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Abstract In order to avoid being bedridden, a pre-
emptive walking rehabilitation is essential for peo-
ple who lose their walking ability because of illness
or accidents. In a previous study, we developed an
omnidirectional walking training robot (WTR), the
effectiveness of which in rehabilitation was validated
by clinical testing. In the primary stage of the walk-
ing training, the WTR guides the user to follow the
predesigned therapy program to conduct the walk-
ing training. This study focuses on the later stages
of training in which the user plays an active role of
determining the training by himself/herself, and the
WTR must follow the user’s intent. However, identify-
ing a user’s intent is challenging. In the present study,
we address this problem by introducing a directional-
intent identification method based on a distance-type
fuzzy reasoning algorithm. The effectiveness of the
directional identification method is experimentally
confirmed.
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1 Introduction

An increasing number of people suffer from walk-
ing disabilities caused by age, illness, or accidents
[1-3]. To avoid people suffering from such prob-
lems becoming bedridden or worse, it is necessary
to help them regain their ability to walk as quickly
as possible through training [4]. Early rehabilita-
tion is often achieved through training [5] and self-
administered exercise regimes that can provide suf-
ferers the option of living outside institutional care
facilities [6]. Effective walking training requires not
only a forward motion but also a complex combination
of motions including back/forward motion, oblique
motion, and rotation because that human walking
inherently involves this full range of motions. How-
ever, the training devices currently in use, such as
canes [7], crutches [8], parallel bars, and walkers
[9], allow only a few basic motions and training pri-
marily conducted at hospitals under the guidance of
therapists. Wearable exoskeletons have been attract-
ing interest as training systems because they offer a
number of potential advantages, such as allowing the
user to traverse irregular surfaces [10, 11]. Because
this kind of rehabilitation device surrounds the whole
leg, its motion naturally follows that of the subject
[12]. However, current designs are difficult to put on
and pose a danger of the user falling. Other kinds
of wearable gait-training robots are popular because
they can physically support the limbs during therapy
and allow a more seamless transition between assistive
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and resistive rehabilitation as the patient progresses
[13, 14]. However, these devices are expensive, can-
not traning the balance of walking for users, and are
only available in a restricted number of clinical or
rehabilitation centers [15].

To address the convenience of walking train-
ers in practical applications, the authors previously
developed an omnidirectional walking training robot
(WTR) [16], the effectiveness of which was confirmed
via clinical tests [17-19]. Our WTR can provide two
levels of training, reflecting the user’s walking abil-
ity as “passive walking pattern training” and “active
walking pattern training”. Passive walking pattern
training is the primary stage in which the training
must be conducted under the guidance of therapists.
Our WTR can store the training courses designed
by the therapist and conduct the training courses in
the absence of a therapist. The user needs to follow
the WTR to continue rehabilitation, and the training
course can be updated to follow up the recovery of the
user. As rehabilitation proceeds, training can move to
the second level, active walking pattern training. At
this point, the user can independently walk and train
by following the state of their own lower limbs. How-
ever, the danger of falling remains with potentially
serious health consequences for the user. Our WTR
therefore play a fall prevention function at this stage
by moving along with the user. The user’s own intent
guide this motion, which mean the user plays an active
role. This naturally means that the WTR must first
detect the user’s intent.

Handle manipulation, for example, with a mouse
or joystick, could be used to communicate the user’s
intent to the WTR, but in such methods, the user
must concentrate on the handle, which creates a
danger when walking [20]. A control interface is
required that is able to detect the user’s directional
intent without handle manipulation. Previous studies
have explored a wide variety of recognition meth-
ods. One approach is based on the brain-computer
interface (BCI), in which the brain activity is mea-
sured during use. These approaches mainly rely on
electroencephalography (EEG), which is safe and
inexpensive but has slow communication [21]. Mag-
netoencephalography (MEG) offers a higher signal
quality and communication speed than EEG, but it is
too expensive for personal use in domestic settings
[22]. Functional magnetic resonance imaging (fMRI)
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[23, 24] is also expensive and has high variability
in measurement of brain signals, as does functional
near-infrared spectroscopy (fNIRS) [25]. All these
BCI methods are in the early stages of research and
development and are not yet sufficiently mature for
practical applications. Motion intentions can also be
communicated by explicit voice commands from the
user [26], but this is inconvenient since the clear
expression of directional intentions is difficult. This
method can only cover a restricted range of directional
intent as it uses a discontinuous method of expression.
Other approaches used robot vision [27, 28], includ-
ing depth vision sensors, to estimate the user’s walking
state when requiring assistance [29]. The accuracy of
this method is low, and this method is difficult to apply
to the WTR which we developed. In [30], an inertial
measurement unit (IMU) was used to infer the direc-
tional intentions of the user. However, the accuracy
was insufficient due to the drift of the internal sensor.
Electromyography (EMG) has been used extensively
to detect user’s intent [31]. The recognition rate of this
method is low due to its high sensitivity to electrode
displacement [32]. An interface “plate” was developed
to indicate directional intent [33]. and in some other
approaches, the handles of the walker were equipped
with 6-DOF force/moment sensors [34] or a six-axis
force/torque sensor was used to create an interface
between the user and an omnidirectional cane robot
[35]. The essential principle of these methods, how-
ever, is the same as the principle using a joystick to
guide an electric wheelchair, which was developed
without considering the user and only focusing upon
the basic mechanical functions of the robot. In appli-
cation, since there are individual differences, all users
must familiarize themselves with the same manipula-
tion technique for the robot. Therefore, these methods
still require the user to strictly concentrate on the
manipulation of the handle, which can be inconvenient
or dangerous when walking.

Artificial intelligence (Al) is a quite effective way
to improve the robot intelligence to conveniently esti-
mate the intent of the user. In recent years, Al has
been used in a wide range of fields including med-
ical diagnosis, stock trading, robot control, drilling
system, smart grid, and buildings [36, 37]. Most of
these applications have validated that Al is successful
and useful in these filed. For example, for applica-
tion in the forecasting of the Dez reservoir inflow,
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Fig.1 Walking training robot

the method of autoregressive ANN is verified to be
more superior than the method of ARMA and ARIMA
[38]. Moreover, the method of dynamic autoregressive
ANN is the best way to forecast the inflow [39], the
application in pressure loss adjusting for the design of
sprinkle and trickle irrigation system [40], the applica-
tion in simulation of surface irrigation using SIRMOD
[41], and the contrast of these surface irrigation sim-
ulation models to design and manage the irrigation
systems [42]. These successful application cases could
be as the reference and contrast for us. Therefore, we
develop the directional intent recognition method for
the WTR based on the Al

In this paper, we proposed a novel intelligent
method for recognizing a user’s intended direction
based on a distance-type fuzzy-reasoning method. The
key contribution to this approach is very comfort-
able and intuitive for the user, as it considers the
users’ individual operational characteristics, its ease
of implementation, its high identification accuracy

Fig. 2 Walking training
robot used for walking
assistance

compared to other method. This method can be
applied to users with different walking habits by
updating the fuzzy knowledge base. This base is a
simple and intuitive method for quantitatively express-
ing the relation between the force-sensor outputs and
directional intent based on the concept of using vague
linguistic variables. In addition, a distance-type fuzzy-
reasoning method is proposed to determine the direc-
tional intent. Even if there are no intersection between
the fuzzy knowledge base and the fact meaning the
present force outputs, this method is still effective. The
effectiveness of the proposed method was validated
though a series of experiments.

2 Method
2.1 Walking Training Robot

We first constructed a prototype of our WTR, which
has been designed to fasten the recovery of walking
ability. Four powered mecanum wheels were posi-
tioned in the configuration shown in Fig. 1, enabling
omnidirectional movement of the WTR [16]. The
four wheels were independently driven by four highly
efficient, permanent, magnet-activated direct current
(DC) motors controlled by a servo controller [43]. The
upper limit to payload for each mecanum wheels is
80kg, maximum loading range is from 11kg to 80kg,
and the power source is DC 24V. Supported by the
WTR, a test user could move through an indoor envi-
ronment by resting his or her arm on the armrest
(Fig. 2). Four uniaxial force sensors labeled Sen.FL,
Sen.FR, Sen.BL, and Sen.BR (where F, L, B, and

Equipped with force sensors
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R denote front, left, back, and right, respectively)
to measure the pressure from user were installed at
the four support points between the WTR’s armrest
and body, as shown in Fig. 2. These positions rep-
resent the main user-robot interfaces. When assume
that the pressure applied by the user acts at the cen-
ter of the four points, all loads are uniformly borne by
the four support points while the user’s arms are on
the armrest. Consequently, force sensors at these four
points can be used to distinguish a user’s directional
intent.

The complete functioning of the walking rehabili-
tation system is shown in Fig. 3. As the user chooses
a walking direction and consciously inclines his or her
body in that direction, the WTR identifies the user’s
intent by sensing the forces applied to the armrest. The
speed of the WTR is generated using a trajectory plan-
ning method according to the identified intent. And
we will develop the trajectory planning method in our
future worker. A controller was proposed to ensure the
tracking accuracy of the WTR, as described in our pre-
vious report [44]. Finally, the WTR assists the user
to move in the intended direction. In this study, we

Pressure
distribution
changed

|
Fig. 4 Identify method: with the left intention
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focused on developing the identification of directional
intent.

2.2 Mechanism of our Directional-Intent Recognition
Method

When approaching one direction, the human body
is naturally inclined in the targeted direction. We
exploited this observation to detect the user’s direc-
tional intent. For example, when a user wants to move
to the left while standing at the center of the WTR
(Fig. 4), his or her body inclines in the intended direc-
tion while the arms press on the armrest to prevent
falling. The distribution of forearm pressure on the
four sensors then changes, allowing the directional
intent to be inferred from the change in the distribution
of pressure.

Our distance-based fuzzy-type reasoning method
needs the fuzzy linguistic variables (For examples:
large, medium, small, and very small) to express the
outputs of the force sensors. The user was assumed to
travel in eight directions: Right (R), Front Right (FR),
Front (F), Front Left (FL), Left (L), Back Left (BL),

Knowledge

base

Force Identification
° information result
—>| Reasoning Left
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Fig. 5 Subject’s required direction and angle in experiment

Back (B), and Back Right (BR). The eight directions
were defined by eight angles in the robot’s body coor-
dinate system, as shown in Fig. 5. The directional
intent was defined as B with respect to the x’-axis in
the WIR’s body coordinate system. The relationship
between the directional intent and the outputs of the
force sensors is described using fuzzy logic for the
following cases as some general examples.

Case 1 When the user wants to move toward the front
right, the output of Sen.FR is large, the output of
Sen.FL is small, the output of Sen.BR is small, and the
output of Sen.BL is very small.

Case 2 When the user wants to move toward the
left, the output of Sen.FR is very small, the output of
Sen.FL is medium, the output of Sen.BR is very small,
and the output of Sen.BL is medium.

Case 3 When the user wants to move back, the out-
put of Sen.FR is very small, the output of Sen.FL is
very small, the output of Sen.BR is medium, and the
output of Sen.BL is medium. A total of 256 cases
are obtained by the different combinations of the four
sensors because each sensor has four conditions. The
resulting angular resolution is less than 1.5°, which
is less than the angular resolution of the human eye.
Consequently, four force sensors at the four orthog-
onal directions of the WTR’s armrest are sufficient
to distinguish a user’s directional intent. This allows
the user’s directional intent to be inferred with high
accuracy as follows:

If Sen.FR is large, Sen.FL is small, Sen.BR is
small, and Sen.BL is very small, then g is 45°.

If Sen.FR is very small, Sen.FL is medium, Sen.BR
is very small, and Sen.BL is medium, then g is 180°.

If Sen.FR is very small, Sen.FL is very small,
Sen.BR is medium, and Sen.BL is medium, then 8 is
270°.

However, the directional intent and the physical
representation of that intent do not always match
because of the distinctly individual habits of human
movement and because the settings of the four sensors
are not identical. In the next subsection, we introduce
the development of the knowledge base for the fuzzy
logic system and the characterization of the linguistic
variables on the basis of their membership functions.

2.3 Constructing the Membership Functions
of the Linguistic Variables

As noted above, the outputs of the four force sensors
cannot be uniformly described using only four condi-
tions. We therefore experimentally collected a knowl-
edge base and determined the membership functions
of the linguistic variables for different individuals. In
our experiments, users were asked to consciously ori-
ent themselves in eight separate directions, as shown
in Fig. 5, while remaining stationary. Each user briefly
inclined his or her body in each direction across sev-
eral trials. The mean and standard deviation (SD) of
each sensor output in each direction was calculated
and labeled as A .Mean and AY.SD, where, i= 1,
2,..., 8 denote the number of directional intent, j=1, 2,
3, 4 denote the number of sensor. Here, A is a lin-
guistic variable of each sensor in each direction, and
M 4ij (x) 1s the membership function of each variable.
A membership function w4 (x) was represented by
the normal triangular fuzzy set shown in Fig. 6 with
parameters allj s aé’ , and agj , which were calculated
from the means and SDs of the sensor outputs: a;/ =
AY mean — AY.SD, aéj = AY.mean, and a;j =
AY .mean 4+ A" .SD. The singleton set A’ represents
one parameter a/ which denotes the current output of
each sensor, where (i 4; (x) is the linguistic variable of

14 A7 A’
I SD|
0 alij /b;j a;’ a’
Mean

Fig. 6 Definition of Linguistic variables’ membership functions
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fact A/, and B! is the linguistic variable representing
the user’s directional intent. Also, ppi (x) is the mem-
bership function of B?, which is a singleton set with
one parameter b'.

Then, the if-then fuzzy rules are extracted as Eq. 1
to govern the deduction of proposition result from a
set of premises.

Rule I: If x;=A"l, x;=A1% x3=A13 x4=A'"* then =B!
Rule 2: If x; =A% xo =A% x3=A% x4=A%" then f=B2

Rule8: If x; =A%, xp = A%2, x3 =433, x4 =A% then p=B?

Fact: x; =Al, xo =A%, x3=A3, x4, = A*
Result : B=B

6]

where AV and B' i = 1,2,---,8,j = 1,2,3,4)
are the antecedent and outcome discussed above, and
A/ and B are the fact and result, respectively. The
membership between antecedents xi, xp, x3, and x4
was given by AND. The sensor outputs showed that
no two rules were identical. When the fuzzy rules
were defined as described, the user’s directional intent
could be derived from the current output of the force
sensors using a distance-type fuzzy reasoning method.
This is described in the next subsection.

2.4 Distance-Type Fuzzy Reasoning Method

Mamdani’s fuzzy reasoning [45], functional fuzzy rea-
soning, and simplified fuzzy reasoning are widely
used in fuzzy control, expert systems, and other fields
[46, 47]. This approach to fuzzy reasoning is gener-
ally called the direct approach. However, an associated
problem is that the degree of compatibility between
antecedent and fact is represented by the height of
the common area between them as shown in Fig. 7a.
This means that the fact set needs to intersect with
the antecedent set. If the common area has empty
parts and if the fact set is located inside those empty
parts(situation in Fig. 7b), no reasoning result can be
derived [48, 49].

Antecedent Fact Antecedent Fact

(a) Height of common area (b) Distance

Fig. 7 Difference between the (a) direct approach and (b)
proposed method
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In our study, there were empty common areas
between the antecedent sets, and the relevance
between antecedent and fact sets was therefore
expressed by the distance between the two, not by their
shared common area (see Fig. 7b). This makes our
method effective even when the antecedent is com-
pletely separate from the fact [SO]. A range of methods
can be used to calculate the distance between two
fuzzy sets [51, 52]. To make the calculation simple
and accurate, we used a distance calculation that mea-
sures how far the two sets are from each other based
on Euclidean distance [50]. For the fuzzy sets Al AT,
the distance is calculated as

1/p

1

d(A, ATy = U jinf Al —iané‘pdozj|
0

1/p

1 . P
+ |:/ ‘supAfx/ - supA({l‘ daj| 2
0

where 1 < p < o0; || represents calculation of the
absolute value, and inf and sup refer to the lqwer and
upper limit values of the set, respectively. Ag and A}
are the «-level set of fuzzy‘sets A and A7 , which are
defined as, Vo € (0, 1], Ay = {x € Rl ij(x) > Ol},
and A} = {x € Ry (x) = a}.

The proposed method of identifying directional
intention based on the distance-type fuzzy reasoning
method consisted of the following three steps.

Step 1: On the basis of the distance calculation
method shown in Eq. 2, the distance d;; between the
jth antecedent triangle-type fuzzy set of the ith rule
AU and the fact fuzzy singleton A/ can be calculated
as

1 2 k+1 -
dij (AT, ATy = — )" [Z(afj —al)?
ﬁk:l I=k
k1l 3
+[Ta - af‘:| 3)
I=k
where i = 1,2, --- ,8,and j =1, 2, 3, 4. Note that

the distance d;; requires three parameters. The calcu-
lated distance d;; increases as the fact becomes further
separated from the antecedent. When fact A/ exactly
coincides with antecedent A/, the distance d; 18 0.
Step 2: The membership between antecedents x,
X2, x3, and x4 was given by AND. Hence, the distance
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d; between the antecedent of the ith fuzzy rule and fact
A7 was given by
4
di = wjdij(AY, A7) (4)
Jj=1

The value d; shows the relevancy between the fact
and the ith rule. A small d; indicates a strong rele-
vance, implying that the identification result is close
to the ith result. In this study, w; reflected the impor-
tance of each sensor in each fuzzy rule. Weighting
the sensors improved the WTR’s reasoning accuracy,
which will be further explored in future work. In this
study, all w; are set to 1.

Step 3: The identified directional intention angle
was calculated by the following reasoning:
B = Z:‘lzl[bi H;l'zl,j;éi di] (5)

Z?:l H?:l,j;éi di

where b’ is the consequent of each fuzzy rule. For
Eq. 5, the reasoning result is the spatial average of all
fuzzy consequents, in terms of relevance d; between
the fact and the fuzzy rules. A special conditionis d; =
0, which implies that the fact exactly equals fuzzy
rule i. In this case, result from Eq. 5 is the ith fuzzy
consequent, which conforms to the physical truth.

The effectiveness and the special features of the
proposed distance-type reasoning method are shown
as follows.

Theorem 1 The reasoning result using distance-type
reasoning is bounded.

Proof On the basis of the distance calculation method
shown in Eq. 2, Vk € {1,2,---,8}, dr = 0, and
because no two antecedent sets are exactly the same,
i1 lj=1 jzidi # 0. Furthermore, each conse-
quent b’ and distance d; is bounded, based on Eq. 5;
thus, 8 is bounded. O

Theorem 2 The reasoning method exactly sat-
isfies the modus ponens: 3i € {1,2,---,8} if
Vi € {1,2,3,4} and Al = AY then the reasoning
result is B = b'.

Proof Here, Vj € {1,2,3,4}, if A/ = A, then,
based on the distance calculation method shown in
equation (4), we can obtain the distance d; = 0.
Moreover, there are no two antecedent sets exactly

the same, Vk € {1,2,---,8} — {i} # 0, dx # 0.
Therefore, we get the reasoning result 8 = b'. O

Theorem 3 [f the fact is closer to one antecedent, the
result is closer to the consequent of that antecedent.

Proof B is the reasoning result with distance
di,dy,--- ,dy, -+ ,dy, and B’ is the reasoning
result with distance di,ds, --- , dq’, ---,d,. As no
two antecedent sets are exactly the same, Vk €
{1,2,---,8} = {i} # 0,dx # 0,if d; < d,/, then
d(B, BY) < d(B', BY), where BY is the reasoning
result when d;, = 0. Thus, when the fact is closer to
one antecedent, the result is closer to the consequent
of that antecedent. L]

Theorems 2 and 3 show that this reasoning method
satisfies the asymptotic characteristic of reasoning, in
which the reasoning result is estimated in such a way
that it agrees with human intuition.

3 Experiments and Results

Our experiments to validate the effectiveness of the
proposed method recruited six healthy subjects (three
males and three females), coded A, B, C, D, E, and
F. The experimental procedures involving human sub-
jects described in this section were approved by Kochi
University of Technology, and written informed con-
sent was obtained. The average age of the subjects
was 29, the average height was 165 cm, and the aver-
age weight was 61.3 kg. All participants were healthy
and had similar walking habits. We first collected
the knowledge base and determined the member-
ship function of the linguistic variables. Each subject
was asked to incline his or her body in each direc-
tion for 20 s, and ten trials for each direction were
conducted. The total mean and SD of the force sen-
sor outputs as the six subjects consciously moved in
eight different directions constituted the antecedent
fuzzy knowledge, while the eight directional inten-
tions formed the consequent knowledge. This is sum-
marized in Table 1, and the membership functions of
the antecedent knowledge sets are shown in Fig. 8.
All (i=1,2,---,8)denote the membership functions
of the eight fuzzy variables defined as the directions
R, FR, F, RL, L, BL, B, BR obtained by the Sen-
sor.FR. Those obtained by Sensor.FL, Sensor.BR, and
Sensor.BR are, respectively, denoted by A’%, A'3 and
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Table 1 Abstraction of the Fuzzy Knowledge

Rules SenFR  SenFL Sen.BR SenBL B!
Mean  36.7 5.7 74.8 8.0 R(0°)
SD 22.4 3.7 104 6.2

Mean 51.7 9.3 28.9 7.6 R(45°)
SD 20.9 6.3 9.3 3.2

Mean  36.9 332 3.1 5.5 R(90°)
SD 11.2 11.0 11.3 10.6

Mean 12.1 44.0 7.7 27.9 R(135°)
SD 9.0 20.4 3.1 9.2

Mean 7.6 27.11 13.0 69.3 R(180°)
SD 3.1 10.1 13.5 13.5

Mean 16.0 13.2 21.3 85.6 R(225°)
SD 5.8 8.8 13.2 22.1

Mean 4.4 2.7 72.0 71.8 R(270°)
SD 4.1 5.9 25.5 28.3

Mean 14.9 12.4 84.9 15.5 R(315°)
SD 12.4 3.1 30.1 8.8

A Tt can be seen that the width of each member-
ship function is different, and the distribution of the
membership functions is uneven. This is because the

AT p21 a3 a1 AB1__ pB1__ aT1__ 81

WIVAZNS

-30-20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120
Output of force Sen.FR (Antecedent x,) [N]

_A12___p22_ aA32_ p42_ p52_
1

AB2 __A72___ 582

930 20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

Output of force Sen.FL (Antecedent x,) [N]

_ A13___pA23 ___pA33___ 43 ___ pA53_pB3_A73__ 83

930 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120
Output of force Sen.BR (Antecedent x,) [N]

A4 _p24__ _pa34_ p44_ N4
1

AB4 __AT4___p84

E)30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110120

Output of force Sen.BL (Antecedent x,) [N]

Fig. 8 Membership functions of antecedent knowledge sets
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membership functions were set up by repeated exper-
iments based on intuitive manipulation of subjects
to thoroughly express the subjects’ individual differ-
ences and actual operational conditions. These vari-
ations of the membership function precisely reflect
the advantages of the proposed method, which has
appropriately embraced the subjects’ operational char-
acteristics. In detailed, if the target direction was
FR, the user placed maximum forearm pressure on
Sen.FR (compare Azl, A22, A23, A24); furthermore,
if the target direction was B, the user placed max
forearm pressure on Sen.BR and Sen.BL (compare
AT AT2 AT3, A74). These graphical trends are con-
sistent with what was observed during the actual event.
On the other hand, the Sensor.FR attained its max-
imum values (A%! and A'!) when traveling in the
FR and R direction, and its minimum values (A51
and A®")when traveling in the L and BL direction.
The same tendencies were obtained with Sensor.FL,
Sensor.BR, and Sensor.BL. However, on the whole,
the outputs of Sensor.BR and Sensor.BL are larger
than those of Sensor.FR and Sensor.FL, as the pres-
sure of an elbow on the armrest is larger than that
of a hand, due to the habits and forearm character-
istics of a human being. Additionally, not all results
are consistent with the normal situation due to indi-
vidual differences. Therefore, the fuzzy knowledge
base with the membership function introduced in this
paper successfully simulates this event, as shown in
Fig. 8.

3.1 Experiment: Relationship Between Knowledge
Radius and Reasoning Accuracy

It is well known that humans do not use their full range
of knowledge when making inferences or judgments.
Instead, they use only the knowledge that is relevant
in the particular situation. If irrelevant or only slightly
relevant knowledge is applied, accuracy is impaired.
In the same way, fuzzy reasoning does not utilize
the entire set of antecedent knowledge in all cases.
Antecedent knowledge that has little relevance to the
facts at hand is disregarded. This research incorpo-
rated such selective use of knowledge, referred to as
the knowledge radius. In the study, the knowledge
radius r specified the number of antecedent knowl-
edge sources that were clearly relevant to the situation
at hand. In step two of the distance-type fuzzy rea-
soning process, the calculated distances between the
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Fig. 9 Means and standard deviations of identification errors in each direction with radii of 3 and 5 (for subjects B and E)

current fact and antecedent fuzzy set were ordered
and stored: the smaller the distance, the smaller the
number, and the greater the relevance. The knowledge
radius was accounted for in step 3, as n was replaced
by the knowledge radius r in Eq. 5. Since the number
of antecedent knowledge sources for directional inten-
tion fuzzy reasoning was eight, r could be set as 2, 3,
.., 8.

Subjects B and E participated in experiments
designed to validate the proposed method for iden-
tifying directional intention. The two subjects were
requested to remain stationary with their arms on the
armrests while inclining their bodies in one of the
eight target directions (Fig. 5) in an ordered sequence.
Participants rested for 10 s before inclining their body
in the next targeted direction for 20 s. Two trials per
subject were conducted for each direction. Using the
force sensor outputs and the fuzzy reasoning method

(2]
o

A
o

20

Identification Error [°]

-60
-45 0 45 90 135180225270315360

Intentional Direction( Subject B) [°]

detailed in Section 3 and varying the knowledge radius
through all values between 2 and 8, the directional
intent of each subject was determined. The means and
SDs of the identification errors in each direction are
shown in Figs. 9 and 10.

It can be seen that the reasoning accuracy was
dependent upon the knowledge radius r. A knowl-
edge radius which achieves high reasoning accuracy is
dependent upon the directional intent. For most direc-
tions of movement (R, FR, F, FL, L), a high reasoning
accuracy was achieved with knowledge radii of 3 and
5. In all directions, however, the reasoning accuracy
was maximized at other knowledge radii. The knowl-
edge radius was therefore shown to significantly affect
accuracy of the proposed fuzzy reasoning method.

As shown in Figs. 9 and 10, knowledge radii of
3 and 5 minimized the identification errors of sub-
jects B and E, and particularly improved the reasoning

[2]
o

N B
o O

A D
S o

Identification Error [°]

60|
-45 0 45 90 135180225270315360
Intentional Direction( Subject E) [°]

m Radius 2 m Radius 4 m Radius 6 m Radius 7 m Radius 8

Fig. 10 Means and standard deviations of identification errors in each direction with radii of 3 and 5 (for subjects B and E)
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Fig. 11 Identification error of each subject

accuracies of the first five directions (R, FR, F,
FL, L). The directional identification method was
then further validated using a knowledge radius
of 5.

3.2 Experiment: Identification Error of Each Subject

To further validate the reliability of the proposed
identification method, the six subjects were requested
to intentionally maneuver the robot moving straight
along eight fixed directions (R, FR, F, FL, L, BL,
B, BR). The knowledge radius was set as 5, and the
method used was the same as that in the previous
experiment. The means and standard deviations of
the identification errors of each subject are shown in
Fig. 11.

3.3 Experiment: Path Tracking

The third experiment was designed to verify the use-
fulness of the proposed method in a practical appli-
cation. Experiments were conducted in an indoor

Fig. 12 The definition of
the identification angle in
the 2-D coordinate system

Intentional Direction [° ]

Intentional Direction [° ]

environment that made the subjects to track two kinds
of predefined path shown in Fig. 12. since the WTR’s
orientation is a constant 90°, so that the x’-axis in the
WTR’s body coordinate system is always the same
as the x-axis in the absolute coordinate system. The
angle of identified directional intention was denoted
as B in the two-dimensional (2D) world coordinate
system, as shown in Fig. 13, and denoted the angle
of directional intention with respect to the x-axis. The
velocity of the WTR was denoted by V and was set to
V = 0.3m/s. Using the intentional direction angle S
and the defined velocity V, the x- and y-components
of the velocity of the WTR are given by Eq. 6.

Vex (1) =cosB -V
Vey(t) =sing -V
w=0

(6

The required speeds for the four wheels of the
WTR were derived from the kinematic model Eq. 7,
following [44] .

@)

[v1 vy U3 v4]T = Kv(g)[vcx Ucy w]T
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Fig. 13 Structure and vector diagram of the WTR in a 2D
coordinate system

where:

—cos(0)—sin(@) cos(@)—sin(@) L+W T
cos(0)—sin(@) cos(@)+sin@) —(L+W)
—cos(0)—sin(@) cos(@)—sin(@) L+W
cos(0)—sin(@) cos(@)+sin@) —(L+W)

Ky (0)=

As shown in a 2D coordinate system of Fig. 13,
W is the half Width of WTR, L is the half Length
of WTR, v; (i = 1,2, 3,4) are the moving speeds of
four wheels, vey, vy are the x- and y-components of
the WTR’s velocity, respectively, and @ denotes the
WTR’s angular speed.

Subjects B and E, who participated in the establish-
ment of the fuzzy knowledge base, were recruited for
this experiment. The subjects first mentally mapped
the path they wanted to track and then inclined their

Path 1
Trial 1

BL°]

Time [s]
et BL |[Path 2
— 2251 BR __.
45" L
| Hl
0 24 48

Time [s]

Fig. 14 Subject B’s identification angles

bodies in the intended direction. In doing so, their
forearms exerted alternating pressure on the WTR’s
armrest. The angle of directional intention was iden-
tified from the measured force sensor outputs using
our fuzzy reasoning method. Equations 6 and 7 were
used to obtain the required speed for each of the four
wheels, allowing the WTR to move in the intended
direction. From the servo controller, an open-loop
speed controller fed the four permanent magnet-
activated DC motors with voltages proportional to the
required speed. Each subject completed two trials for
each path. The identification angles to track the two
path for subjects B and E are shown in Figs. 14 and 15.
And the tracking results for both paths are shown in
Figs. 16 and 17 for these two subjects respectively. To
further validate the proposed method, a healthy sub-
ject (age 27, height 166 cm, weight 59.2 kg, male)
who was not involved in generating the fuzzy knowl-
edge base was recruited for the path-tracking exper-
iment. His intentional paths were the same as those
of subjects B and E, and his identification angles and
tracking results are shown in Figs. 18 and 19.

4 Discussion
Firstly, the results of experiment 3 indicate that the

proposed method can be easily applied to WTR for
travel in the intended direction, which is superior

L Left Path 1
270 N -..- Trial 2
Front ™ ="=" =
. 1801 e
= 9o NNt e Back
g nw i om
Q| neretapanic -
" - |
0 24 48
Time [s]
315 wnamsy BL ,|Path 2
- CEL e TTiAI2
2251 3
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45 ]
- | \i
0 24 48
Time [s]
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Fig. 15 Subject E’s identification angles

to, and more convenient than, the methods based on
fMRI, EEG, and fNRIS. All the experimental results
confirmed that the proposed method was able to rec-
ognize the directional intention of the user. As shown
in Fig. 11. the identification error was less than 3°
in directions R, FR, and F and was less than 7°, in
directions FL, L, and B. The errors were slightly larger
in the other two directions. These are important results
for comparing the errors with those of the methods
based on IUM and EMG. There are fewer identifica-
tion errors in the proposed method than in the methods
based on IUM and EMG, which shows again the
proposed method’s superiority. The reason for this bet-
ter performance is that the force sensors used in the

2.5
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0.5¢
0.0r

y Position [m]
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Fig. 16 Subject B’s path-tracking results
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proposed method are more stable and have less noise
and drift phenomena. Besides, although identification
errors were found in each direction, the results were
promising and showed greater levels of accuracy than
those reported elsewhere [32, 35]. Since the proposed
fuzzy knowledge base drawn from linguistic variables
can appropriately simulate the relation between fore-
arm pressure and directional intent, it is more accurate
than the method proposed in [32, 35].

The cause of identification errors might be related
to the exact of knowledge base and reasonability of the
distance-calculation method and reasoning method.
The knowledge base was set-up based on the statisti-
cal results from the collection and processing of data
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Fig. 17 Subject E’s path-tracking results

obtained by several repeated experiments, although
had appropriately considered the users’ individual
operational characteristics; some special conditions
still had not be embraced. Moreover, the distance-
calculation method shown in equation (2) and the rea-
soning method shown in equation (5) have considered
all sensors in unity; in reality, each sensor has a dif-
ferent weight upon the effect of the reasoning results.
Therefore, identification error is introduced when
conducting reasoning for each direction. Further-
more, considering that backwards oblique-direction
movement is uncommon for human beings, and that
it is particular uncommon for them to incline their

body onto the armrest, therefore, the reasoning error is
larger for BL and BR direction.

In the path-tracking experiments, the identification
results shown in Figs. 14 and 15 are also the same
as that shown in Fig. 11. And in the path tracking
results, although some tracking errors are shown in
Figs. 16 and 17, the robot tracked the predesigned path
with acceptable accuracy. The directional intentions
of the subjects were correctly identified and prop-
erly followed by the WTR, demonstrating signifi-
cant improvement over previous results [29, 32]. The
intentional paths of the subject not involved in gen-
erating the fuzzy knowledge base were the same as
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Fig. 18 Identification angles for a subject not known to the fuzzy knowledge base
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Fig. 19 Path-tracking results of a subject not involved in generating the fuzzy knowledge base

those of the other subjects shown in Figs. 18 and 19.
This demonstrated that the fuzzy knowledge base was
capable of guiding the WTR along the intended path
of an unknown user with health conditions and walk-
ing habits similar to those of the subjects involved in
generating the fuzzy knowledge base.

Overall, our experiments demonstrated that the pro-
posed method for identifying directional intent is able
to approximate the user’s directional intent, that the
reasoning accuracy may be optimized by adjusting the
knowledge radius, and that the proposed method is
able to adapt to different classes of subjects as new
fuzzy knowledge sets are generated.

5 Conclusion

The novel WTR introduced in this paper will help
physiotherapists administer walking training to peo-
ple suffering from walking disabilities. The main
contribution of this study is the proposed method
for identifying a user’s directional intent using a
distance-type reasoning algorithm. This method can
significantly increase the convenience of users and
has been validated via an experiment. However, there
are identification errors due to the exact of knowl-
edge base, the reasonableness of distance calculation
method, and reasoning methods. Therefore, the prac-
ticality of the proposed method is limited by the
resulting low precision. Future work will attempt to
improve identification accuracy by including all of the
individual characteristics and special situations into
the knowledge base and proposing more reasonable
distance-calculation and reasoning methods. In addi-
tion, to the identification error of the BL and BR

@ Springer

directions, other sensors, such as initial sensors and
myogenic potential sensors, will be considered to in-
crease the identification accuracy.

Although the method was validated using healthy
subjects whose walking characteristics differ from
those of people with walking disabilities, the method
can be applied to this group by generating new fuzzy
knowledge sets. In future work, experiments will be
conducted with subjects who have one specific kind
of walking disability by creating a new knowledge
base with this kind of walking characteristic. This may
confirm that the proposed method can be applied to
groups of people with different walking styles.
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