
J Intell Robot Syst (2017) 87:487–506
DOI 10.1007/s10846-017-0504-y

SOM4R: a Middleware for Robotic Applications Based
on the Resource-Oriented Architecture

Marcus V. D. Veloso · José Tarcı́sio C. Filho ·
Guilherme A. Barreto

Received: 23 September 2015 / Accepted: 26 January 2017 / Published online: 23 February 2017
© Springer Science+Business Media Dordrecht 2017

Abstract This paper relies on the resource-oriented
architecture (ROA) to propose a middleware that
shares resources (sensors, actuators and services) of
one or more robots through the TCP/IP network,
providing greater efficiency in the development of
software applications for robotics. The proposed mid-
dleware consists of a set of web services that provides
access to representational state of resources through
simple and high-level interfaces to implement a soft-
ware architecture for autonomous robots. The bene-
fits of the proposed approach are manifold: i) full
abstraction of complexity and heterogeneity of robotic
devices through web services and uniform interfaces,
ii) scalability and independence of the operating sys-
tem and programming language, iii) secure control
of resources for local or remote applications through
the TCP/IP network, iv) the adoption of the Resource
Description Framework (RDF), XML language and
HTTP protocol, and v) dynamic configuration of the
connections between services at runtime. The middle-
ware was developed using the Linux operating system

M. V. D. Veloso · J. T. C. Filho · G. A. Barreto (�)
Department of Teleinformatics Engineering,
Federal University of Ceará Center of Technology,
Campus of Pici, Fortaleza, Ceará, Brazil
e-mail: gbarreto@ufc.br

M. V. D. Veloso
e-mail: veloso@fisica.ufc.br

J. T. C. Filho
e-mail: jtcosta@ufc.br

(Ubuntu), with some applications built as proofs of
concept for the Android operating system. The archi-
tecture specification and the open source implemen-
tation of the proposed middleware are detailed in this
article, as well as applications for robot remote control
via wireless networks, voice command functionality,
and obstacle detection and avoidance.

Keywords Middleware · Resource-oriented
architecture · Mobile robotics · Subsumption
architecture · BPMN diagrams

1 Introduction

With the rapid pace of evolution of mobile devices
(e.g. smartphones, tablets, ultrabooks) it has been
observed the birth of a novel paradigm for the
construction of robots, especially mobile ones, but
not restricted to them: from robots built using
special-purpose hardware (e.g. PIC - Programmable
Interface Controller, dsPIC) with reduced computa-
tional resources, to robots built using general-purpose
mobile devices (e.g. notebooks, netbooks, tablets or
smartphone). Currently available mobile devices pos-
sess much higher computational power than an aver-
age desktop PC of a decade ago, adding to the robot
parallel processing capability, and providing various
options of wireless network with broadband con-
nection, multiple choice for operating systems and
programming languages. This new robot construction

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-017-0504-y&domain=pdf
http://orcid.org/0000-0002-7002-1216
mailto:gbarreto@ufc.br
mailto:veloso@fisica.ufc.br
mailto:jtcosta@ufc.br


488 J Intell Robot Syst (2017) 87:487–506

paradigm has popularized robotics beyond academic
and industrial borders and triggered the development
of applications requiring integration of resources from
one or more networked robots. Indeed, integration of
robotic resources over network is within the core of
several open and non-open source projects available in
the robotics community.

Despite mind-blowing advances in robotic systems
in recent years, transparent integration and sharing of
resources from one or more robots through TCP/IP
network is still a challenge. This results from the fact
that resources e.g. laser, sonar, camera, accelerometer,
gyroscope, among others, have different data formats,
drivers and communications APIs,1 with most of these
APIs being either proprietary, which complicates the
debugging process at all levels of the software stack,
or are designed for a specific operating system, limit-
ing the efforts for integration of resources.

Furthermore, rapid technological changes and con-
stant alterations in the requirements of applications
demand periodic reviews of the software projects in
order to prevent the robotic middleware to become
obsolete in the short term. The smaller the changes
in software resulting from changes in hardware, the
smaller are the implementation and maintenance costs
for the robotic company. Bearing this in mind, a well-
designed middleware should allow application devel-
opers not to get concerned with the details of each data
source and the complexity of computing environments
(including distributed scenarios). As a consequence,
for developing and maintaining software systems, as
in the case of middleware systems, suitable software
engineering methodologies must be used to facilitate
the design and to reduce implementation and main-
tenance time. Reuse and integration of codes from
existing robotic projects then become mandatory.

Intensive research has been carried out to develop,
analyze and compare different software projects with
regard to the integration of robotic resources over dis-
tributed systems. For example, Kramer and Scheutz
[27], in a survey paper on robotic development envi-
ronments (RDEs), describe and evaluate nine open
source projects, suggesting potential areas of improve-
ment for the maintainers of these RDEs based on the
demands of multi-agent systems (MAS). Mohamed
et al. [31] present a brief review of middleware for

1Application Programming Interface.

networked robots. They examine the current limita-
tions of ten middleware platforms and identify sev-
eral open issues that need to be addressed, including
security and other advanced integration features, auto-
matic discovery and high-level abstractions. Elkady
and Sobh [19] present a survey of middleware projects
for robotics aiming at discussing their architectures
and important features of middleware platforms for
robotics. Finally, Elkady et al. [18] propose their own
robotic middleware (RISCWare), based on the desired
features identified in [19].

It should be noted that the development of a soft-
ware architecture able to integrate and share the multi-
tude of heterogeneous software and hardware compo-
nents, either of a single robot, or of networked robots,
has been a great challenge for robotic researchers
along the last two decades in particular [6, 14, 15,
18, 19, 23, 25–27, 30–34, 37, 38]. The main difficul-
ties in building such a complex software architecture
for robotics involve basically the issues of hardware
abstraction, communication reliability and security.

Hardware Abstraction/Modularity A common chal-
lenge for robotics researchers is the reuse of software
modules developed by the existing robot projects,
since in most of them there is absolutely no compat-
ibility between hardware architectures and operating
systems. Thus, reuse of available software modules by
new robot projects is minimal, because the software
architecture of the former projects is designed to meet
the requirements of their specific robot hardware.
As a consequence, the software is often completely
redesigned and built for each new robot hardware [33].

A middleware common to multiple robots is then
highly desirable and should not only define how the
components can interact with each other by means of
communication and synchronization mechanisms, but
also provide infrastructure and functionality to the sys-
tem construction. Amodularized software architecture
allows change in one module to have less impact on
the others and makes the incorporation of new hard-
ware devices easier [23, 31]. This stimulates other
researchers to use the available modules across differ-
ent hardware architectures helping to make hardware
integration painless.

Communication Reliability This is an issue of great
impact in networked, swarm and cloud robotics. Poor



J Intell Robot Syst (2017) 87:487–506 489

signal availability and small bandwidth of current
wireless networks (eg, 3G, Wi-Fi 802.11b) can either
slow down considerably or even restart the com-
munication channels between the processes (running
programs or modules) distributed in the network. In
some cases this may lead to a degradation of response
time due to communication, impairing the system inte-
gration. Thus, the choice of a suitable communication
technology is of paramount relevance in networked
robotics.

Concurrence is also an issue that has great impact
in communication reliability. Disordered accesses to
resources shared by concurrent processes generate
unpredictable behavior of the distributed computing
system. The management of competition between two
or more processes for an access to the same resource
in the network is a source of difficulty in the phase
of software development. There are a few differ-
ent methodologies for implementing mechanisms for
managing shared resources. For example, Gerkey et al.
[23] associated a command and a data buffer for each
device, but as the server does not implement any
locking device, customers must implement their own
arbitration mechanism. Metta et al. [30] implemented
synchronization mechanisms (no-wait, wait-after and
wait-before) on the server side and behavior mecha-
nisms (triple-buffer, double-buffer and single-buffer)
on the client side. Nevertheless, these mechanisms still
allow resource updates to be either lost, because the
server never send them, or discarded on the client side,
generating unnecessary data traffic on the network.

Security Issues Software integration through the
Internet always raises concerns about security. It is
necessary, therefore, to include such mechanisms to
ensure that only robots authorized by the middle-
ware can communicate with each other and that only
authenticated users can access and control networked
robots. Obviously, in order to penalize minimally real-
time operations mediated by the robotic middleware
it is important to minimize network overhead due
to security protocols (for example, in handshaking).
In fact, it is worth mentioning that there is a trade-
off between network overhead due to security and
efficient real-time operation. For this reason, the mid-
dleware can be deliberately designed to disregard any
security mechanism, restricting its use to an isolated
or firewall-protected network [30]. As will be shown

later on this paper, it is possible to ensure network
security integrated with the Internet without degrading
the “real time” operation of the middleware.

From the exposed, we propose an easy-to-use mid-
dleware for intelligent integration and sharing of
robotic resources (sensors, actuators and services)
identified by URIs (Uniform Resource Identifiers),
using the TCP/IP network, employing protocols with
minor restrictions on firewalls and a resource descrip-
tion language that can be extended to express propo-
sitions about numerous subjects. With this middle-
ware architecture, it is possible to ensure security
of access to resources, abstraction of heterogeneous
robotic hardware, reuse of software infrastructure for
robots across multiple search efforts, reduction of
the coupling among multiple applications, faster code
portability and scalability of the architecture. The pro-
posed software architecture is general enough in the
sense it can take advantage of the software resources
provided by existing robotic middlewares, such as the
Robot Operating System (ROS) [37], managing and
integrating them in a transparent and seamless way to
the user.

The remainder of this paper is organized as follows.
In Section 2 we introduce the proposed middleware
architecture and discuss its features with respect to the
state-of-the-art in open-source robotic middlewares.
In Section 3 we describe applications of the proposed
middleware to robot control via voice commands and
robot remote control through smartphones/tablets. We
conclude the paper in Section 4.

2 SOM4R: Simple and Open Middleware
for Robotics

The proposed middleware, henceforth referred to as
SOM4R, is a service layer interfacing with the base
layer of sensors and actuators and with the upper layer
of users applications (see Fig. 1). The base layer is
comprised of sensors and actuators devices directly
connected to the robot computer or microcontroller
and recognized by their operating system drivers (or
firmware modules). The upper layer is comprised of
the software applications that are responsible for func-
tions, such as voice command, obstacle detection,
navigation system, people identification, among other
functions utilized by the user through a web-based



490 J Intell Robot Syst (2017) 87:487–506

Fig. 1 Model of data and control flows between applications (local or remote), local services, middleware core and database server

Human-Machine Interface (HMI). These applications
must use the middleware services in order to interact
with the robots capabilities to achieve their goals and
fulfill the tasks under their responsibilities.

More specifically, the proposed middleware con-
sists of a set of web services identified by URIs and
organized in a modular way, following the resource
oriented architecture (ROA) [35], in order to imple-
ment a software structure for autonomous robots. In
this sense, the SOM4R has abstract interfaces for
all hardware systems and their functionalities, inde-
pendently of the distributed computing platform and
language implementation of web services. Thus, web
service changes cause minimal impact on the remain-
ing services. The middleware web services specify
the interfaces of abstraction, as defined and described
using XML, to access the resources of robot(s), such
as sensors, actuators and services, and transfer the
representational state (REST) of these resources at
multiple levels of services granularity using uniform

interfaces (classification system of the request mes-
sage) of the HTTP protocol.

REST is a manifestation of ROA [35], which com-
prises an additional set of constraints over the service
orientation architecture (SOA). The term REST was
introduced and defined in [20] and represents a new
software architectural style for distributed systems.
A REST web service is supplied for consumption
independently of the technology used in client-server
communication.

Each web service member of the SOM4R has one
or more abstraction interfaces (see Section 2.1). Inter-
faces are sets of attributes (i.e. data structures) defined
by the web service to describe the representational
state of resources (sensors, actuators and services)
using RDF/XML (see Section 2.2). They allow greater
decoupling between the sensor or service associated
with the resource and the client applications of the
middleware, as the resource cannot be handled directly
by client applications of the middleware. In practice,



J Intell Robot Syst (2017) 87:487–506 491

several resource representational states are prepared
and transferred either by the web service to the client
application, or by the client to the web service.

In the proposed middleware, any information or
concept that can be presented by a name qualifies itself
as a potential resource. A resource is a conceptual
mapping to an entity set [7]. The resource, identified
by a URI, is the information provided by the sen-
sor, or the information sent to the actuator, or also
the information obtained from a web service. As an
example, a resource may be either the information of
the status of a robotic device (e.g. sonar, laser, GPS,
sensor/actuator hardware), or the information arising
from the processing of resources provided by other
services (e.g. voice command, face detection, land-
mark detection). It is possible to find several resources
of different granularities, according to the scenario of
each client application. Granularity refers to the level
of detail or summary contained in the existing data
units.

In SOM4R, it is assured that data exchange
between client and server is done in atomic way, with-
out coupling between software applications and mid-
dleware. It should be noted that REST has become an
alternative to RPC/SOAP-like approaches to web ser-
vices architecture by making full use of web resources.
In [29], it is performed a battery of tests to mea-
sure the performance of REST web services, and
it was concluded that it is a more suitable solution
for the integration of data distributed across world
wide web. To implement REST architectural style in
SOM4R, we use HTTP uniform interfaces to form a
data CRUD (Create, Read, Update and Delete), where
the GET method is used to retrieve a representation of
a resource or perform a query, POST is used to cre-
ate a new resource, dynamically named, PUT is used
to update a known resource, and DELETE is used to
remove a resource.

Finally, in the proposed middleware, the represen-
tation of a resource is transferred only on demand,
where the frequency is determined by the client appli-
cation at runtime according to their needs or pro-
cessing capability, reducing the traffic of data in the
distributed computing system.

2.1 Implementation

In this section, we describe in more detail the
implementation of the SOM4R core middleware web

services and security. We also present additional ser-
vices built specifically for an autonomous wheeled
mobile robot (to be described in Section 3) using
the proposed middleware in order to integrate func-
tionalities, such as voice recognition, face detec-
tion, landmark detection, vehicle locomotion, TTS,
GPS (Global Positioning System) positioning, battery
charge monitoring and 3D obstacle detection. Empha-
sis is given to the structure of control, support for
swarm robotics, and the functionality of the core and
additional services.

All project codes were implemented as open source
software and are publicly available for download at
http://som4r.net.

Security Issues To support a basic level of secure
access to web services we adopted an approach
inspired by the OAuth 2.0 security protocol [4]
and based on the HTTP Digest (RFC2617) access
authentication method [21, 36]. The rationale for this
approach stems from the following facts: i) HTTP
Digest is the authentication method used by HTTP
servers to validate the authentication of clients, and
ii) OAuth is an open protocol currently adopted by
major IT companies. It is simple and standard, which
allows secure authorization between web and desktop
applications.

OAuth 2.0 defines four roles in the process of
authentication and authorization: a) resource owner, b)
authorization server, c) resource server, and d) client.
In this scenario, the SOM4R core performs simulta-
neously the roles of resource owner - responsible for
allowing access to a protected resource, and autho-
rization server - issuing tokens to clients after authen-
tication and authorization of the resource owner. The
other middleware web services perform similarly to
a resource server that allows access to a protected
resource through requests with token, while the appli-
cations perform the role of a client issuing resource
requests on behalf of the resource owner and with its
authorization.

The SOM4R uses security methods with MD5
encryption (HTTP Digest and tokens) whose one way
hash algorithm of 128 bits is described in RFC1321,
allowing secure use of the middleware through the
Internet. Thus, in order to gain access to resources pro-
tected by the middleware a client needs to be authen-
ticated and authorized in this environment, according
to the steps described in Figs. 2 and 3 using Business

http://som4r.net


492 J Intell Robot Syst (2017) 87:487–506

Fig. 2 Diagram representing the SOM4R authentication process

Process Modeling Notation (BPMN) [1] graphical
representation. To increase security, a client can make
a secure connection (HTTPS) with middleware ser-
vices, because the incapacity of the client on confirm-
ing a server’s identity is a weakness of HTTP Digest
authentication method.

For the authentication process, illustrated in Fig. 2,
the client needs to perform the request (Fig. 2, step 1)
and inform (Fig. 2, step 3) the appropriate response
to the challenge sent by SOM4R (Fig. 2, step 2). The
answer to the challenge is calculated based on the
login and password data known only by the client
and the server, and also based on a random number
(nonce) generated by the middleware and embedded in
the challenge. When the client informs the appropriate

response (Fig. 2, step 4), SOM4R registers the client
and it receives an access authorization token (Fig. 2,
step 5) from SOM4R.

Figure 3 describes this authorization process using
BPMN. When a middleware web service receives the
request (Fig. 3, step 1) made by the client, it makes
a request (Fig. 3, step 2) containing the access autho-
rization tokens for the SOM4R authorization service.
This authorization service is responsible for validating
tokens and checking access authorization to resources
between services and applications, returning (Fig. 3,
step 3) to the requester web service the expiration time
(timeout) of the tokens received. Thus, the web service
provides the resource (Fig. 3, step 4) requested by the
client once the middleware responds with the access

Fig. 3 Diagram representing the SOM4R authorization process



J Intell Robot Syst (2017) 87:487–506 493

permission (i.e. t imeout > 0). Otherwise (t imeout =
0), it responds with HTTP 401 (Unauthorized) error.

It is worth mentioning that SOM4R employs tokens
with a validity period (timeout) that allow dynamic
configuration of communication between processes at
runtime, providing security on identification of ser-
vices and making data and control flows safer and
more configurable.

Middleware Core Web Services The SOM4R core
web services are responsible for the authentication
and registration, the authorization, and the short-term
memory of the proposed middleware, namely:

(i) Authentication and Registration Web Service - In
SOM4R, this service is responsible for the authen-
tication and security of the middleware, controlling
access to resources using HTTP Digest Authenti-
cation method [21] and tokens [36]. In order to
gain access to resources protected by the mid-
dleware environment, all services and applications
have to initiate the connection, an authentication
process and a registration by interacting with this
service (see Fig. 2). The P2P (Peer-To-Peer2) net-
work requires some kind of search engine to allow
processes to meet each other at run time [37]. In
this sense, the registration web service maintains an
updated list of services and applications authenti-
cated by SOM4R with their respective addresses.

(ii) Authorization Web Service - All communica-
tions between applications and services connected
to the proposed middleware are validated using this
authorization service (see Fig. 3). The SOM4R web
services can keep in memory the expiration time
(timeout) of the client token, reducing data traffic
through the network over the next accesses of this
client.

(iii) Short-term Memory (STM) Web Service -
Responsible for maintaining a database with the
recent history of events and activities related to
usage of middleware modules. This web service
also allows queries about previous events and activ-
ities for use in decision-making of the proposed
middleware applications and services. It uses a
database server (MySQL) to ensure the integrity

2Each computer in the network can act as a client or server for
the other computers in the network.

and availability of the increasing volume of mes-
sages exchanged between local and remote soft-
ware processes interconnected by the middleware.
This web service is of crucial importance because it
helps the debugging process at middleware level, in
order to collect information about what is happen-
ing with all the robot processes. For example, if an
application for “Greeting a Person” is developed,
it can perform a search in the STM web service in
order to avoid greeting the same person more than
once in a certain interval of time. Thus, the STM
mechanism simplifies the software modules, since
they do not need to maintain an internal data struc-
ture to store their own activities neither those of the
others software modules. In addition, this service
keeps a maximum limit of data per application or
service, eliminating older and less used records to
avoid compromising the storage capacity and speed
of queries.

Additional Services In the following we briefly
describe additional services that were implemented in
SOM4R for allowing access of the clients to various
resources of a mobile robot with wheels (more on the
robot in Section 3).

An important feature of the proposed middleware
is its ability to easily incorporate resources from exist-
ing open-source libraries for specific tasks or sensors
(e.g. OpenCV [11], ARToolKit [9, 10], OpenKinect
[5], PyFaces [6]). Some services to be described below
were developed using such libraries. These particular
web services were implemented in Python.

(i) Vehicle Web Service - responsible for direct
communication with the firmware that controls the
motors of a robotic vehicle connected via a USB
port, providing the reading of the current status of
the resource (e.g. speed and direction) and receiv-
ing commands to be sent to the hardware which
controls robot actuators (Fig. 4). In this case, com-
munication between the firmware and the web
service uses USB Human Interface Device Class
(HID). The advantage of using HID interface is
that for most needs, the existing support for HID
devices can typically be adapted much faster than
having to create an entirely new protocol, and most
operating systems will recognize standard HID
devices without needing a specialized driver (e.g.
mouse, webcam).



494 J Intell Robot Syst (2017) 87:487–506

Fig. 4 Communication
between vehicle web
service and firmware that
controls the actuators

(ii) Voice Recognition Web Service - Responsible
for the recognition of human voice commands and
the provision of the result to other services and
applications. This service uses the CMU Sphinx
library [2], an open source toolkit for speech recog-
nition developed at Carnegie Mellon University.
This software implementation was based on the
examples of CMU Pocketsphinx project.

(iii) Web Service for Text-To-Speech (TTS) -
Responsible for receiving a word or sentence and
send it to the voice synthesizer of the robot,
enabling the robot with a voice interface with the
user. This service uses the eSpeak software [3], a
compact open source software speech synthesizer
with support for more than 30 languages.

(iv) Web Service for Global Positioning System
(GPS) - Responsible for reading the GPS position
of the robot, directly from hardware (or through
APIs), providing the result to other services and
applications. For the mobile robot with wheels built
along this research, the GPS device is connected to
the Arduino hardware that is connected to the note-
book through a USB-to-Serial Com Port Adapter.
In this case, communication between the firmware
and the web service uses a standard RS232 serial
interface.

(v) Face Detection Web Service - Responsible
for face detection using the OpenCV library
[11], providing the results to other services and

applications. This software implementation was
based on OpenCV code samples and uses classifiers
obtained from the OpenCV library (e.g. the cascade
classifier [28]). This software implementation was
based on the examples of OpenCV project.

(vi) Face Recognition Web Service - Responsible
for identifying people by face using libraries of
the PyFaces project [6], providing the results to
other services and applications. PyFaces project is a
facial recognition system that uses eigenfaces algo-
rithm [8]. This software implementation was based
on the examples of PyFaces project.

(vii) Landmark Detection Web Service - Responsi-
ble for detecting landmarks using the ARToolKit
API [10], a software library for building augmented
reality applications. In SOM4R this service can be
used to guide navigation. For example, a battery
recharge application could detect when the bat-
tery reaches a critical low level and then drive the
robot to the recharging base landmark. This soft-
ware implementation was based on the examples of
ARToolKit project.

(viii) Web Service for the Microsoft Kinect Sensor -
Responsible for handling data from the Kinect sen-
sors (RGB and infrared cameras, accelerometer and
microphone) using the library OpenKinect [5]. Data
from the Microsoft Xbox Kinect color (640 × 480,
32 bit) and depth (320 × 240, 16 bit) cameras are
collected at a rate of 30 fps. In SOM4R, such data



J Intell Robot Syst (2017) 87:487–506 495

can be used for face detection, obstacle avoidance
and navigation, and can also be used for mapping
the robot environment.

(ix) Battery Charge Level Web Service - Respon-
sible for reading the battery charge level directly
from the robot’s hardware or through APIs, provid-
ing the result to other services and applications (e.g.
recharge application).

In Section 3.1 we provide additional information
about these web services and report experimental
results using them.

Control Structure: Lessons from Subsumption Archi-
tecture The subsumption architecture was introduced
by Brooks [12, 13], aiming at implementing a general,
high-level control architecture for autonomous robots.
Based on concepts from the subsumption architec-
ture, the middleware web services support methods of
suppression and inhibition of behaviors. That is, it is
possible to suppress the entry of a service for a short
period of time (50-200 ms), within which this service
only accepts commands sent by the client that sup-
pressed it, ignoring all the others clients’ commands.
It is also possible to inhibit the output of a service for
a short period of time or temporarily keep the input or
output values of these services unchanged.

Such an approach enables the implementation of a
flexible control architecture, adapting the behavior of
services and applications to the dynamic context of
the robot environment. For instance, when a robot has
a service or application (e.g. Runaway-App) running
to avoid obstacles, but it has another local or remote
application (e.g. Push-App) whose mission is to push
an object, such application may act in two ways to
ensure the movement of this robot in the direction of
the object and push it to achieve your goal: i) inhi-
bition of the output of the Runaway-App that avoids
obstacles, or ii) suppression of the input of the vehicle
web service. However, the first option (i.e. inhibition
of the output of the Runaway-App) does not prevent
other applications or services from sending move-
ment commands. Whereas, by suppressing the input
of the web service of the vehicle, only the movement
commands of the Push-App will be considered.

Support for Network and Swarm Robotics The web-
oriented architecture of the SOM4R enables integra-
tion between software processes that are embedded in

robotic hardware (firmware) and those that operate on
computers in a network. This is of particular inter-
est for robots with limited computational resources
(e.g. microcontrollers) because it allows them to ben-
efit from powerful resources and services of cloud
computing [24, 25].

The SOM4R allows robots to communicate along
the network aiming at the formation of swarms (swarm
robotics). For example, let us assume a swarm of
quad-rotors3 controlled by firmware embedded in
their microcontrollers which support Ethernet and Wi-
Fi technologies (e.g. Microchip PIC18F97J60 with
MRF24WB Wi-Fi module, Arduino Nano and a Wi-
Fi module). Using the web services of the pro-
posed middleware, they can directly connect to each
other securely in a peer-to-peer-based service model
through the wireless network. This allows a given
quad-rotor device to provide secure access to its
resources over the network and consume the resources
of other robots shared by SOM4R, allowing the swarm
of quad-rotors to be remotely monitored and con-
trolled by one or several software processes distributed
along the network.

Integration with Existing Middlewares The service-
oriented architecture of SOM4R allows easy integra-
tion with modules already developed by other mid-
dleware, such as ROS [37], YARP [30], CARMEN
[32] and Player [23]. For example, in Fig. 5 it is
shown an integration scenario between SOM4R and
ROS using Rosbridge API [16]. In this case we have
a web service (named Rosbridge-WS) (Fig. 5, cen-
ter) that will translate from the RDF/XML message
format, sent by SOM4R-WS (Fig. 5, left, bottom)
to Rosbridge Protocol (based on JavaScript Object
Notation - JSON). The Rosbridge-WS uses Rosbridge
API Implementation (rosbridge library and/or rosapi
and/or rosbridge server) for mounting the JSON string
equivalent to RDF/XML message of SOM4R-WS
message and sending commands to the nodes and
services of ROS (Fig. 5, right, bottom) and vice versa.

2.2 Further Discussion

The need for establishing an appropriate set of evalua-
tion criteria that serve as a common basis for compar-
ison of robotic projects [14, 23, 26, 30, 32–34, 37, 38]

3Aircrafts driven by four motors.



496 J Intell Robot Syst (2017) 87:487–506

Fig. 5 SOM4R and ROS
integration scenario. The
SOM4R can communicate
with ROS using Rosbrigde
API, this allows the reuse of
software (node or service)
developed with the ROS
API

is a common point of agreement among all previous
works on this issue. More recently, some authors have
been engaged in such endeavor [18, 19, 27, 31].

For instance, Kramer and Scheutz [27] proposed
four criteria for comparing RDEs: specification,
platform support, infrastructure and implementation.
Mohamed et al. [31] proposed six criteria for evalu-
ating the characteristics of middleware for networked
robots: communication model (standard / nonstan-
dard); interoperability flexibility; automatic discovery,
configuration, and integration support; type of mid-
dleware services (specific/expandable); communica-
tion services; and embedded components and low-
resources devices support. Sobh and Elkady [19] pro-
posed nine criteria for evaluation: architecture, simu-
lation environment, standards and technologies, sup-
port for a distributed environment, security for access-
ing modules, fault detection and recovery, real-time
and behavior coordination capabilities, open-source
and dynamic wiring. Elkady et al. [18] proposed a
structured approach for modular design in robotics
and automation environments, named RISCWare.
They implemented a “greeting a person” application
to evaluate the RISCWare framework with respect to
applicability. For this purpose, a series of stress tests
has been performed using different message sizes to
measure the end-to-end data packet latency.

It is worth mentioning, however, that each set of
evaluation criteria used to compare pros and cons of
robotic projects is directly correlated with the appli-
cation scenario of interest, hence a certain criterion
may be relevant to a specific need or context [27].
We list in Table 1 a number of important attributes
of existing middleware for robotics in order to com-
pare their functionalities with the ones provided by
SOM4R. Among the myriad of available attributes, we
have chosen the following ones: technologies, archi-
tectures, protocols and layers of communications,

the format used in the description of the message,
supported operating systems and programming lan-
guages, HMI, security, and date of last update (until
2015).

Related to communication, the SOM4R project
uses the client-server model based on the request-
response paradigm [20], where the state of a resource
is transferred only upon customer demand through the
implementation of a web service server. The client
process always has the initiative to establish commu-
nication with the server process to send or request the
representational state transfer (REST) of the resource.
This paradigm has the advantage of reducing the data
traffic to a minimum explicitly requested to servers
according to the need and capacity of processing of
each client at run-time. Therefore, there is no need
for the client to specify the frequency with which
data should be sent by the server as in the case of
Player (10Hz default), or configure synchronization
and buffer mechanisms as can be the case with YARP,
nor subscribe to threads posted on the server (topic-
based publish-subscribe model) as can be the case
with ROS.

Regarding the communication protocol, unlike the
projects CLARAty, Player, CARMEN, YARP and
ROS, the SOM4R employs the HTTP applications
layer protocol for distributed and collaborative sys-
tems. We choose this stateless4 protocol for the fol-
lowing reasons: a) it presents minor restrictions on
firewalls which facilitates the interoperability between
different network domains, b) it has a high compati-
bility with different platforms through native libraries
available in several programming languages and
operating systems, which facilitates the integration,

4A communications protocol that treats each request as an inde-
pendent transaction that is unrelated to any previous request. It
provides no means of storing a user’s data between requests.



J Intell Robot Syst (2017) 87:487–506 497

Table 1 Common features of open source projects to integrate robotic resources over net- work for comparison purposes with the
SOM4R project

Features/

Projects Player CLARAty CARMEN YARP ROS SOM4R

Architecture/ Client-Server Client-Server Client-Server Client-Server SOA ROA (REST)

Software design

Communication TCP (Socket) TCP and UDP IPC (TCP/IP TCP, UDP, XML-RPC HTTP

protocols (Socket) sockets) Multicast and QNet

TCP/IP Layer Transport Transport Transport Transport Application Application

Message Own protocol Own protocol Own protocol Binary IDL RDF/XML
description
format

Operating system Linux, Solaris Linux, Solaris, Linux Windows, Linux, Linux and Windows Linux, Windows

and Windows MAC OSX and QNX 6 and MAC (partial functions) and Android

Cygwin OSX (partial functions)

Supported C/C++, Java, C++ C++, Java, C++, Python, C++, Python, C/C++, C#,
programming Matlab, Python, Matlab, Java, Octave, Lisp Python, PHP,
languages Perl, Tcl/Tk Tcl, Lisp, Ruby Java Ruby,

Flex/Flash

Human-Machine Client software Client software Client software Client software Client software Web portal

Interface

Middleware None None None None Possible Inherent

security

Last update 2015 2007 2008 2014 2015 2015

reducing significantly the complexity of inter-process
communication, and c) it is available in many embed-
ded devices (e.g. PIC microcontrollers with Ethernet
module, Arduino Nano with ethernet module), follow-
ing the current trend of employing Ethernet network
in devices from various manufacturers.

In SOM4R, the messages exchanged between
software processes are formatted in RDF/XML
and describe the representational state (REST) of
resources in a simple way, as shown in Fig. 6. The
projects Player, CLARAty and CARMEN use pro-
prietary message formats, while the YARP employs
a binary format and ROS uses Interface Description
Language5 (IDL) to describe the content of messages
exchanged between the software modules. However,
in [25], it is shown that an image (RGBA, 842x595)
that takes 18 kB in bandwidth if transported as PNG
(lossless data compression), uses approximately 2MB

5A specification language used to describe a software compo-
nent’s interface in a language-independent way, commonly used
in RPC software.

when transported as a serialized ROS message. We
opted for the description of resources using RDF by
making data more portable and interoperable for dif-
ferent computers, operating systems and programming
languages. It should be noted that in the evolution-
ary stage of web contexts, describing and representing
information resources using RDF language is quite
attractive and promising, allowing these resources to
be linked together, integrated and reused [17].

The choice for the TCP/IP network is a general
consensus among all the aforementioned projects,
basically for the following reasons: a) TCP/IP stack
is a collection of various types of communication
protocols that work together to perform network com-
munication, recommended both for small networks
and for huge networks as the Internet, b) it is compati-
ble with a wide variety of hardware, and c) is included
in versions of major operating systems.

From a more technical viewpoint, we aimed at
the transport layer to guide our choice for the TCP
protocol, rather than some other protocol (e.g. User
Datagram Protocol - UDP), for the following reasons:



498 J Intell Robot Syst (2017) 87:487–506

Fig. 6 Abstract interface of the TTS Web Service. A description of the representational state of a TTS resource using RDF/XML
syntax

i) higher reliability: there is absolute guarantee that
the data transferred remains intact and arrives in the
same order in which it was sent, with error checking
and error recovery, ii) full-duplex communication: it
allows both parties to send and receive data within
the context of the single TCP connection, and iii)
rate adaptation: the rate of data transfer is intended
to adapt to the prevailing load conditions within the
network and consider the processing capacity of the
receiver, attempting to achieve the highest possible
data-transfer rate.

3 Experimental Results

Aiming at evaluating the performance of the proposed
middleware, we present a number of experiments

with the developed applications, built specifically for
an autonomous wheeled mobile robot, by integrat-
ing voice command functionality, obstacle avoidance,
greeting a person, battery recharge, and remote control
of the vehicle movement. The wheeled robot shown
in Fig. 7 was designed and built along the develop-
ment of this research for the sake of experimental
validation of the SOM4R. The rationale for building a
specific wheeled mobile robot, instead of using a com-
mercially available one, arose from the need to test
the hypotheses behind the proposal of the SOM4R,
especially hardware and software abstraction, for a
completely new robotic hardware project. As proof
of concept, some experiments were replicated using
a Pioneer P3DX robot available in our laboratory for
the sake of evaluating the portability of SOM4R to
existing robotic platforms.

Fig. 7 A wheeled mobile
robot built as a platform for
research, development and
experimental validation of
the proposed middleware



J Intell Robot Syst (2017) 87:487–506 499

The proposed middleware was installed on the per-
sonal computer of the aforementioned robot, namely, a
notebook with Intel(R) Core2 Duo (TM) SU7300 1.3
GHz processor, 4GB DDR3 RAM, 320GB 7200rpm
SATA hard drive, USB 2.0, LED 12.1” touchscreen,
and connected to Wi-Fi (802.11g 54Mbps). The MS
Kinect sensor, the Printed Circuit Board (PCB) that
controls the robotic vehicle, and the Arduino board
with integrated GPS sensor (via USB-Serial adapter)
were connected to the USB ports on the notebook. All
experimental tests were carried out using this note-
book running Linux operating system (Ubuntu 11.04
32bit).

According to the request-response model of SOA
where web services run only on demand, the con-
sumption of CPU resources was minimal, as expected.
During the experimental tests using the considered
notebook, consumption was around 35 % when all
services were running. When the user applications
were running, it demanded a greater consumption of
CPU resources because they were running with certain
frequency, which increased the average CPU con-
sumption to 55 %, fully justifying the innovations
proposed by SOM4R.

A human machine interface was developed in order
to be simultaneously accessed by multiple computers

and tablets, including smartphones running Android
(Google) and iOS (Apple) operating systems, and a
solution was found to be adherent to the needs of
a friendly user interface. The entire SOM4R open
source project are available at www.som4r.net with
documentation at github.com/som4r/som4r.

3.1 Applications

According to SOM4R’s design philosophy, a
single application can monitor and control the
behavior of a set of robots. Furthermore, different
aspects of the robot’s behavior can be controlled
by multiple applications running directly on the
computer of this robot or on other computers and
mobile devices distributed across the network (see
Fig. 8). In HTTP Digest authentication method,
Realm is a directive that defines the authentica-
tion territory, typically a description of the system
or computer being accessed. The use of realms
allows applications and web services, both local
and remote, be partitioned into a set of protection
spaces (e.g. quadrotors@lab1.som4r.net,
mobile robots@lab2.som4r.net).

The SOM4R allows the integration between appli-
cations and web services running on various robots

Fig. 8 Integration scenario between applications and web ser-
vices (yellow) running on various robots (white) authenticated
in different realms (gray) of SOM4R via internet, integrating

microcontrollers (RA 2), mobile devices (RB 1) and supercom-
puters (RA)

www.som4r.net
http://github.com/som4r/som4r


500 J Intell Robot Syst (2017) 87:487–506

and authenticated in different realms through the com-
puter network. In Fig. 8, the five robots (in white) are
distributed into two realms (dark gray) interconnected
through the internet (light gray). There is no restriction
to the physical location of the robots. Applications and
services (in yellow) that are running on these robots
can take part in one or more realms, interacting with
several robots at the same time.

The applications and web services, interconnected
through the authentication “Realm” of SOM4R, are
developed using the native HTTP library, available in
several programming languages on different operating
system platforms (e.g. Linux, Android, MS Windows,
OS X and iOS). This facilitates the choice of the most
appropriate environment (software and hardware) to
implement each robotic task. We describe in the fol-
lowing paragraphs three general-purpose applications
that are useful for several robotic tasks.

Joystick Application It is responsible for controlling
the movement of the robot using motion sensors (e.g.
accelerometers) of a mobile device, such as smart-
phones or tablets, equipped with the Android operat-
ing system from version 2.2 or greater. The readings
of accelerometers (Fig. 9, step 1) are transformed into
commands (Fig. 9, step 2) and sent over the wireless
network (Wi-Fi, 3G) to the robot vehicle web service

(Fig. 9, step 3). The vehicle web service executes the
command (Fig. 9, step 4), posts its action to STM web
service (Fig. 9, step 5) and returns the status of the
vehicle. The joystick application posts its action to
STM web service (Fig. 9, step 6) and waits a few
milliseconds (Fig. 9, step 7) before restarting its cycle.

The performance tests of the application were exe-
cuted on a smartphone, with single-core processor
of 600 MHz and 170MB of internal memory. Four
snapshots taken along the execution of the task are
illustrated in Fig. 10. The average response time of
the application connected to the middleware via a pro-
tected Wi-Fi (WPA2 with TKIP+AES, up to 54 Mbps)
was about 300 ms, which can be considered very
acceptable for remote control applications of robotic
vehicles. Additional tests of access to the robot were
performed with this smartphone using the 3G cell
phone network. In this case, due to the low speed
of these networks (measured at about 512Kbps) in
Brazil, the response time had a delay of up to seven
seconds, compromising remote control of the move-
ment of the vehicle. That is, a reduction in the speed
of the wireless network of the order of 108:1 led
to an increment on the response time of the order
of 1:23. However, the current evolution scenario of
the power of parallel processing of mobile devices,
of transmission speed in broadband networks (e.g.

Fig. 9 BPMN diagram representing the communication process between web services for the joystick application



J Intell Robot Syst (2017) 87:487–506 501

Fig. 10 Snapshots taken along the execution of the joystick application tests (full video available at youtu.be/G2iMuNAkWkE)

WiMAX, 4G) and of Wi-Fi technologies [22] (e.g.
IEEE802.11ac, IEEE802.11ad), will certainly lead to
better performance results.

For the sake of completeness, this application was
replicated on a Pioneer P3DX-SH robot (snapshots are
shown in Fig. 11). For this purpose, we developed a
new Vehicle Web Service for this robot using the APIs
of ARIA6 (Advanced Robotics Interface for Applica-
tions). The response time of the joystick application
was about the same of the previous test, what indi-
cates that the replacement of Vehicle Web Service has
minimum impact in the other modules of the SOM4R.

Runaway Application It is responsible for the obstacle
avoidance function. This application uses the vehi-
cle and Kinect web services. In Step 1 of Fig. 12, it
constantly monitors the obstacles detected by the web
service for the Kinect sensor and considers that each
neighboring point has a “repulsive force” proportional

6Available at http://robots.mobilerobots.com/wiki/ARIA

to the inverse of the squared distance (Fig. 12, steps
1 and 2). We followed Brooks’ implementation [12]
for developing our runaway application. When the
magnitude of this “resultant force” exceeds a certain
empirically defined threshold (Fig. 12, step 3), the
application acts by suppressing the input to the vehicle
web service. If the robot is moving, the STOP com-
mand is sent to the robot (Fig. 12, step 4). Afterwards,
the commands ROTATE and MOVE TOWARDS (the
direction of the resultant vector) are executed in order
to avoid the obstacle (Fig. 12, step 5), recording
the actions taken and starting the cycle of obtacle
monitoring.

Two types of experiments were performed with the
Runaway application. For the first one, the robot’s
movement is being controlled by the joystick applica-
tion. During the motion, when a “repulsive force” indi-
cates the presence of a nearby object, the Runaway-
app takes control by suppressing the input to the
vehicle web service, stopping and positioning the
robot in a posture where it is capable of deviat-
ing from the obstacle. Then, the vehicle web service

http://youtu.be/G2iMuNAkWkE
http://robots.mobilerobots.com/wiki/ARIA


502 J Intell Robot Syst (2017) 87:487–506

Fig. 11 Snapshots taken along the execution of the Joystick application tests on Pioneer P3DX-SH robot (full video available at
youtu.be/bSoOqbzGmYQ)

returns to a mode in which it accepts again commands
from the Joystick-app. For the second experiment, the
Runaway-app is configured with a different behav-
ior. The robot’s motion is being controlled by the web
module via the HMI. When it detects the presence of
a nearby object, the Runaway-app reads the current
robotic vehicle status (speed and direction) before it
takes control by suppressing the input to the vehicle
web service, stopping the robot and appropriately
positioning it in order to deviate from the obstacle.
After that, the Runaway-app sends to the vehicle web
service the motion command read prior to subsump-
tion. As a result, when the robot is sent towards a wall,
it adopts the wall-following navigation mode.

In Fig. 13, we show the boxplot of the time required
for reading and processing of obstacle detection data
received from Kinect sensor web service. We used
7,000 measurements collected within a 16-minute
interval while conducting the tests. The minimum time
was 27 ms and the maximum was 509 ms, the first
quartile was 61 ms, the median was 83 ms, the third
quartile was 134 ms and the interquartile range was
73 ms. The maximum time was recorded when the
use of two cores processors was almost at 100 per-
cent, being regarded as an outlier. The wheeled robot
was able to avoid obstacles during the navigation
(speed around 0.2 m/s), as shown in the video for this
performance test in youtu.be/TMPayPo31qU.

Fig. 12 BPMN diagram representing the communication process between web services for the Runaway application

http://youtu.be/bSoOqbzGmYQ
http://youtu.be/TMPayPo31qU


J Intell Robot Syst (2017) 87:487–506 503

Fig. 13 Boxplot of the time (in ms) for reading and processing
obstacle detection data received from Kinect sensor web service

Voice Command Application It is responsible for acti-
vating, running and disabling the voice command
functions. The BPMN diagram of the communication

links required by the application is shown in Fig. 14. It
monitors the web service for the recognition of human
voice as indicated by step 1. When the response of
the web service is a word or statement previously
defined as a command, as in step 2, the application
selects the action to be performed. If the command
is to turn on or turn off the voice command, it sends
a statement about the current state of the voice com-
mand feature (enabled or disabled) using the web ser-
vice for speech synthesis (TTS, text-to-speech), which
emits the sound of the word/statement via the com-
puter’s sound synthesizer as step 3. If the command
is for moving the robotic vehicle, initially defined as
right, left, ahead, back, faster, slower
and stop, the corresponding action to this command
is performed (step 4). Finally, the commands received
and events they triggered are registered by the applica-
tion using the STM web service (step 5) and then the
monitoring cycle is reinitiated.

Performance tests have shown a response time
below 500 ms, a value that we considered satisfactory
within the context defined for this project (surveil-
lance, remote monitoring and control, autonomous
and semi-autonomous navigation). In the tests we used
the CMU Sphinx library [2], which achieved consid-
erable high false negative rates (i.e. no recognition of
spoken words). This means that the speaker had to
repeat the verbal command several times for the voice
command application to recognize the word correctly.

Fig. 14 BPMN diagram representing the communication process between web services for the Voice Command application



504 J Intell Robot Syst (2017) 87:487–506

However, this has occurred because the experiments
were conducted with the speaker located at different
positions from the robot microphone and in a room
with high background noise. Thus, we do not consider
it a poor result, but rather a common situation to be
faced in real-world scenarios.

The reported experiments also achieved a small
false positive rate (recognition of the spoken com-
mand as another phonetically similar word). This
result led us to search for a set of words that could
represent well the desired commands (e.g. forward or
ahead? Stop or brake?) aiming at reducing this figure
of merit even further. The full video for this perfor-
mance test can be found in youtu.be/TMPayPo31qU.

4 Conclusions and Future Work

In this paper we proposed a middleware with the
goal of accessing robot resources from different com-
puting devices over the local network or Internet.
The software modules (services and applications) can
be implemented in different languages, according to
the performance needs of each user. In this work,
for example, several programming languages, such as
Python, PHP, Java, Javascript, Flash/Flex and C/C++,
were used, giving rise to a more flexible, portable
and modular implementation of new web services and
applications, significantly reducing the restrictions for
the collaboratively evolution of middleware. The mod-
ular nature of the proposed middleware architecture
makes the inclusion of new robotic resources very
simple and has proved to be very useful in other
robotic applications in our laboratories.

The adopted security methodology opens up the
possibility to integrate robotic systems through the
Internet, because the use of HTTP Digest Authen-
tication method combined with the HTTPS secure
protocol increased the middleware’s security access
and reduced the weakness of the HTTP Digest about
the inability of client to confirm the identity of the
server. This improvement in security was also a result
of the use of tokens, that allows control practically in
real-time of cross access permissions between services
and applications authenticated by the middleware. The
adoption of the HTTP protocol and XML, which have
fewer restrictions on firewalls, has facilitated the inter-
operability between different network domains. The
middleware was developed using the Linux operating

system, with some applications to the Android and
Microsoft Windows operating systems. The use of
web browsers as the interface for human-robot inter-
action is an innovative aspect of the proposed middle-
ware that allows local and remote access (fixed and
mobile) in a concurrently and safe way, reducing the
need for software installation on the client and increa-
ses HMI portability between different operating sys-
tems, computers and mobile devices. The robot control
structure was based on Brook’s subsumption archi-
tecture, adapting the behavior of applications and
services to the dynamic context of the robot’s envi-
ronment. As an arbitration method, the subsumption
architecture turned out to be very efficient for resolv-
ing conflicting commands, as illustrated in Section 2.

Currently, we are developing a rosbridge [15] sup-
port for SOM4R. This will create a common interface
for robots running ROS and SOM4R to send messages
to each other, and for application developers to write
software that can support robots running any oper-
ating system. We are also extending the features of
the SOM4R in order to use it as the middleware for
managing the energy resources of smart homes and
buildings, in consonance with the Internet of Things
(IoT) concept.

Acknowledgments The authors would like to thank the finan-
cial support of NUTEC (Núcleo de Tecnologia Industrial do
Ceará) and CNPq (grant no. 309451/2015-9).

References

1. Business process model and notation (BPMN). http://www.
omg.org/spec/BPMN/index.htm, a. Accessed: 02-03-2012

2. CMUSPhinx wiki. http://cmusphinx.sourceforge.net/wiki/,
b. Accessed: 02-03-2012

3. eSpeak Text to speech. http://espeak.sourceforge.net, c.
Accessed: 02-03-2012

4. The OAuth 2.0 authorization protocol v2-23. http://tools.
ietf.org/html/draft-ietf-oauth-v2, d. Accessed: 03-02-2012

5. OpenKinect Project. http://openkinect.org/wiki/main page,
e. Accessed: 02-03-2012

6. Pyfaces: Face recognition system. https://code.google.com/
p/pyfaces/, f. Accessed: 08-27-2011

7. Fielding, R.T.: Ph.D. thesis. http://www.ics.uci.edu/ fielding/
pubs/dissertation/top.htm, g. Accessed: 11-10-2011

8. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigen-
faces vs. Fisherfaces: recognition using class specific linear
projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7),
711–720 (1997)

http://youtu.be/TMPayPo31qU
http://www.omg.org/spec/{BPMN}/index.htm
http://www.omg.org/spec/{BPMN}/index.htm
http://cmusphinx.sourceforge.net/wiki/
http://espeak.sourceforge.net
http://tools.ietf.org/html/draft-ietf-oauth-v2
http://tools.ietf.org/html/draft-ietf-oauth-v2
http://openkinect.org/wiki/main_page
https://code.google.com/p/pyfaces/
https://code.google.com/p/pyfaces/
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm


J Intell Robot Syst (2017) 87:487–506 505

9. Billinghurst, M., Cheok, A., Prince, S., Kato, H.: Real
world teleconferencing. IEEE Comput. Graph. Appl. 22(6),
11–13 (2002)

10. Billinghurst, M., Kato, H.: Collaborative augmented reality.
Commun. ACM 45(7), 64–70 (2002)

11. Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly
Media, Inc (2008)

12. Brooks, R.A.: A robust layered control system for a mobile
robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

13. Brooks, R.A.: A robot that walks - emergent behaviors from a
carefully evolved network. NeuralComput. 2, 692–696 (1989)

14. Bruyninckx, H.: Open robot control software: the OROCOS
project. In: Proceedings of the International Conference on
Robotics and Automation (ICRA’2001), vol. 3, pp. 2523–
2528 (2001)

15. Crick, C., Jay, G., Osentosiki, S., Pitzer, B., Jenkins, O.C.:
Rosbridge: ROS for non-ROS users. In: Proceedings of
the 15Th International Symposium on Robotics Research
(ISRR’2011), pp. 1–12 (2011). www.isrr-2011.org/
ISRR-2011//Program files/Papers/Jenkins-ISRR-2011.pdf

16. Crick, C., Jay, G., Osentoski, S., Jenkins, O.: Ros and
rosbridge: roboticists out of the loop. In: ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI),
pp. 493–494 (2012)

17. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein,
M., Broekstra, J., Erdmann, M., Horrocks, I.: The semantic
web: the roles of XML and RDF. IEEE Internet Comput.
4(5), 63–74 (2000)

18. Elkady, A., Joy, J., Sobh, T., Valavanis, K.: A structured
approach for modular design in robotics and automation
environments. J. Intell. Robot. Syst. 72(1), 5–19 (2013)

19. Elkady, A., Sobh, T.: Robotics middleware: a compre-
hensive literature survey and attribute-based bibliography.
Journal of Robotics 2012(ID-959013), 1–15 (2012)

20. Fielding, R.T., Taylor, R.N.: Principled design of the
modern web architecture. In: Proceedings of the Interna-
tional Conference on Software Engineering (ICSE’2000),
pp. 407–416 (2000)

21. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., Stewart, L.: RFC 2617 - HTTP
Authentication: Basic and Digest Access Authentication.
Technical Report, The Internet Engineering Task Force
(1999). www.faqs.org/rfcs/rfc2617.html

22. Garber, L.: Wi- races into a faster future. Computer 45(3),
13–16 (2012)

23. Gerkey, B.P., Vaughan, R.T., Stoy, K., Howard, A.,
Sukhatme, G.S., Mataric, M.J.: Most valuable player: a robot
device server for distributed control. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’2001), vol. 3, pp. 1226–1231 (2001)

24. Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture,
challenges and applications. IEEE Netw. 26(3), 21–28 (2012)

25. Hunziker, D., Gajamohan, M., Waibel, M., D’Andrea, R.:
Rapyuta: the RoboEarth cloud engine. In: Proceedings of
the International Conference on Robotics and Automation
(ICRA’2013), pp. 438–444 (2013)

26. Jackson, J.: Microsoft robotics studio: a technical introduc-
tion. IEEE Robot. Autom. Mag. 14(4), 82–87 (2007)

27. Kramer, J., Scheutz, M.: Development environments for
autonomous mobile robots: a survey. Auton. Robot. 22(2),
101–132 (2007)

28. Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical anal-
ysis of detection cascades of boosted classifiers for rapid
object detection. In: Michaelis, B., Krell, G. (eds.) Pattern
Recognition - Proceedings of the 25th DAGM Symposium.
Springer (2003)

29. Meng, J., Mei, S., Yan, Z.: RESTful web services: a solu-
tion for distributed data integration. In: Proceedings of
the IEEE International Conference on Computational Intel-
ligence and Software Engineering (CiSE’2009), vol. 3,
pp. 1–4 (2009)

30. Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another
robot platform. Int. J. Adv. Robot. Syst. 3(1), 43–48
(2006)

31. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: A review of
middleware for networked robots. International Journal of
Computer Science&Network Security 9(5), 139–148 (2009)

32. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on stan-
dardization in mobile robot programming: the carnegie
mellon navigation (CARMEN) toolkit. In: Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’2003), vol. 3, pp. 2436–2441
(2003). doi:10.1109/IROS.2003.1249235

33. Nesnas, I., Simmons, R., Gaines, D., Kunz, C., Diaz-
Calderon, A., Estlin, T., Madison, R., Guineau, J.,
McHenry, M., Shu, I.-H., Apfelbaum, D.: CLARAty: chal-
lenges and steps toward reusable robotic software. Int. J.
Adv. Robot. Syst. 3(1), 23–30 (2006)

34. Nesnas, I., Wright, A., Bajracharya, M., Simmons, R.,
Estlin, T.: CLARAty and challenges of developing interop-
erable robotic software. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS’2003), vol. 3, pp. 2428–2435 (2003)

35. Overdick, H.: The resource-oriented architecture. In: Pro-
ceedings of the 2007 IEEE Congress on Services, pp. 340–
347 (2009)

36. Peng, D., Li, C., Huo, H.: An extended username:
token-based approach for REST-style web service security
authentication. In: Proceedings of the 2nd IEEE Interna-
tional Conference on Computer Science and Information
Technology (ICCSIT’2009), pp. 582–586 (2009)

37. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: an open-
source robot operating system. In: Proceedings of the Open-
Source Software Workshop of the International Conference
on Robotics and Automation (ICRA’2009) (2009)

38. Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R.,
Das, H.: The CLARAty architecture for robotic autonomy.
In: Proceedings of the IEEE Aerospace Conference, vol. 1,
pp. 1121–1132 (2001)

Marcus V. D. Veloso was born in Fortaleza, Ceará, Brazil, in
1965. He received the B.S. (2002) and M.Sc. (2005) degrees in
Physics from the Federal University of Ceará (UFC), located
at the northeast coast of Brazil. In 2014, he got a Ph.D. degree
in Teleinformatics Engineering from the same university. His
current research interests are computational intelligence, pattern
recognition, middleware for robotics and distributed systems for
robotics and automation.

http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Jenkins-ISRR-2011.pdf
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Jenkins-ISRR-2011.pdf
www.faqs.org/rfcs/rfc2617.html
http://dx.doi.org/10.1109/IROS.2003.1249235


506 J Intell Robot Syst (2017) 87:487–506

José Tarcı́sio C. Filho was born in Crato, Ceará, Brazil, in
1959. He received the B.S. degree in Electrical Engineering
from the Federal University of Ceará (UFC) in 1985, and the
M.Sc. and Ph.D. degrees in Electrical Engineering from the
University of Campinas in 1988 and 1992, respectively. His
research interests are robust Kalman filtering, game theory and
applications, robotics and automation.

Guilherme A. Barreto was born in Fortaleza, Ceará, Brazil,
in 1973. He received his B.S. degree in Electrical Engineer-
ing from the Federal University of Ceará in 1995, and both
the M.Sc. and Ph.D. degrees in Electrical Engineering from the
University of São Paulo in 1998 and 2003, respectively. Cur-
rently, he is associate professor of the Department of Teleinfor-
matics Engineering, Federal University of Ceará (UFC), Fort-
aleza, Ceará, Brazil. At this institution, Prof. Guilherme Barreto
leads the Group of Advanced Machine Learning (GRAMA),
whose members pursue a variety of research topics, such as neu-
ral networks & computational intelligence, pattern recognition
& machine learning, nonlinear system identification, time series
prediction, and intelligent robotics. More recently, members of
GRAMA have been collaborating extensively with outstanding
research groups in Portugal (FEUP), Spain (Granada), Germany
(Bielefeld), Finland (Aalto) and England (Sheffield). Prof.
Barreto has been serving as reviewer for several international
journals and conferences. He is also serving as the editor-in-
chief of the journal Learning & Nonlinear Models (L&NLM)
published by the Brazilian Computational Intelligence Society
(SBIC) and as an associate editor of the Journal of Machine
Learning and Cybernetics (Springer), International Journal of
Innovative Computing and Applications (Inderscience), and
Frontiers in Bioengineering and Biotechnology. He is the presi-
dent of the SBIC for the period 2015–2017.


	A Middleware for Robotic Applications based on ROA
	Abstract
	Introduction
	Hardware Abstraction/Modularity
	Communication Reliability
	Security Issues



	SOM4R: Simple and Open Middleware for Robotics
	Implementation
	Security Issues
	Middleware Core Web Services
	Additional Services
	Control Structure: Lessons from Subsumption Architecture
	Support for Network and Swarm Robotics
	Integration with Existing Middlewares


	Further Discussion

	Experimental Results
	Applications
	Joystick Application
	Runaway Application
	Voice Command Application



	Conclusions and Future Work
	Acknowledgments
	References


