22 External forces along y-axis of all legs in one cycle.
These data are the result of the indirect force-estimation. The
difference between the swing state and the stance state is obvi-
ous. Leg LF, LR, and RM moved at first, then leg LM, RF, and
RR. The force along y-axis was the supporting force. In this
cycle, the ground contact transition is J111111 → J010101 →
J110111 → J111111 → J101010 → J111111, which is one of
the routines plotted in Fig. 16
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Fig. 23 The robot walked
on a slope. The slope is
made of boards and covered
with a carpet. The slope is
about 10◦. The robot
climbed on this slope
during the experiment.
Since there was an angle
between the slope and robot
walking direction on the
sagittal plane, each step
length was shorter on the
slope. In the experiment, the
robot recognized the slope
as an obstacle occasionally.
However, for climbing the
slope, this behavior made
no big difference

on the right side walked on the flat ground. In each
step, the robot tried different locations before actually
stepping on a certain location.

Figure 21 illustrates the force and position of
leg LR curves during a cycle of the experiments.
Figure 21a illustrates how estimated external forces
and positions of leg LR varies along the y-axis in
the experiment. From 96th second to 105th second,
the foot-tip contacted with the ground for three times.
Then, the leg stopped moving and supported the
weight of the robot. From 105th second to 115th sec-
ond, the leg was supporting the body weight. However,
when other legs contacted with the ground, the weight
on the rest legs became smaller.

Figure 21b illustrates how estimated external forces
and positions varies along the z-axis. At about the
94th second, the foot collided with an obstacle. Then
it came the reflex reaction. However, from 96th sec-
ond to 105th second, there was also a big force along
z-axis. But this time the robot contacted with the
ground, so there was no withdraw reaction here.

Figure 22 illustrates the forces on the y-axis direc-
tion of one cycle. Leg LF, LR, and RM started to move
at first, then the body, and finally leg LM, RF and RR.
The three peaks show the three contacts when robot
found the right location for the feet.

The proposed gait is designed to be adaptive, it was
tested in various terrains. Beside the bricks pile, we

Fig. 24 The robot walked
through sandbags. The
sandbags were soft, and
their shapes were irregular.
But the robot was managed
to overcome them by the
proposed gait. Although the
gait is designed based on
square bricks, this
experiment demonstrated its
robustness



J Intell Robot Syst (2017) 88:19–35 33

Fig. 25 Robot stepped on
an obstacle using indirect
force-estimation. These
snaps illustrate that indirect
force-estimation has a large
sensing area. Although the
upper-side of the ankle
contacted with the obstacle
at first, the robot still
detected the obstacle
effectively. If the robot used
a force sensor installed on
the foot-tip, it could not be
able to detect this obstacle

also let the robot walk through a slope made of boards.
Figure 23 shows the snapshots of the experiment
video. The robot climbed the slope and maintained the
body attitude.

Also, the obstacle with irregular shape was tested.
Figure 24 shows the process of one leg of the robot
overcoming two sandbags laying on the ground. As
the obstacle shape varied, the gait trajectories also
changed to track it.

Fig. 26 The position of the foot-tip (Pz) and the external force
(Fz) along the z-axis. This figure is corresponding to Fig. 25.
The walking direction was the positive direction of z-axis. At
point A, the upper-side of the ankle contacted with the obstacle.
At point B, the foot-tip contacted with the obstacle. The indirect
force-estimation was effective in both situations

Another kind of obstacle was also included in
experiments. As shown in Fig. 25, the lower part of
the obstacle was recessed. In this situation, the foot-
tip can hardly contact the obstacle because the ankle
or the leg would collide with the obstacle at first.
Then if there was a force sensor installed on the
foot-tip, it would be useless. However, the indirect
force-estimation method can detect the obstacle. With
the proposed gait, the robot leg climbed the obstacle
after adjusting the foot height twice (Fig. 26).

6 Conclusion

In this paper, an adaptive gait for six-legged robot is
proposed based on the observation of human blind
walking. The human volunteers walked through even
or uneven terrain when their eyes are covered, which
were recorded by a camera. Through computer vision
techniques, trajectories were extracted and analyzed to
find out patterns in the human blind walking. Then, the
adaptive gait is designed based on these patterns. The
research of this paper is based on a six-legged walking
robot without vision sensor. The robot has a spa-
tial parallel leg mechanism (UP-2UPS). The indirect
force-estimation method is implemented on the robot,
which avoids the fragile force sensors. All the kine-
matics model and indirect force-estimation model has
been implemented in the real-time operation system
on the robot.
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The proposed gait was tested on different types of
ground. The robot walked through a pile of bricks
with maximum height of 20cm. The step length was
shorter on the slope because of the slope angle, while
the robot walked on a 10◦ slope. The gait was not only
tested on hard ground but also tested on soft mate-
rials. The experiment on the sandbags demonstrated
the gait was of certain robustness on the soft ground.
Also, the gait worked on the irregular shaped obstacles
although it was designed based on the human walking
experiments on the obstacle environment consisting
of bricks. Another experiment demonstrated the pro-
posed gait and indirect force-estimation had a larger
sensing area than the force sensor installed on the foot-
tip. When the obstacle contacted with the lower part of
the leg rather than the foot-tip, the proposed method
still could detect the obstacle and overcome it.
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