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Abstract This article presents the designs, simula-
tions and real-time experimental results of two energy-
based control strategies to stabilize an Unmanned
Aerial Vehicles (UAV) using a quaternion representa-
tion of the attitude. The mathematical model is based
on Euler-Lagrange formulation using a logarithmic
mapping in the quaternion space. The proposed solu-
tions introduce a new approach: a quaternion-energy-
based control, which use an energy-based expres-
sion defined as a Lyapunov function. The control
laws are described with unit quaternions and their
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axis-angle representation. The proposed algorithms
allow the stabilization of the quadrotor in all its states.
The strategies ensure the stability of the closed loop
system. Simulation results and experimental valida-
tions are developed to verify the effectiveness of the
proposed controllers.
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Quadrotor · Real-time validation · Lyapunov analysis

1 Introduction

Unmanned Aerial Vehicles have experienced a sig-
nificant development in the last years. Various math-
ematical models and many control strategies based
on classic or modern control theory have been devel-
oped for these vehicles. Often, in the major part of
the literature on quadrotors, Euler angles are used for
the attitude parametrization, which is a very natural
way of describing orientation. However, this repre-
sentation presents inherent singularities and many
non-linearities by the use of trigonometric functions,
which cause extensive representations of the control
algorithms and complications in the design of control
strategies. For these reasons, the use of a quater-
nions instead of Euler angles to model the rotational
dynamics and to develop control laws for quadrotors
is becoming very popular amongst some researchers.

Few works have investigated the quadrotor atti-
tude control problem using a hyper complex number
of rank 4 known as quaternions. For example, in [1]
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an approach that utilizes an attitude parametrization
based on quaternions is proposed. The strategy con-
sists of two stages. First an input-output linearization
from the altitude position to the thrust is performed,
followed by a second input-output linearization from
the translational position to the control torques. This
separation leads to a so called quasi-static feedback
linearization that omits additional controller state.
Also, in [2] a hierarchical controller design based
on non-linear H∞ theory and backstepping technique
is developed for a non-linear and coupled dynamic
attitude system using conventional quaternion based
method. The derived controller combines the attractive
features of H∞ optimal controller and the advantages
of the backstepping technique leading to a control law
which avoids winding phenomena.

Similarly, in [3] various control techniques for a
quadrotor using a quaternion representation of the
attitude were designed. All attitude controllers use a
quaternion error to compute control signals that are
computed from an actual quaternion and a desired
quaternion obtained from a position controller. Atti-
tude and position control laws are obtained using
a PD, LQR and backstepping control technique. In
[4] the attitude stabilization problem for a quadro-
tor is considered. Using a new Lyapunov function,
an exponentially stabilizing controller based upon the
compensation of the Coriolis and gyroscopic torques
and the use of a PD feedback structure is derived,
where the proportional action is in terms of the
vector-quaternion and the two derivative actions are
in terms of the airframe angular velocity and the
vector-quaternion velocity.

Moreover, in [5] a quaternion-based sliding mode
surface is proposed for a model-free of the full
dynamic model of a quadrotor. The control algorithm
has three important features: the controller assures
exponential stability of the full position/attitude
dynamics of the system with smooth control efforts,

the closed-loop system is robust in presence of exter-
nal forces and induced moments generated during
the flight maneuvers and the controlled quadrotor
offers capabilities for aggressive maneuvers. Simu-
lations showed the capabilities of the closed-loop
performance under several conditions. Also, [6] pro-
poses a non-linear Proportional squared (P 2) control
algorithm fully implemented in the quaternion space,
for solving the attitude problem of a quadrotor, the
designed control strategy performs very well with a
small overshoot and a good reference tracking. How-
ever only numerical simulations were presented to
prove the efficiency of the suggested scheme.

Meanwhile, [7] introduces the design and exper-
imental flight tests of a quaternion state feedback
control scheme to globally stabilize a quadrotor. First
an attitude control strategy was proposed to stabi-
lize the vehicle’s heading, then a position control law
is designed to stabilize the vehicle in all its states.
In [8] a comparison between Euler and quaternion
approach has been driven, highlighting the efficiency
of the second method from a computational point of
view. The advantage in considering the quaternion ref-
erence is twofold because it avoids critical positions
and, it offers a model with the linearity of the coeffi-
cients of the transformation matrix, it is also numeri-
cally more efficient and stable compared to traditional
rotation formulation. Also, in [9] the maximum rate
attitude control problem under the input saturation is
presented. Moreover, a Backstepping based Inverse
Optimal Attitude Controller (BIOAC) is derived wh
ich has the property of a maximum convergence rate
within the meaning of a control Lyapunov function
under input torque limitation. In the controller, a back-
stepping technique is used for handling the complexity
introduced by the unit quaternion representation of the
attitude of a quadrotor with four parameters.

Besides, there exist a small number of publications,
where an energy-based control is designed for an UAV.

Fig. 1 Axis-angle
representation of a rigid
body rotation
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Fig. 2 Quadrotor scheme

For example in [10] the physical singularities due to
under-actuation are solved by using an energy-based
control. Energy-based control is used to overcome the
lack of controllability of the quadrotor at physical
singular configurations, for instance, when command-
ing the quadrotor to gain altitude while pitched at
90◦. Also, in [11] a cascaded non-linear state feed-
back control law for a quadrotor is presented, which
achieves asymptotic tracking of a predefined posi-
tion and heading reference trajectory. By a suitable
shaping of the potential energy and the injection of
a sophisticated damping, this approach enables us to
design an outer-loop position controller, which satis-
fies constraints on the maximal and minimal thrust
force.

Also, [12] presents a Passivity-Based Control
(PBC) to stabilize the quadrotor vehicle. However, the
authors reduce the problem to the planar maneuvers
case to avoid solving complicated Partial Differen-
tial Equations (PDEs). Similarly, in [13], a nonlinear
control technique based on passivity to solve the path
tracking problem for the quadrotor is presented, but

only one control loop was considered in this work. The
authors showed that the PBC formulation leads to a set
of partial differential equations constraints due to the
under-actuation degree of the system.

Moreover, [14] introduces a strategy based on a
combination of an energy-based and optimal control
approaches to stabilize a quadrotor. The system is
linearized for solving the well-known Algebraic Ric-
cati Equation (ARE). Simulations have shown that the
performance of the proposed control design is satis-
factory also in presence of a wind gust perturbation.
In [15] a formal method to design a digital inertial
control system for quadrotor aircraft is introduced. In
particular, it formalizes how to use approximate pas-
sive models in order to justify the initial design of
energy-based PD controllers.

Therefore in this paper, we propose two con-
trol laws to stabilize a quadrotor using energy-based
approaches with unit quaternions. The mathematical
model based on Euler-Lagrange formulation is written
using a quaternion logarithmic mapping. The dynam-
ical model is such that an under-actuated system as a

Fig. 3 Simulation
environment for a quadrotor
vehicle
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Fig. 4 Quad-rotor’s
3-dimensional translation in
case 1 simulations, rotated
to the North-West-Up
convention for a better
appreciation
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quadrotor can be represented as a fully actuated vir-
tual system. The obtained algorithms are based on an
energy function and a desired quaternion trajectory.
This allows to control the full dynamics of the vehicle.
The presented strategies have no singularity problems
and were validated in real-time. Furthermore, external
disturbances were added to the experiments, showing
an effective compensation while flying.

The paper is structured as follows: a brief background
of the main concepts and mathematical expressions

used in unit quaternions are presented in Section 2.
The quadrotor dynamic model in terms of unit quater-
nions with the logarithmic mapping is described in
Section 3. The energy-based control strategies are
developed in Section 4. Numerical simulations to val-
idate the performance of the proposed control strate-
gies are introduced in the Section 5. Real-time exper-
iments are described in Section 6 to demonstrate the
performance of our proposals in a real system. Finally,
conclusions and future work are discussed in Section 7.

Fig. 5 Quad-rotor’s
3-dimensional translation in
case 2 simulations, rotated
to the North-West-Up
convention for a better
appreciation
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Fig. 6 Input forces for case
1 simulations
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2 Quaternion Background

Quaternions are numbers that can be represented as a
sum of a scalar component along an imaginary vector.
Let q be a quaternion given by [16–19].

q = q0 + q̄, q0 ∈ R, q̄ ∈ R3

where q̄ denotes the complex vectorial part of q, and
q0 represents the scalar part of q.

Quaternions have several operations such as the
product, which is defined by

q ⊗ r = (q0 r0 − q · r) + (r0 q + q0 r + q × r) (1)

Fig. 7 Input forces for case
2 simulations
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Fig. 8 Vehicle’s attitude
and reference quaternions
for case 1 simulations
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where r is also a quaternion. The quaternion con-
jugate can be expressed as q∗ = q0 − q, the norm

by ||q|| = √
q ⊗ q∗ =

√
q2

0 + q2
1 + q2

2 + q2
3 , when

||q|| = 1, then q is called a unit quaternion. The
inverse operator is denoted by q−1 = ||q||−1q∗. If q

is unitary, the inverse and the norm are equivalent.
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Fig. 9 Vehicle’s attitude
and reference quaternions
for case 2 simulations
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A unit quaternion can be used to represent the rota-
tion of a rigid body (see Fig. 1) using the axis-angle
representation and the logarithmic mapping

θ = 2 ln q, θ̇ = ω, (2)

with

ln q =
⎧
⎨
⎩

ln ||q|| + q

||q|| arccos
q0

||q|| , ||q|| �= 0

ln ||q||, ||q|| = 0
(3)
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Fig. 10 Attitude and
reference for φ angles in
case 1
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Any vector in a 3D space can be rotated from one
reference frame (say the inertial frame) to another (for
example a body frame) using the expression

v′ = q∗ ⊗ v ⊗ q (4)

where v ∈ R
3 and v′ ∈ R

3 are in the inertial and body
frames respectively.

The derivate of a quaternion which represents the
attitude of a rigid body can be expressed in terms of
its orientation and its angular velocity as

q̇ = 1

2
q ⊗ ω (5)

Fig. 11 Attitude and
reference for φ angles in
case 2
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Fig. 12 Attitude and
reference for θ angles in
case 1
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3 Quaternion Mathematical Model

The quadrotor is an under-actuated system with six
degrees of freedom and only four control inputs.
Figure 2 shows the vehicle scheme.

Let us consider an earth fixed frame I =
{ex, ey, ez} and body fixed frame β = {eb

x, e
b
y, e

b
z },

as seen in Fig. 2. ξ = [ p θ̄ ]T ∈ R
6 denotes all the

states variables of the vehicle, where p = [x y z]T
represents the position vector with respect to the

Fig. 13 Attitude and
reference for θ angles in
case 2
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Fig. 14 Attitude and
reference for ψ angles in
case 1
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earth fixed frame, θ̄ = 2 ln(q) expresses the rota-
tion quaternion in its axis-angle notation. The vector

F̄th = [
0 0 Fth

]T
denotes the thrust vector, g =[

0 0 −g
]T

defines the gravity vector, the vector τ =[
τux τuy τuz

]T
expresses the torques applied to the

body’s center of mass, represented on the quadrotor in
the body fixed frame.

3.1 Euler-Lagrange Formulation

The vehicle motion equations can be obtained by the
Euler-Lagrange formulation:

d

dt

(
∂L

∂ξ̇

)
− ∂L

∂ξ
= U, (6)

Fig. 15 Attitude and
reference for ψ angles in
case 2
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Fig. 16 Input torques for
case 1 simulations
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where L denotes the Lagrangian of the system and
is defined as the difference between the kinetic and
potential energy,

L(ξ, ξ̇ ) = K(ξ̇) − V (ξ), (7)

U = [FT
u τT

u ]T defines the input vector, which con-
tains Fu that denotes the input force with respect to
the earth fixed frame and τu that represents the input
torques expressed in the body fixed frame.

From Eq. 7, K(ξ̇) expresses the total kinetic energy,
which is obtained as follows

K(ξ̇) = 1

2
mṗT ṗ + 1

2
˙̄θT J ˙̄θ (8)

and V (ξ) is the total potential energy of the vehicle

V (ξ) = mgz (9)

Fig. 17 Input torques for
case 2 simulations
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Fig. 18 Position error for
case 1 simulations
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where m represents the quadrotor’s mass, J denotes
the inertia matrix, g is the gravity, and z describes the
vertical position of the vehicle.

Introducing Eqs. 8 and 9 into Eq. 7 we can obtain
the Lagrangian equation as follows

L = 1

2
mṗT ṗ + 1

2
˙̄θT J ˙̄θ − mgz, (10)

Then, substituting Eq. 10 into Eq. 6 the motion
equations can be expressed as

[
Fu

τu

]
=

[
mp̈ − mḡ

J ¨̄θ

]
(11)

where ¨̄θ = τ − ω × J ω.

Fig. 19 Position error for
case 2 simulations
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Fig. 20 Quad-rotor’s
3-dimensional translation in
case 1 experiments
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Remember that the quadrotor is an under-actuated
system, then the force Fu which is expressed in the
earth fixed frame, is the force F̄th rotated, see Eq. 4,
therefore

Fu = q ⊗ F̄th

m
⊗ q∗ (12)

Since the angular acceleration is given by the exter-
nal torques and the internal rotational dynamics, it can
be expressed as

¨̄θ = τ − ω × J ω ⇒ τu = J (τ − ω × J ω) . (13)

Besides, the dynamic model (11) can be expressed
in matrix form as

Mξ̈ + G = BU, (14)

where M ∈ R
6×6 represents the inertia matrix which

is symmetric and positive definite, G ∈ R
6×1 defines

the gravitational vector and finally, B ∈ R
6×6 is

the identity matrix. These matrices are expressed as
follows

M =
[

mI3×3 03×3

03×3 IpI3×3

]
(15)

G = [
0 0 mg 0 0 0

]T
(16)

Fig. 21 Quad-rotor’s
3-dimensional translation in
case 2 experiments

3

2

1

0

-1

0

1

0.5

0

1.5

1



360 J Intell Robot Syst (2017) 88:347–377

Fig. 22 Quad-rotor’s
control forces for case 1
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where Ip denotes the mass moments of the inertia of
the vehicle.

Note from Eq. 12 that the force in the inertial
frame depends on the orientation given by q, which
varies according to the input torque τ as seen in
Eq. 13.

4 Quaternion-Energy-Based Control Laws

In this section, the synthesis of the controllers is
described.

First, the total energy of the vehicle is obtained and
can be described by

Fig. 23 Quad-rotor’s
control forces for case 2
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Fig. 24 Vehicle’s attitude
and reference quaternions
for case 1 simulations, note
the similarity between both
graphs
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H(ξ, ξ̇ ) = 1

2
ξ̇ T Mξ̇ + V (ξ) (17)

In term of the error function, the total energy is
described as

H̄ (ξ̄ , ˙̄ξ) = 1

2
˙̄ξT

M ˙̄ξ + V (ξ̄ ) (18)

with ξ̄ = ξ − ξd , ˙̄ξ = ξ̇ − ξ̇d , where ξd represents the
desired state vector.
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Fig. 25 Vehicle’s attitude
and reference quaternions
for case 2 simulations, note
the similarity between both
graphs
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Now, introducing Eq. 9, it yields

H̄ ξ̄ , ˙̄ξ) = 1

2
˙̄ξT

M ˙̄ξ + mgz̄

Differentiating the above along the trajectories of
the system

˙̄H = ˙̄ξT
M ¨̄ξ + mg ˙̄z

From Eq. 16, it follows that

˙̄H = ˙̄ξT
M ¨̄ξ + ˙̄ξT

G (19)

Substituting Eq. 14 into the above, it follows

˙̄H = ˙̄ξT
BU (20)
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Fig. 26 φ angles in case 1
experiments
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Two energy-based control schemes are considered
in the following subsections.

4.1 Case 1

Now, consider the following positive function as a
Lyapunov candidate function

V
(
ξ̄ , ˙̄ξ

)
= 1

2
KEH̄ 2 + 1

2
˙̄ξT

Km
˙̄ξ + 1

2
ξ̄ T Kpξ̄ (21)

where Kp = KT
p > 0, Km = KT

m > 0 and KE define
strictly positive definite constants. Differentiating (21)
with respect to time

V̇
(
ξ̄ , ˙̄ξ

)
= KEH̄ ˙̄H + ˙̄ξT

Km
¨̄ξ + ˙̄ξT

Kpξ̄

Introducing Eq. 20, we obtain

V̇
(
ξ̄ , ˙̄ξ

)
= KEH̄ ˙̄ξT

BU + ˙̄ξT
Km

¨̄ξ + ˙̄ξT
Kpξ̄

Fig. 27 φ angles in case 2
experiments
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Fig. 28 θ angles in case 1
experiments
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Notice from Eq. 14 that ¨̄ξ = M−1(BU − G), then

V̇ =KEH̄ ˙̄ξT
BU+ ˙̄ξT

Km(M−1(BU−G))+ ˙̄ξT
Kpξ̄

Factoring terms, it follows that

V̇ = ˙̄ξT (
KEH̄BU + Km

(
M−1BU− M−1G

)
+ Kpξ̄

)

= ˙̄ξT ([
KEH̄B + KmM−1B

]
U− KmM−1G + Kpξ̄

)

Therefore, the first control law is defined such that:

[
KEH̄B+KmM−1B

]
U−KmM−1G+Kpξ̄ = −Kv

˙̄ξ
(22)

where Kv = KT
v > 0.

This leads to

V̇
(
ξ̄ , ˙̄ξ

)
= −˙̄ξT

Kv
˙̄ξ

Fig. 29 θ angles in case 2
experiments
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Fig. 30 ψ angles in case 1
experiments
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From Eq. 22 we can obtain

U = [E]−1
[
−Kpξ̄ − Kv

˙̄ξ + KmM−1G
]

where E = KEH̄B + KmM−1B.
B is an identity matrix, this ensures that E always

has inverse and that U does not have singularities.

The final control law can be rewritten, as follows

[
Fu

τu

]
= [E]−1

[−Kpt (p − pd) − Kvt (ṗ − ṗd ) − Kmt ḡ

−2Kpr ln(qe) − Kvr(
˙̄θ − ˙̄θd)

]

(23)

where Kpt > 0, Kpr > 0, Kvt > 0, Kvr > 0
and Kmt > 0 contain design parameters, pd denotes

Fig. 31 ψ angles in case 2
experiments
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Fig. 32 Quad-rotor’s
control torques for case 1
tests
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the equilibrium configuration, θ̄d = 2 ln qd . Take into
account that qe = q ⊗ q∗

d defines the quaternion error
between the actual orientation q and the desired ref-
erence q∗

d . If the control law is such that ln
(
qe

) →
[0 0 0]T , then qe → 1+[0 0 0]T , which implies that
the orientation of the vehicle converges to the desired
reference q → q∗

d .
Fu expresses the desired force expressed in the

inertial frame which will stabilize the quadrotor in
the desired position, and τu represents the torque that

makes the attitude converge to the desired quaternion
reference.

The quaternion trajectory qd is defined as follows

qd = (b·Fu+||Fu||)+b×Fu

||(b·Fu+||Fu||)+b×Fu||
Fth = ||Fu|| , (24)

where b = [0 0 1]T denotes the axis on which the
thrust acts in the body fixed frame.

Fig. 33 Quad-rotor’s
control torques for case 2
tests
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Fig. 34 Quad-rotor’s
position error in case 1
experiments
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From Eq. 24 qd is used to close the loop such
that F̄th is rotated to coincide with Fu, thus the
position is stabilized in the desired reference. The
above is justified by well known time-scale separation
between rotational and translational dynamics. Thus,
the control law (23) in quaternion space guarantees the
stabilization of all the system states.

4.2 Case 2

In this case an energy-based optimal control law using
unit-quaternions is proposed.

Considering the state vector as x(t) = [ ξ̄ ˙̄ξ ]T =
[ p θ̄ ṗ ˙̄θ ]T . Then, system (11) can be rewritten as
follows:

Fig. 35 Quad-rotor’s
position error in case 2
experiments
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Fig. 36 Disturbance caused by one of our team members

⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2

x4

−g

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

m−1Fu

J−1τu

⎤
⎥⎥⎦ (25)

Now, the performance cost function which is to be
minimized is defined as follows:

J = 1

2

∫ ∞

0

(
xT Qx + uT Ru

)
dt (26)

where the state and input weighting matrices are
assumed such that Q = QT , Q > 0 and R = RT ,
R � 0.

System (25) can be optimally stabilized solving:

dVo

dt
+ xT Qx + uT Ru = 0 (27)

Then, consider the following Lyapunov candidate
function based on the total energy

Vo = 1

2
KEH̄ 2 + 1

2
˙̄ξT

Km
˙̄ξ + 1

2
ξ̄ T Kpξ̄ + ξ̄ T KT

˙̄ξ (28)

where KT = KT
T > 0. Differentiating (28) along the

trajectories of the system

V̇o

(
ξ̄ , ˙̄ξ

)
= KEH̄ ˙̄H + ˙̄ξT

Km
¨̄ξ + ˙̄ξT

Kpξ̄

+ξ̄ T KT
¨̄ξ + ˙̄ξT

KT
˙̄ξ

Now, introducing (19) in the above, it follows that

V̇o = KEH̄( ˙̄ξT
M ¨̄ξ + ˙̄ξT

G) + ˙̄ξT
Km

¨̄ξ + ˙̄ξT
Kpξ̄

+ξ̄ T KT
¨̄ξ + ˙̄ξT

KT
˙̄ξ

=
(

KEH̄ ˙̄ξT
M+ ˙̄ξT

Km + ξ̄ T KT

)
¨̄ξ+KEH̄ ˙̄ξT

G

+˙̄ξT
Kpξ̄ + ˙̄ξT

KT
˙̄ξ (29)

Substituting Eq. 14 into Eq. 29, it yields

V̇o =
(

KEH̄ ˙̄ξT
M + ˙̄ξT

Km + ξ̄ T KT

)
M−1 (U− G)

+KEH̄ ˙̄ξT
G + ˙̄ξT

Kpξ̄ + ˙̄ξT
KT

˙̄ξ (30)

Fig. 37 Quad-rotor’s
disturbed trajectory in case
1 experiments
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Fig. 38 Quad-rotor’s
disturbed trajectory in case
2 experiments
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Finally, introducing Eq. 30 into Eq. 27 and applying
dynamic programming, it follows that

0 = ∂

∂(U − G)

[
+KEH̄ ˙̄ξT

G + ˙̄ξT
Kpξ̄ + ˙̄ξT

KT
˙̄ξ

+xT Qx

(
KEH̄ ˙̄ξT

M + ˙̄ξT
Km + ξ̄ T KT

)
M−1

× (U − G) + (U − G)T R(U − G)

]
(31)

Then,

KEH̄ ˙̄ξT + ( ˙̄ξT
Km + ξ̄ T KT )M−1

+ R(U − G) = 0 (32)

Therefore, the control law can be represented as

U =−R−1[KEH̄ ˙̄ξ +( ˙̄ξT
Km+ ξ̄ T KT )M−1]+G (33)

Fig. 39 Quad-rotor’s
position error in case 1
perturbed flights
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Fig. 40 Quad-rotor’s
position error in case 2
perturbed flights
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The final control law can be rewritten, as follows

[
Fu

τu

]
= R−1

[
M−1

[ −Kpt (p − pd) − Kvt (ṗ − ṗd )

−2Kpr ln(qe) − Kvr(
˙̄θ − ˙̄θd)

]

−KEH̄

[
(ṗ − ṗd )

( ˙̄θ − ˙̄θd)

]]
+

[ −mḡ
0

]

Remember that θ̄d = 2 ln qd and qe = q ⊗ q∗
d .

5 Numerical Validation

Our laboratory has developed a simulator which is
fully compatible with our drones, and models in a
very precise way the dynamics of the UAV, see Fig. 3.
Numerical simulations were used to validate both of
the proposed control schemes using this simulation
environment.

Our platform uses an optical tracking system to
measure the vehicle’s position with an array of cam-
eras. The references are considered to be in the NED
(North-East-Down) convention, where the x axis is
pointing the front of the drone, the y points its right
side, and the z axis points down.

The control gains were considered to be diagonal
matrices, and were adjusted empirically to obtain a
stable behavior of the simulation.

Kpt = diag(0.25, 0.25, 2) Kpr = diag(6, 6, 6)
Kvt = diag(0.125, 0.125, 0.5) Kvr = diag(0.5, 0.5, 1)

Km = diag(mI 3×3, J ) KE = 0.05

The UAV platform was considered geometrically
symmetric such that the mass and the inertial matrix
can be defined as

J =
⎡
⎣

0.177 0 0
0 0.177 0
0 0 0.354

⎤
⎦ , m = 408 g

5.1 Simulated Scenario

A trajectory was computed such that the vehicle fol-
lows a circular path in the horizontal plane while
maintaining a constant altitude. The reference points
were calculated as

pd =
⎡
⎣

−r cos(tc) + r

−r sin(tc)

zd

⎤
⎦ , (34)

where tc represents a discrete time which starts in
zero when the trajectory begins and increments in
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Fig. 41 Vehicle’s attitude
and reference quaternions
for case 1 perturbed flights
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steps of 
tc = 0.006 in each computer cycle, and
zd is the desired altitude which is considered to be
constant.

For this simulation, a r = 1m circle was considered
for the first two loops, then the radius was abruptly

changed to r = 2m until two more loops are made, as
illustrated in Figs. 4 and 5.

The position signals and references were used to
compute a desired force, depicted in Figs. 6 and 7, to
drive the vehicle towards the trajectory.
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Fig. 42 Vehicle’s attitude
and reference quaternions
for case 2 perturbed flights
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The values of these graphs express the fraction
of the total force the quadrotor’s propellers are able
to exert, with ||Fx ||, ||Fy ||, ||Fz|| < 1, where 1
means the motors are rotating at their maximum
speed.

Using Eq. 24, an attitude trajectory is computed to
make the thrust force coincide with the desired force,

these trajectories are illustrated in Figs. 8 and 9 along-
side with the vehicle’s attitude, note the similarity
between the orientation quaternion and the trajectory
references.

In order to illustrate the attitude behavior in a more
comprehensive manner for the reader, a conversion
from quaternion to Euler angles was applied as
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Fig. 43 φ angles in case 1
experiments
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φ = atan2
(
2(q0q1 + q2q3), 1 − 2(q1q1 + q2q2)

)
θ = asin

(
2(q0q2 − q1q3)

)
ψ = atan2

(
2(q0q3 + q1q2), 1 − 2(q2q2 + q3q3)

) , (35)

The roll, pitch, and yaw angles are illustrated in
Figs. 10, 11, 12, 13, 14, and 15.

The rotational inputs are calculated such that q fol-
lows qd . Similarly to the input forces, torques are

expressed in values ||τx ||, |τy ||, ||τz|| < 1, where 0
means no torque and ±1 means the maximum moment
in either direction (Figs. 16 and 17). Finally, the com-
bined torques and forces stabilize the translational
error (the difference between the vehicle’s position
and its reference), represented in Figs. 18 and 19.
Note the error values are bounded while describing
the circular trajectory, and converge to zero at the

Fig. 44 φ angles in case 2
experiments
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Fig. 45 θ angles in case 1
experiments
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end, when the position reference is constant. This
validates the presented control laws for both proposed
cases.

6 Flight Tests

The Parrot AR Drone 2 was then used to perform
tests in real experiments, this UAV has been adapted

to work under our laboratory’s framework. An Inertial
Measurement Unit (IMU), and an OptiTrack motion
capture system were used to measure the rotational
and translational position and velocities.

6.1 Circular Trajectory

A r = 1m circular trajectory immediately followed
by another one with r = 1.5m, was introduced to

Fig. 46 θ angles in case 2
experiments
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Fig. 47 ψ angles in case 1
experiments
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the quadrotor. This is illustrated in Figs. 20 and 21,
rotated to the North-West-Up convention for a better
appreciation.

The control force is computed using the position
error, this is represented in Figs. 22 and 23.

A quaternion attitude trajectory is computed to ori-
ent the thrust force to the direction of the control force
using the designed controller, which is followed by the
vehicle’s orientation, this comparison is illustrated in
Figs. 24 and 25.

The equivalent Euler Angles were obtained using
Eq. 35, and depicted in Figs. 26, 27, 28, 29, 30, and 31.

The torques used to control the quadrotor’s attitude
are illustrated in Figs. 32 and 33, while Figs. 34 and 35
represent the position error stabilization.

6.2 Perturbed Flights

To further validate our proposal, additional flight tests
were added with significant perturbations. The UAV

Fig. 48 ψ angles in case 2
experiments
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was set to follow a r = 1m circular path, then a mem-
ber of our team pushed the quadrotor by hand, this
push deviates the vehicle from its trajectory (Fig. 36).

The control laws manage to compensate the distur-
bance and return the drone to its path.

Figures 37 and 38 illustrate the desired trajectory
and the disturbed path taken by the quadrotor. The
errors are presented in Figs. 39 and 40.

The quaternion orientation trajectory and the
UAV’s attitude are compared in Figs. 41 and 42. Note
the desired attitude reference adjusts when a distur-
bance is presented. Following Eq. 35, the Euler angles
were computed and illustrated in Figs. 43, 44, 45, 46,
47, and 48.

This experiments helped us test the robustness of
our proposed control laws, and we were able to con-
firm their validity even when important disturbances
are present.

The described tests were recorded in a video that
can be watched in the following link: https://youtu.be/
z35Ti wLRro.

7 Conclusions

In this article, the design of a dynamical model
based on Euler-Lagrange formalism using a logarith-
mic mapping in the quaternion space was introduced.
The vehicle attitude is denoted by the axis-angle rep-
resentation of an unit quaternion. The obtained mathe-
matical model through force F̄th rotated facilitated the
control strategy design.

The presented control methods were used to design
attitude and also position controllers. These are based
on a energy function which has been defined as a Lya-
punov function. The proposed controllers present a
similar behavior in simulations. However, the control
law for case 1 was found to have better performance
than the control law of the case 2. The controllers
use the quaternion representation of the attitude. Also,
the attitude controllers use the quaternion error to
compute desired torques.

The proposed control strategies allow the stabiliza-
tion of the full quadrotor dynamics. The presented
methodology eliminates undesired effects such as the
gimball-lock or discontinuities, which are common
problems using traditional approaches.

Simulations have shown that the performance of
the designed algorithms is satisfactory. The presented

experiments validate the application of the proposed
control laws in a real quadrotor platform with good
performance when tracking a desired trajectory and
also in presence of disturbances.

Future works include the design of control laws for
a quadrotor transporting a cable-suspended payload.
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