
J Intell Robot Syst (2018) 89:69–85
DOI 10.1007/s10846-017-0516-7

Multi-agent Rapidly-exploring Pseudo-random Tree

Armando Alves Neto ·Douglas G. Macharet ·
Mario F. M. Campos

Received: 10 June 2016 / Accepted: 10 February 2017 / Published online: 7 March 2017
© Springer Science+Business Media Dordrecht 2017

Abstract Real-time motion planning and control for
groups of heterogeneous and under-actuated robots
subject to disturbances and uncertainties in clut-
tered constrained environments is the key prob-
lem addressed in this paper. Here we present the
Multi-agent Rapidly-exploring Pseudo-random Tree
(MRPT), a novel technique based on a classical Prob-
abilistic Road Map (PRM) algorithm for application
in robot team cooperation. Our main contribution
lies in the proposal of an extension of a probabilis-
tic approach to be used as a deterministic planner in
distributed complex multi-agent systems, keeping the
main advantages of PRM strategies like simplicity,
fast convergence, and probabilistic completeness. Our
methodology is fully distributed, addressing missions
with multi-robot teams represented by high nonlinear
models and a great number of Degrees of Freedom
(DoFs), endowing each agent with the ability of coor-
dinating its own movement with other agents while
avoiding collisions with obstacles. The inference of
the entire team’s behavior at each time instant by
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each individual agent is the main improvement of our
method. This scheme, which is behavioral in nature,
also makes the system less susceptible to failures due
to intensive traffic communication among robots. We
evaluate the time complexity of our method and show
its applicability in planning and executing search and
rescue missions for a group of robots in SE3 outdoor
scenarios and present both simulated and real-world
results.

Keywords Multi-agent systems · Heterogeneous
teams · Underactuated robots · Path planning and
control · Rapidly-exploring random trees

1 Introduction

A fundamental problem to be faced by the robotics
research community in the near future is the coop-
eration of heterogeneous and underactuated agents
in constrained cluttered environments. Technological
advancements in the present have shown that, soon,
large numbers of robots will become increasingly
ubiquitous in our daily lives and, consequently, they
will demand distributed control techniques with low
computational cost. It is well-known that groups of
robots with different capabilities and physical con-
straints working collaboratively may be applied to
solve complex tasks more efficiently than teams with
homogeneous characteristics. Although there are tech-
niques in the state-of-the-art literature dealing with
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specific parts of this problem, the results are still
below expectations.

Therefore, in this paper, we address the problem
of coordinate a team of heterogeneous robots navi-
gating in three-dimensional environments with static
obstacles, and subject to disturbances and measure-
ment noise. More specifically, we propose a set of
algorithms for fully decentralized control and real-
time trajectory planning to guide the robot team from a
initial to a final configuration, defined by its mission,
subject to cooperative and collision constraints.

Our method extends a random planning algorithm
to consider multi-robot cooperation scenarios, finding
efficient solutions with linear computational cost. This
challenge is faced by individually enabling agents
to predict the behavior of the whole team, despite
the random nature of the method, thereby allowing
the coordination of the group. Here we introduce the
Multi-agent Rapidly-exploring Pseudo-random Tree
(MRPT), a (pseudo-random) deterministic algorithm
which extends benefits of the well-known Closed
Loop Rapidly-exploring Random Tree (CL-RRT)
technique to multi-robot cooperative assembles of het-
erogeneous agents in cluttered environments, like the
one composed by aerial and ground robots illustrated
at Fig. 1.

We choose the CL-RRT as the basis for our method-
ology due to its robustness to uncertainties and its
capability of real-time re-planning. Compared to cur-
rent literature, our approach is capable of executing
plans in a completely decentralized manner for robots

Fig. 1 Real experiment of cooperative navigation using the
MRPT with a team of heterogeneous (aerial and ground) under-
actuated robots

with highly nonlinear models and a great number of
Degrees of Freedom (DoFs). The prediction of the
entire team’s behavior by each of its members, in a
deterministic way, substantially reduces the need for
communication between agents, making the system
more robust to disturbances.

The remainder of this paper is structured as fol-
lows: Section 2 presents the related work; Section 4
formalizes the problem and introduce the set of algo-
rithms composing our methodology, and an analysis of
the computational complexity of all steps, demonstrat-
ing their scalability; Section 5 shows simulated and
real-world experiments, in the context of search and
rescue navigation for teams of heterogeneous robots;
and finally, Section 6 draw the conclusions and dis-
cuss drawbacks from using our approach, as well as
avenues for future investigation.

2 Related Work

In the state-of-the-art literature, control and motion
planning for teams of homogeneous robots has been
the focus of several research works, and a great num-
ber of solutions has been proposed. However most
of these techniques, from Artificial Potential Fields
[1] to Cell Decomposition Roadmaps [2, 3], present
disadvantages when dealing with large dimensional
problems, e.g. multi-robot coordination. Generally
speaking, deterministic methods usually present high
computational cost, a major limitation regarding their
applicability. Model Predictive Controller (MPC) [4],
for example, generates good results for path planning
problems, but its strategy is based on optimization
algorithms, which can easily render impractical time
complexity solutions for large problems.

On the other hand, Probabilistic Road Maps
(PRMs) and Sampling-based motion algorithms have
been vastly employed to single-robot scenarios, e.g.
the Open Loop Rapidly-exploring Random Tree (OL-
RRT), or simply RRT [3]. Introduced by Lavalle in
[5], RRTs are growing graph strategies that spread tra-
jectory trees through known cluttered environments,
based on open-loop models of a system. Randomly
chosen nodes are used to incrementally generate paths
satisfying motion and collision constraints of the
robot to led it to a given goal position. Their main
advantages are simplicity, fast convergence, proba-
bilistically completeness, and also the capability of
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incorporate complex systems modeled by nonlin-
ear equations, reasons why RRTs have been widely
used in recent years. Scenarios with great number of
Degrees of Freedom (DoFs) and geometric constraints
can easily be treated by such approach, and that is (as
we will discuss later) a very important feature in the
present work.

Concerning the open-loop characteristic of RRTs, a
disadvantage in some aspects, authors of [6] developed
the Closed Loop Rapidly-exploring Random Tree
(CL-RRT). Rather than acting directly in the vehicle’s
inputs, this method generates desired commands to
feed internal controllers of the robot, then planning in
a closed-loop form. When such controllers are well
tunned, trajectories provided by the CL-RRT become
feasible during the execution step. This step is given
by an execution loop, where parts of the current grow-
ing tree are sent to the robot’s controllers in real-time.

The authors of [7] compared the propagation error
in the robot’s states between the Open Loop Rapidly-
exploring Random Tree (OL-RRT) and the CL-RRT
under external disturbances, and conclude that CL-
RRTs are more robust to uncertainties, keeping the
error between the model (for the linear case) and real
robot always finite and bounded.

In view of their advantages, RRTs have also been
applied to multi-robot cooperation. Most of the works,
however, present centralized approaches with restric-
tive scalability strategies. In [8], for example, the
random technique is applied in a cooperative object
transportation task, where humanoid robots use local
information from their cameras to plan and re-plan
actions by a centralized approach. In [9], Vahrenkamp
et al. present a method based on RRTs to coordi-
nate mobile humanoid robots (with twenty Degrees
of Freedom (DoFs) each) in grasping tasks. Colli-
sion avoidance between agents is also ensured by a
centralized verification strategy.

The authors of [10] present one of the first attempts
to develop a decentralized random planning scheme,
which generates paths for single or groups of robots in
environments with obstacles. For the multi-robot case,
the overall strategy was distributed among the agents,
but the planning is synchronized, so that a robot plans
its path only after receiving the paths planned by the
others.

Another strategy for decentralized planning of mul-
tiple robots based on the CL-RRT is presented in
[11]. Called Cooperative Decentralized Multi-Agent

Rapidly-exploring Random Tree (DMA-RRT), this
method also provides synchronization among agents,
and uses an heuristic based on choice via auction to
define the re-planning order in the team. At each bid-
ding round, only the auction winner is allowed to re-
plan in order to avoid collisions with other agents, and
this new path must be broadcast to the team, so each
robot will be capable of update their collision con-
straints. Authors of [12] also present a decentralized
RRT-based approach, dealing inclusive with imper-
fect communication and collision checking. However,
their method is limited to homogeneous groups of
robots.

In [13], we have proposed a version of the clas-
sical RRT to, in a centralized form, plan trajectories
for a team of fixed-wing Unmanned Aerial Vehicles
(UAVs) flying at the same constant altitude in environ-
ments filled with obstacles. This technique was further
extended in [14], considering a decentralized approach
where robots were able to plan different movements
for the entire team and propagate them, in the man-
ner that all agents could individually decide the best
among all of these plans.

Although some aforementioned techniques are
completely decentralized, they are also heavily depen-
dent on a fully connected communication network and
require intensive information traffic due to re-planning
and coordination (robots must always broadcast their
plans to the team). In addition, changes in individual
plans may end up invalidating parts of the tree as a
whole, which means that processing time is wasted.
The proposed technique does not heavily depend on
network structure, allowing for simultaneous and dis-
tributed re-planning, without discarding parts already
planned.

In this paper, we extend the CL-RRT to multi-
robot systems based upon heuristics to improves the
temporal coordination between each vehicle of the
team, reducing errors in the plan execution and also
reducing the chance of collisions among agents. Clas-
sical CL-RRT deals only with one single robot and
needs to be adapted to deals with multi-robot teams.
Our technique, called MRPT, mainly differs from
CL-RRT at the capability of allowing coordination
among multiple agents with the advantages of proba-
bilistic planners. Our method also differs from Coop-
erative Decentralized Multi-Agent Rapidly-exploring
Random Tree (DMA-RRT) at the capability of deal-
ing with heterogeneous robots and the little need for
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re-planning of other agents when one single agent
changes its plan in real-time.

3 Notation

A and a indicate matrices and vectors, respectively;
A is a set of elements; reference frames are denoted
by {A}; �0m×n is a null matriz with dimensions m×n;
diag (�a) is a diagonal matrix with �a been the diagonal
elements;

[ · ]′ is the vector/matrix transpose operator;
N

(
μ, σ 2

)
is a standard Gaussian distribution with

mean μ and deviation σ ; O (·) is the time complexity
of an algorithm, or part of it; T ← �a indicates a vertex
�a was incorporated to set T .

4 Methodology

4.1 Problem Statement

Let us assume a previously known constrained
workspace W and an obstacle-free area Wfree ⊂ W .
Inside it navigates a generic dynamic system

�xt+1 = f (�xt, �ut, �wt), (1)

where �x ∈ Rnx is the state vector (with initial con-
ditions �x0 known a priori), �u ∈ Rnu is the input
vector, and �w ∈ Rnw an unknown disturbance and/or
uncertainty matrix corrupting the system. Generally
speaking, f (·) :Rnx ×Rnu ×Rnw →Rnx is a nonlinear
function describing the time variation of �x. Let us also
consider the control law

�ut = k (�rt, �xt), (2)

where �r is the trajectory command and k (·) : Rnr ×
Rnx → Rnu is the function for process stabilization.
Most of the vehicles are subject to mechanical con-
straints, hence, in this paper, we are mainly interested
in control robots in under-actuated conditions, such
that nx > nu and nx � nr.

Now consider a team R composed by n heteroge-
neous robots sharing Wfree. This team is ruled by the
dynamic model

n�xt+1 = F
(
n�xt,

n�ut, n �W t

)
, (3)

where

n�xt = [ �x1
t �x2

t . . . �xn
t

]′
, n�ut = [ �u1

t �u2
t . . . �unt

]′
and

n �W t = diag
([ �w1

t �w2
t . . . �wn

t

])

are the state vector, input vector and noise matrix of
the group, respectively, all modeled as simple compo-
sitions of the corresponding vectors of each Ri ∈ R.
Here n �W is a diagonal matrix, since no correlated
noise among robots is assumed. Equivalently, F (·) :
R

∑
nxi ×R

∑
nui ×R

∑∑
nwij → R

∑
nxi is a nonlinear

function describing the dynamics of the robot ensem-
ble. However, due to inter-agent motion constraints,
like collision, this function cannot be modeled as a
simple composition of f (·) from each Ri .

Apart from motion constraints of each agent, it is
also necessary take into account navigation constraints
imposed by other members of the group. We represent
these collision constraints by inequalities, such that

G
(
�xi
t , �xj

t

)
≤ 0, ∀i, j ∈ 1...n, i �= j, (4)

where G (·) : Rnxi ×Rnxj → R is a function describ-
ing collision conditions between robots Ri and Rj ,
which is highly dependent on geometrical characteris-
tics and sensing uncertainties of each vehicle. Hence,
in a team of heterogeneous robots, there may exist
many different collision functions.

Concerning these and other characteristics (e.g.,
network communication structure) it is possible to
establish an analogy with Eq. (2), leading to

n�ut = K
(n�r t, n�xt

)
, (5)

where K (·) :R
∑

nr i ×R
∑

nxi →R
∑

nui
is a nonlinear

and decentralized multi-robot control law, function of
the states of all robots and the trajectory command

n�r t = [ �r1
t �r2

t . . . �rnt
]′
.

Finally, the specific problem addressed in this paper
can be defined as follows:

Problem 1 Let R be a team composed of n hetero-
geneous robots, described by n�xt in W , compute n�r t
leading this team from its initial state n�xinit = n�x0 at t0
to some final state n�xgoal within a finite time tf > t0,
such that n�xt ∈ Wfree ∀t ∈ (

t0, tf
]
. This trajectory,

n�r t, must be calculated in a coordinated, decentralized,
collision-free and communication-constrained form.
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4.2 Pseudo-Random Strategy

Although nowadays there is a variety of heuristics
to guide the random choice at sampling-based algo-
rithms, they can be grouped into two basic categories:
pseudo-quasi-random sampling and random sampling
approaches. Both represent deterministic functions to
simulate randomness, but while pseudo-random meth-
ods generate real random numbers, quasi-random
(also known as low-discrepancy) techniques produce
totally deterministic sequence of numbers, drawn from
some probability distribution.

Due to this low-discrepancy characteristic, quasi-
random sequences outperform pseudo-random algo-
rithms in motion planning problems, though, for very
high dimensional systems (like our case), this differ-
ence of performance is practically negligible [15]. In
fact, when multiple robots apply random planning to
navigate in common environments, it becomes very
difficult to use any kind of a priori knowledge about
the group to predict its behavior and avoid inter-agent
collisions. Thus, it is necessary to make extensive
use of communication between robots, which must
broadcast their plans to other agents whenever a
change occurs [10, 11]. This characteristic reduces
re-planning ability of the agents, and is likely to
cause failures due to temporary loss of communica-
tion, since the methods are heavily dependent on a
fully connected network.

Let us assume a scenario where a deterministic
(quasi-random or pseudo-random) function is used to
generate samples in the Open Loop Rapidly-exploring
Random Tree (OL-RRT) or any other PRM algorithm
[3, 10]. For simplicity reasons, we will refer to this
henceforth as the pseudo-random sampling function

n�rk = S (k), (6)

where k is a natural sequence, such that S (·) : N →
R

∑
nr i . In other words, starting from a numerical

sequence, this function generates reference commands to
guide the closed loop multi-robot team through Wfree.

Let us also consider the following assumptions:

Assumption 1 Each robot Ri knows the complete
navigation model of R, defined by the dynamic model
of Eq. (3), control law of Eq. (5) and inter-agent
constraints of Eq. (4), besides initial condition n�x0.
This complete model represents the team’s motion
dynamics.

Assumption 2 All robots in R share the same ran-
dom planning algorithm, including the randomness
guaranteed by function of Eq. (6), known a priori.

Assumption 3 Robots communicate via a perfect and
fully connected network.

Concerning assumptions 1, 2 and 3, and disre-
garding possible numerical errors in the computing
modules of each agent in R, it is possible to suppose
that each robot is capable of predict the behavior of the
entire multi-robot system with limited uncertainty in
a decentralized form. In this sense, if all agents know
the random sequence, using the same random plan-
ning technique (e.g., RRT) will allow each robot to
predict the behavior of all others, since the same plan
is followed by them. That is the underlying idea of our
method, which will be detailed in the next sections.

4.3 Multi-agent Rapidly-Exploring Pseudo-Random
Tree

The Multi-agent Rapidly-exploring Pseudo-random
Tree (MRPT), an extension of the classical CL-RRT to
the multi-robot scenario, is presented in this section.
The original CL-RRT is composed of two basic pro-
cedures: (i) the planning module, which promotes the
expansion of two trees along the environment by elim-
inating nodes leading to states of collision; and (ii) the
re-planning and real-time control module, which cal-
culates an optimal path to be followed by the robot’s
controller in the trees, re-planning if necessary.

This closed loop approach makes the robot’s navi-
gation more robust to disturbances, reason why it was
chosen as basis for our method. In the following sec-
tions, we discuss our version of these two modules for
the multi-robot case. Both algorithms run in a deter-
ministic and decentralized manner on each robot of
the team, as presented in the framework overview of
Fig. 2.

4.3.1 Trees Expansion

Similarly to CL-RRT, the first step of our algorithm
is the expansion of two exploring trees throughout the
environment, the tree of reference commands Tr and
the tree of states Ts of the system. Both trees are simul-
taneously propagated, so that, for each node in Tr,
there is a corresponding node in Ts.
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Fig. 2 Methodology
framework overview: agents
from 1 to n run a distributed
version of the Multi-agent
Rapidly-exploring
Pseudo-random Tree and
use communication to
synchronize their current
state of execution

Algorithm 1 Multi-robot trees expansion

Require: Tr, Ts, n�xgoal, t, k

1: n�rsamp = S (k) ∈ Wfree

2: n�rnear = vertex in Tr minimizing
d

(
n�rnear,

n�rsamp
)

3: n̂�xt = vertex in Ts corresponding to n�rnear

4: forτ = t to (t+δt) do
5: propagate n�rτ from n�rnear to n�rsamp

6: n̂�uτ = K
(
n�rτ , n̂�xτ

)

7: n̂�xτ+1 = F
(
n̂�xτ , n̂�uτ , �0n×nw

)
subject to con-

straint of Eq. (4)
8: if n̂�xτ+1 is feasible and n�rτ ∈ Wfree

9: Tr ← n�rτ then
10: Ts ← n̂�xτ+1

11: end if
12: if n�rτ reaches n�rsamp or n̂�xτ+1 reaches n�xgoal

then
13: break
14: end if
15: end for

Ensure: Tr, Ts

Consider Algorithm 1, which presents a adapted
version of the expansion procedure of the RRT [5]
to the multi-robot case. It takes as inputs two trees
to be expanded, Tr and Ts, the target region n�xgoal,
the current system time t and the pseudo-random step

k, returning as output the trees after they have been
expanded.

Initially, a sample n�rsamp ∈ R
∑

nr i is randomly
chosen within Wfree (line 1), which will be used
to propagate the team’s model. Then, vertex n�rnear

belonging to Tr, and closest to n�rsamp, is selected (line
2). This closeness is given in terms of minimization
of the distance function d

(
n�rnear,

n�rsamp
)
, such that

d (·) :R
∑

nr i ×R
∑

nr i →R.
Afterwards, node n̂�xt ∈ Ts correspondent to

n�rnear ∈ Tr is identified (line 1). From that point, at
each new loop iteration, reference and state of the sys-
tem are propagated towards the sample n�rsamp within
a finite time interval δt. Reference command evolves
according to line 5. An estimated control input n̂�u is
computed by Eq. (5) to minimize the error between
estimated positions n̂�xτ of robots and its respective
desired positions at n�rτ .

Finally, an estimate of system states n̂�x is prop-
agated according Eq. (3) (line 1), disregarding mea-
surement uncertainties and disturbances by setting
n �W = �0n×nw . Each new collision-free state n̂�xτ+1 and
its corresponding n�rτ are incorporated to Ts and Tr,
respectively, and the loop is broken when n�rτ or n̂�xτ+1

reaches n�rsamp or n�xgoal.

4.3.2 Real-Time Re-planning

As previously shown, multi-robot tree of states is
obtained based on the prediction model of Eq. (3),
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disregarding the existence of disturbances and sen-
sory measurement uncertainties. However, real-world
robots are always subject to several kinds of uncertain-
ties and, therefore, estimates n̂�x generated by Alg.1
do not guarantee collision-free navigation nor safely
achievement of n�xgoal.

Primarily due to this feature, Closed Loop Rapidly-
exploring Random Tree presents a real-time execution
component which basically uses the system’s motion
model to propagate its trajectory through the environ-
ment from its last measurement (with uncertainties),
via the best path found in the tree at the current time.
This propagation evaluates the feasibility of this best
path from its current position to the next time instant.

Algorithm 2, an extended version of the CL-RRT
execution loop for the multi-robot case, is presented
next. This modification makes the original procedure
less susceptible to problems when an agent Ri does
not follow correctly the plan computed for the team.
The procedure receives as input only initial n�xinit and
final n�xgoal state vectors of the multi-robot system
and iterates until agent Ri reaches its respective goal
�xi

goal ∈ n�xgoal.

Algorithm 2 Multi-robot execution loop

Require: n�xinit, n�xgoal

1: t = 0, ki = 1
2: Ts ← n�xinit, Tr ← �0
3: while �xi

t ∈ n�xt has not reached �xi
goal ∈ n�xgoal do

4: communicate to update 〈k, n�xt〉
5: estimate best current path P ⊂ Tr

6: if P is empty then
7: apply a safety action and go to Line 2
8: end if
9: n�r t = n�r |P + h

(
n̂�xt − n�xt

)

10: if n�r t /∈ Wfree then
11: remove infeasible parts of n�r t
12: END IF
13: apply �ri

t ∈ n�r t to the controller of robot Ri

14: while time remaining in �T do
15: expand Tr and Ts (Alg.1)
16: k = k + 1
17: end while

4: t = t + �T
4: end while

After initializing the current time t, numerical
sequence ki , and trees Ts and Tr, robot Ri begins its
control loop by updating the k and states n�xt of its ver-
sion of the system (line 2). This is basically done by
communication, as illustrated in Fig. 2, where the state
of the whole system is composed by the broadcast of
individual states of all agents in a fully connected net-
work, such that n�xt = 〈�x1

t , �x2
t , . . . , �xn

t

〉
. Each robot

also has its own ki index, however, as they need to
expand the trees in a coordinated form, k must be
synchronize. Then, all robots also broadcast its index
and use the current lowest value in the team. In other
words, propagation speed is limited by the slowest
agent.

It is also reasonable to suppose that state �xi
t of

robot Ri is always available to itself (due to direct
measurement), but update information about states of
other agents depends upon communication. Therefore,
the knowledge of n�x by one agent of R may differ
from others, possibly being incorrect due to delays
or even momentary communication failures. In conse-
quence, as it is impossible to guarantee reliability of
information at the current state of the whole system,
it is necessary to consider alternatives to eliminate
or minimize problems of collision and other faults in
complex missions due to environmental disturbances
and uncertainties.

A simple alternative to update n�xt is assuming
n�xt ≈ n̂�xt. In this slight conservative approach, com-
munication among agents would be completely unnec-
essary, except to determinate k. Another alternative,
probably more interesting, would be the use of a state
estimator (like Kalman Filter) to compute n�xt based
on measurement uncertainty, correcting the estimate
whenever Ri receives information about other robots.

Regardless of which alternative is used at line 2,
it seems reasonable to suppose, in coordinated and/or
cooperative teams of robots, that the smaller the differ-
ence between n�xt and n̂�xt (line 1 of Alg.1), the lower
the risk of collision between members of the team.
I.e., if each robot Ri behaves according to its plan
(n̂�xt), greater are the chances for successful mission
completion.

Inspired by assumptions in [6], used to reduce the
prediction error for the single robot case, we used this
information to predict states of the system, common to
all robots, seeking to improve coordination in the team
of real-world robots. Such an improvement is given
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exactly by decreasing the error n̂�xt − n�xt between
prediction (or planning) and current measurement of
these states.

Like in the classical CL-RRT, we choose the best
path P ⊂ Tr to be followed in the current state (line
2). This choice is usually guided by minimizing a
cost-based heuristic path to the target [16]. Euclidean
distance is the most employed one, but several oth-
ers have been used already [17]. Furthermore, a safety
action must be automatically applied if such a path
cannot be found at the time. For example, agents can
stop moving (if possible) until a new path is found.

Each node of P corresponds to a reference vector
n�r |P , predicted by Alg.1, which can be decomposed
into trajectory commands to control each individual
robot Ri executing its version of the method. It would
be the “best” signal reference if error n̂�xt − n�xt was
always null, however, as this is not always true, it is
necessary to change the reference within the planner
to reduce this error. This information must be used
to compute the modified reference signal n�r t (line
9), which will finally be applied to the real robot
controller.

Function h (·) : Rnx → Rnr promotes the reference
modification due to the current error. It is com-
monly neglected in papers applying CL-RRT based
approaches, since it may significantly increase the sta-
bility analysis of the system. According to [17], every
time the robot’s controller fails in track the reference
command satisfactorily due to disturbances, bad tun-
ning or modeling errors, the planner can adjust �rt, so
that the agent achieves the original plan. However, this
additional feedback loop can potentially lead the over-
all system to an instability condition. In fact, when
two modulus, planner and controller, try to decrease
the same error, they can overcompensate or negate
effects of each other. In our extension to multirobots,
the incorporation of h (·) in the control loop may cause
instability in the final MRPT, and the choice of this
function has to be made after careful analysis. A good
strategy is to design a controller that presents certain
robustness in relation to such effects, as discussed in
the next section.

Next, the vehicle model is propagated from its cur-
rent state using the new modified reference �ri

t ∈ n�r t,
and parts leading the system to collision states are
removed from P . In the original CL-RRT algorithm,
this is called lazy check approach, and is used to avoid
collision check throughout the entire tree, which can

be very costly. The collision-free �ri
t is then applied to

the robot’s controller. Finally, the algorithm promotes
the expansion of the planning trees during the rest of
the execution time interval �T (line 2). When that
time ends, a new iteration of the main loop begins,
and this goes on until robot Ri reaches its individual
goal.

4.4 Performance Analysis

It is quite difficult to evaluate computational cost of
PRM algorithms. Generally speaking, some assump-
tions and approximations must be done to analyze
such methodologies from this point. Concerning clas-
sical RRT approaches, the authors of [18] have deter-
mined its time complexity as O

(
v2

)
, where v rep-

resents the number of vertexes added to Ts. In this
context, other papers in the literature have concen-
trated efforts in optimize RRT algorithms by reducing
the number of vertexes necessary to reach the goal
position.

Concerning Alg.1, which is basically an extension
of the classical RRT for multi-robots, we focus on crit-
ical parts to evaluate effects of n in our method. It is
quite easy to see, for each node added to Tr and Ts,
that each robot must propagate the reference signal –
Eq. (6) – and calculate the dynamic model and control
functions – Eqs.(3) and (5) – for all n of the team in a
sequential form. Verify collision inequality of Eq. (4),
however, will demand (for the worst-case) an evalua-
tion between two agents of the team, which lead us to
an O (n log n) time complexity, as described in [19].
The highest cost at the RRT is exactly at this expan-
sion step, then, we can set Alg.1 as having an O

(
v2n

)

time complexity in general, and O
(
v2n log n

)
for the

worst-case.
Now, concerning Alg. 2, there are 4 steps to eval-

uate. The communication update is basically an infer-
ence of k and n�xt based upon messages sent by n
agents in our perfect communication channel. Even
by using a Kalman Filter estimator, it is possible to
keep its time complexity linear with respect to n [20].
Estimate the best current path depends upon finding
the vertex nearest to the goal, which occurs in O (v).
Calculate and correct n�r t commands are O (n) opera-
tions, since they only depend upon the evaluation of
functions with linear behavior concerning n. Finally,
inputting the reference signal to the agent’s controller
is an O (1), since it is only applied to the robot itself,
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and the time cost of expand the trees was previously
discussed.

Therefore, the time complexity of our proposed
method can be defined as O (n) + O (v) + O (n) +
O (1) + O

(
v2n

) ≈ O
(
v2n

)
generally speaking, and

O (n) + O (v) + O (n) + O (1) + O
(
v2n log n

) ≈
O

(
v2n log n

)
for the worst-case. We will validate this

analysis in the next section by measuring the execution
time of the MRPT for teams with different number of
members.

5 Experiments

In this section we apply the MRPT to a very chal-
lenging scenario: air-ground cooperation in outdoor
environments. Approximate dynamic models are used
to represent the heterogeneous vehicles and a set of
simple control laws are employed to stabilize them.
Simplified collision models between agents were also
applied, specially to avoid position conflicts. Both
simulated and real-world experiments are discussed
next.

5.1 Quadrotor Dynamic Model

In our experiments we used the Hummingbird UAV
from Asctec1. The mathematical model, based on
Newton-Euler formalism, was adapted from [21],
where authors use the same UAV in W ≡ R3. We
consider the state vector �x ∈ R12 and the input vector
�u ∈ R4, such that

�x =[ �p �v ψ �q ]′
and �u=[

δωT δωφ δωθ δωψ
]′
,

where �p = [
x y z

]′
(in meters) and �v = [

u v w
]′

(in meters per second) are linear positions and veloci-
ties, respectively, of the robot’s center of mass related
to the world reference frame {W} ∈ R3, ψ =[
φ θ ψ

]′
(in radians) is the orientation vector in

SO(3), also related to {W}, and �q = [
p q r

]′
(in

radians per second) is the angular velocity vector with
respect to the body reference frame {B} attached to
the quadrotor’s center of mass. Here, δωT represents
the nominal thrust speed of the UAV rotors ω, and
δωφ , δωθ and δωψ are deviations on rotor speeds

that causes roll, pitch and yaw angular moments,
respectively.

Figure 3 represents output commands of the
quadrotor, and its relative pose between world and
body reference frames. We use this representation as
basis for the modeling stage, presented next.

Time varying linear motion of this robot can be
written as

�pt+1 = �vt, (7)

m�vt+1 + �C|�vt|�vt + m�g = λ δωT
t

[
cos φt sin θt
− sin φt
cos φt cos θt

]

+ �D, (8)

where m represents the quadrotor mass, �C the drag
coefficients matrix, �g the gravity vector related to {W}
(such that ‖�g‖ ≈ 9.78m/sec2), λ a positive rotor gain
value, and �D the wind disturbance function.

Similarly, time varying angular motion can be
described by

ψt+1 = �B �qt, (9)

�J �qt+1 + �C|�qt|�qt = lλ

⎡

⎣
δωφ

t

δωθ
t

δωψ
t

⎤

⎦ , (10)

where �J represents the robot’s inertial tensor (diagonal
due to the vehicle’s symmetry), l the wing span and �B
the transformation matrix from {B} to {W}, described
as

�B =

⎡

⎢⎢
⎣

1 tan θt sin φt tan θt cos φt

0 cos φt − sin φt

0
sin φt

cos θt

cos φt

cos θt

⎤

⎥⎥
⎦ .

Reference commands are given by trajectory vec-
tor �r = [

xd yd zd ψd
]′

, such that desired state

�xd
t = [

xd
t yd

t zd t �05×1 ψd
t

�03×1
]′

, where xd , yd

and zd are desired positions and ψd the desired yaw.
Then, we use the control law

�ut = �Kq

(
�xd
t − �xt

)
(11)

to stabilize the UAV, where �Kq represents a gain
matrix obtained, for example, by fuzzy robust analysis
[22]. Finally, rotor speeds are given by

ωt =

⎡

⎢⎢
⎣

1 0 −1 1
1 1 0 −1
1 0 1 1
1 −1 0 −1

⎤

⎥⎥
⎦ �ut. (12)

1http://www.asctec.de/en/uav-uas-drones-rpas-roav/
asctec-hummingbird/, accessed in March 4, 2017.

http://www.asctec.de/en/ uav-uas-drones-rpas-roav/asctec-hummingbird/
http://www.asctec.de/en/ uav-uas-drones-rpas-roav/asctec-hummingbird/
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Fig. 3 Reference frames
for aerial and ground robots

5.2 Car-Like Dynamic Model

As terrestrial robots, we used in our experiments
car-like (Ackerman) UGV platforms with mathemat-
ical models also based on Newton-Euler formalism,
defined in W ≡ R2 with state vector �x ∈ R5 and
input vector �u ∈ R2, such that

�x = [ �p v ψ r
]′

and �u = [
T δ

]′
,

where �p = [
x y

]′
(in meters) and v (in meters per

second) are linear positions and velocity variables,
respectively, of the robot’s center of mass related to
the world reference frame {W} ∈ R2, ψ (in radians) is
the yaw angle in SO(2), also related to {W}, and r (in
radians per second) is the angular speed. Here T rep-
resents the nominal thrust speed of the UGV and δ the
steering angle of front wheels, as presented in Fig. 3.

Time varying linear motion of this robot can be
written as

�pt+1 = vt

[
cos ψt

sin ψt

]
, (13)

mvt+1 + c|vt|vt = Tt, (14)

where m is the mass and c the friction coefficient.
Similarly, time varying angular motion can be

described by

ψt+1 = rt, (15)

Jrt+1 + c|rt|rt = b Tt sin δt, (16)

where J represents the robot’s inertia and b the dis-
tance between front wheels and back wheels axis.

Reference commands are finally given by
�r = [

xd yd ψd
]
, such that desired state

�xd
t = [

xd
t yd

t 0 ψd
t 0

]
, where xd and yd are

desired positions and ψd the desired orientation.
Then, we use the control law

�ut = �Kc

(
�xd
t − �xt

)
(17)

to stabilize the UGV, where �Kc represents positive
gain matrix.

5.3 MRPT Settings

Since, in our experiments, we are dealing with
teams of aerial and ground robots (with R3 and R2

workspaces, respectively), it is reasonable to assume
that only similar robots can collide with each other.
For collisions among ground agents, we represent the
constraint function by the following inequality

G
(
�xi
t , �xj

t

)
≡ G

(
�p i
t , �p j

t

)
≤ 0,

≡
{
�p i
t , �p j

t ∈ R2 :
∥∥∥ �p i

t − �p j
t

∥∥∥−ρ ≤ 0
}
,(18)

where ρ is the minimum radius surrounding each
UGV. Without loss of generality, for collisions
between UAVs, we can used a similar equation,

G
(
�xi
t , �xj

t

)
≡

{
�p i
t , �p j

t ∈ R3 :
∥∥∥ �p i

t − �p j
t

∥∥∥−ρ ≤0
}
. (19)

In order to apply the MRPT to a given scenario, it
is necessary to set others of its features. In Alg.1, line
2, for example, one must define the d (·) function that
gives the distance between n�rnear, an node inside Tr,
and n�rsamp, the randomly chosen sample. Here, we use
the summation of the Euclidean distance between all
�ri reference commands, such that

d
(n�rnear,

n�rsamp
) =

n∑

i=1

∥∥∥�ri
near − �ri

rand

∥∥∥ . (20)
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Still concerning Alg.1, at line 5, it is necessary
to provide a model by which n�rτ can be propagated
from n�rnear towards n�rsamp. For simplicity reasons, we
establish circular formations for the teams of terres-
trial and aerial robots separately, and propagate the
center of the circle by a first order model �̇x = �u,
leading n�rnear to move towards n�rsamp. It is also possi-
ble to randomly vary some parameters of the circular
formation (like radius) in order to avoid collisions
with obstacles, but we keep them constant in our
experiments.

Finally, correction function h (·) must be chosen
to decrease the influence of disturbance in the sys-
tem. As previously discussed, this step was basically
introduced to reduce the navigation error n̂�xt − n�xt,
increasing the chances of successful accomplish of
the mission. However, some instability can be intro-
duced into the whole system, and this problem can’t
be solved with simple analysis, since it depends upon
the coordination of heterogeneous agents. In order to
test our approach, we have arbitrarily set this function
as an action proportional to the error, such that

h
(
n̂�xt − n�xt

)
= α

[
P

(
�̂x1
t − �x1

t

)
P

(
�̂x2
t − �x2

t

)
. . . P

(
�̂xn
t − �xn

t

) ]′
, (21)

where P (·) : Rnx → Rnr is a function projecting the
robot’s state space at the reference space, basically

extracting reference variables from �x. Also, �̂xi
is the

estimated state of robot Ri , extracted from n̂�x, and α

is some positive gain empirically adjusted. Since line
9 of Alg.2 represents a vector summation, here α can
be used to adjust the impact of the error correction in
the system. For all simulated and real-world experi-
ments presented next, we have set a low value to this
gain, α = 0.1, to avoid disturb the stability of our
multirobot team. Thought, as previously discussed,
there is no guarantee about stability, we have observed
experimentally that, for α > 1, the convergence is
compromised.

It is necessary to say that our method, like the clas-
sical CL-RRT approach, can also work without such
error correction (α = 0), but our results will demon-
strate the advantageous impact of this function on the
completion time of the mission, even when robust con-
trol laws are used in the low level controllers of the
robots.

Finally, as both kind of platforms can stop moving
during navigation (quadrotors can hover at any �pt), we
set the “stopping command” to be the safety action
described at line 7 of Alg.2.

5.4 Simulated Experiments

As previously explained, we are mainly interested in
air-ground cooperation missions, whose complexity
we are addressing with our methodology. Our task is
relatively simple: a subgroup of UAVs must navigate
through a three-dimensional cluttered environment to

a goal position, where a subgroup of UGVs waits
for aerial coverage to return to a safety area from
where the aerial ensemble first left. Our framework
was entire built in Matlab R2014a, running over a
notebook with Core I5 processor, 4GB memory and
Ubuntu 14.04 OS.

Noise was added to the state vector of our robots
to make simulation more realistic and to evaluate
effects of uncertainty in our proposed approach. For
UAVs, we have corrupted the orientation vector ψ and
angular speed vector �q with standard Gaussian noises
N (0, , 0.07) (in radians) and N (0, , 0.28) (radians
per second), respectively. Position and speed vectors,
�p and �v, were corrupted by random-walk signals with
about 5meters of uncertainty. Same noise was applied
to the corresponding variables of UGVs. In both cases,
for aerial and ground vehicles, no estimation filter was
used to decrease uncertainty, only linear filters were
applied to smooth the measurements. UAVs were also
corrupted by a disturbance matrix �D ≈ �C[

5 0 0
]′

,
corresponding to a lateral wind of 5m/s along
X axis.

In our first simulated experiment, we defined a
team composed by 1 UAV and 4 UGVs. We choose a
R3 space with dimensions 30m×40m×5m, cluttered
with rectangular obstacles, as shown in Fig. 4.

Figure 4a presents initial configuration of the multi-
robot system. Aware of UGVs positions, the UAV
(whose trajectory is represented by the continuous red
line) initiates the MRPT, growing its trees and fol-
lowing the current best path (the black dotted line)
towards the other robots (confined to the red circle),
as shown in Fig. 4b. The blue circle represents the
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Fig. 4 Simulated
experiment: a initial
configuration of R with 1
UAV and 4 UGVs; b UAV
begins the search step; c Tr
reaches the first goal; d the
team begins the
coverage/rescue step; e Tr
reaches the second safety
area; and f the team
completes the mission (a) (b)

(c) (d)

(e) (f)

mission basis, to where the team must return at the end
of the task.

The algorithm rapidly reaches its first goal at Fig.
4c, after 16,5s, and the mission changes its state
from “search” to “rescue” mode, with the subgroup
of UGVs been escorted by the aerial agent. Figure
4d shows the growing trees and the team navigating
back to the blue circle. The team navigates back in air-
ground formation, while its trees reach the final goal,
at Fig. 4e, after 87,0s. Mission is successfully accom-
plished at 110,8s, when all agents arrives in the safety
area, as seen in Fig. 4f.

In a second experiment, we now consider a team
of 8 UAVs and 16 UGVs, executing the search and
rescue task at the same scenario, to demonstrate the
applicability to groups with higher numbers of mem-
bers. Figure 5 shows a top-view of the execution.
Once more we can see the trees expanding and the
groups of robots executing the two-steps coverage
mission. Figure 5a and b present the “search stage”,

where UAVs move in coordinated formation to meet
the UGVs. Figures 5c and d show the “rescue stage”,
with the entire team navigating back to the basis over
aerial-ground coordination.

Next, we have also realized a set of experiments to
evaluate time consumption of our method over a large
number of robots. To do that, we measured the time
spent by one robot of the team in the execution of the
main loop described in Alg.2. Repeating the same mis-
sion described before, we ran 40 trials with the number
of agents varying from 2 to 200 (equally distributed
between UAVs and UGVs), and registered all time
intervals during each real-time loop. Figure 6 shows
the mean and standard deviation of the measurements.
Red curve of Fig. 6a represents the time of iterations
for the “search stage” when the only agents consid-
ered are UAVs, while blue curve of Fig. 6b shows the
time for the “rescue stage” when the team have UAVs
and UGVs together. Here, it is possible to see that
both curves have an approximately linear behavior as
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Fig. 5 a initial
configuration of R with 8
UAVs and 16 UGVs; b
aerial robots find ground
robots; c team returns to the
goal; and d mission is
completed

(a) (b)

(c) (d)

Fig. 6 Time consumption
for iterations of Alg.2: a red
curve represents the “search
stage”, when only UAVs are
considered; b blue curve
shows the time for the
“rescue stage”, with UAVs
and UGVs together (a)

(b)
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(a) (b)

Fig. 7 Impact of the error correction function described at Alg. 2 (line 9): a for all evaluated experiments, the error fell 25 % on
average for more than 95 % of the cases; and b the mission completion time fell 7 % on average for more than 98 % of the cases

(a) (b)

(c) (d)

Fig. 8 Real-world experiment with a team of heterogeneous
robots from VeRLab (figures based on Google Maps images):
a expansion of Tr (in black) and P (in blue) for the UAV in
the “search” mode; b real trajectory via GPS localization; c

expansion of Tr (in black) and P (in red and green for the
UGVs and blue for the UAV) in the “rescue” mode; and d real
trajectories, via GPS localization
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the number of agents grows, like expected given our
performance analysis.

Finally, to evaluate effects of the correction func-
tion on our method, we have ran about 400 simulated
experiments, with 200 applying our complete pro-
posed methodology and other 200 (using the same
initial configuration of previous ones) without correc-
tion step of Alg. 2, line 9. We have then compared both
set of experiments to verify the error and the mission
completion time concerning this difference. Figure 7a
shows the histogram of the error improvement, given
by the percentage difference between ‖n̂�xt − n�xt‖ for
cases with and without the error correction. Here it
is possible to see the use of the correction function
reduced the error in more than 95 % of the cases, with
an average value of approximately 25 %. On the other
hand, the time spent on the mission was also smaller
in more than 98 % of the trials, with a average value
of approximately 7 % as can be seen in Fig. 7b. This
was also given by the percentage difference between
cases with and without the error correction.

5.5 Real-World Experiment

As a proof of concept, one UAV and two UGVs
were used in a real-world experiment, as presented in
Fig. 1. Hummingbird quadrotor platform is equipped
with on-board sensors for autonomous navigation,
like triple-axial magnetic compass, barometric sensor,
inertial measurement unit (IMU) module consisting
of three gyros and three accelerometers (all with 1
kHz operating rate), global positioning system (GPS)
receiver, ZigBee wireless serial link for communica-
tion purposes (with 10 Hz operating rate), and two
on-board CPUs (one of which is fully programmable).

UGVs, on the other hand, were adapted in-house at
the Computer Vision and Robotics Laboratory (VeR-
Lab)/UFMG, based on the Tamiya TXT-1 Monster
Truck platform. They are equipped with IMU, PWM
servo controllers, ZigBee link, and GPS receptor. All
planning, communication and control modules were
implemented in Python language and run on an ASUS
Netbook with Ubuntu 11.10 OS at 10 Hz. The mini-
mum curvature radius of the vehicle is approximately
3 m and the control speed was adjusted to the constant
velocity of 1 m/s.

The MRPT was calculated in a decentralized man-
ner, on-board for the ground robots and off-board for
the aerial robot, due to hardware constraints. The same

mission was proposed for this group, as it can be seen
in Figs. 8a and b, for the “search” step, and in Figs. 8c
and d, for the “rescue” step.2

The experiment have demonstrated the feasibility
of applying our pseudo-random multi-robot planner to
groups of real-world robots, subject to uncertainties
and disturbances in cluttered environments.

6 Conclusion and Future Work

A novel approach for distributed motion planning
and control of groups with heterogeneous and under-
actuated robots subject to uncertainties in cluttered
constrained environments was presented in this paper.
In our framework, a decentralized version of the well-
known CL-RRT algorithm allows each agent to navi-
gate through the environment avoiding collisions with
obstacles and other agents of the team, following a
plan. In both, simulated and real-world experiments,
coordination among agents was obtained by predicting
the team’s behavior and by decreasing the prediction
error of the model.

A disadvantage of our method is related to scala-
bility. Due to the fact that each robot has to calculate
the motion prediction of the entire team, in order to
execute its own planned trajectory without collision,
the number of team members shall not be very large.
In fact, as previously demonstrated, the time complex-
ity of our method grows linearly with the number of
agents, presenting an O

(
v2n

)
cost for common cases

and O
(
v2n log n

)
for the worst-case, where v is the

number of vertexes added to Ts. In problems con-
sidering, for example, robot swarms, i.e., teams with
hundreds or even thousands agents, it would lead to
the need of more computing capacity on each robot,
breaking paradigms of hardware simplicity consid-
ered in this specific scope. However, we believe the
continuous technological advances will make it pos-
sible to increase computational capacity of such sys-
tems, such that communication may become a more
serious hindrance as the number of robots in a team
increases.

As a perfect network was assumed, another impor-
tant conclusion is that send only vector state informa-
tions to other robots is better than send the entire tree

2A video of the complete execution is available at: https://youtu.
be/pge9fNxQwPk.

https://youtu.be/pge9fNxQwPk
https://youtu.be/pge9fNxQwPk
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(as done in [11]), since the first case only depends
upon n and the second depends upon v, and v � n.

A possible solution to minimize the computational
cost of our technique in large groups may be the appli-
cation of a hierarchy of priority among robots, so that
each agent will only need to compute the predictive
model of its nearest neighbors. We are currently inves-
tigating the use of our method to a broader class of
missions, beyond the formation and navigation control
in complex environments. We also believe the n�r can
easily be generalized to tasks using robot teams with-
out formation constraints, but for whom navigation is
a critical problem to the coordination process. Another
important topic is to guarantee stability in the whole
team navigation. This is quite simple when dealing
with homogeneous groups of robots, but very com-
plex in heterogeneous teams. Here, only local stability
(for each robot) can be observed, but in the future we
can concentrate at this issue to ensure feasibility to the
movement of the team as a whole.
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