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Abstract To mimic the human neck’s three degree-
of-freedom (DOF) rotation motion, we present a novel
bio-inspired cable driven parallel robot with a flexi-
ble spine. Although there exists many parallel robotic
platform that can mimic the human neck motion, most
of them have only two DOF, with the yaw motion
being actuated separately. The presented flexible par-
allel humanoid neck robot employs a column com-
pression spring as the main body of cervical vertebra
and four cables as neck muscles to connect the base
and moving platform. The pitch and roll movements
of moving platform are realized by the two dimen-
sional lateral bending motion of the flexible spring,
and a bearing located at the top of the compression
spring and embedded in the moving platform is used
to achieve the yaw motion of the moving platform.
By combing the force and torque balance equations
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with the lateral bending statics of the spring, inverse
kinematics and optimizing the cable placements to
minimize the actuating cable force are investigated.
Moreover, the translational workspace corresponding
to pitch and roll movements and rotational workspace
corresponding to yaw movement are analyzed with
positive cable tension constraint. Extensive simula-
tions were performed and demonstrated the feasibility
and effectiveness of the proposed inverse kinematics
and workspace analysis of the novel 3 DOF flexible
parallel humanoid neck robot.

Keywords Humanoid neck · Flexible parallel
robot · Kinematics · Optimal design · Workspace

1 Introduction

With the development of robotic industry, the design
and manufacture of robots become increasingly highly
personified. Among them, humanoid neck robot is an
important part of the body of a highly personified
robot. Humanoid neck robot can be roughly divided
into serial type and parallel type [1]. Serial humanoid
neck robot often uses chain structure, and each joint
can be controlled separately [2–4], while parallel neck
robot usually contains a fixed base and a moving plat-
form which connected to trunk and head respectively,
actuated by some parallel controllers between them [5,
6]. For serial robot, it has an advantage of simple struc-
ture and control, with a large workspace. However,
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Fig. 1 (a) Illustration of
3-DOF human head
movements (b)Yaw (c)Pitch
(d)Roll

the advantages of parallel robot are rarely cumula-
tive error, good dynamic response and large carrying
capacity [7].

Most parallel humanoid neck robots install actu-
ators inside them, resulting in high motion noise.
However, real human neck will not produce noise
in the movement. In some specific occasions, such
as the ordnance noise research shown in [8] which
requires a low motion noise humanoid neck robot,
flexible humanoid neck structure was preferred to
reduce motion noise in order to meet the acoustic
requirement. Flexible parallel humanoid neck robot
is possible to achieve the three degree of freedom
(DOF) motion, namely yaw, pitch and roll as shown
in Fig. 1, through reasonable structure design. One
can summarize the requirements of the flexible par-
allel humanoid neck robot in the following. First, it
should be able to imitate all the 3-DOF movements
of real person’s neck. Second, the robot should not
make noises itself during motions to be able to work
in mute environments. To achieve above requirements,
one should also consider the size of actuators to reduce

the cost and space, which means optimize design of
the robot. Therefore, it is necessary to establish and
solve its kinematic model, to obtain its inverse posi-
tion and forces of flexible part, and then optimal the
size of actuators.

To meet the listed two key requirements, a cable-
driven humanoid neck robot with a flexible spring
spine has been proposed in our previous work [8,
9]. However, this parallel mechanism can only real-
ize 2-DOF head motion, namely pitch and roll. To
realize yaw motion, another revolute joint is needed.
Using four cables to realize 2-DOF rotating move-
ments of the humanoid robotic neck is redundant,
which increases the cost. Consequently, a similar 2-
DOF humanoid parallel robot driven by three cables
is proposed and analyzed in [10]. Nonetheless, the
above humanoid parallel robot can only realize 2-DOF
rotating movements by itself. By analyzing existing
2-DOF robot and human anatomical structure, we pro-
posed a novel robot which can accomplish 3-DOF
rotating movements with its flexible parallel struc-
ture, as shown in Fig. 2. Compared with the previous



J Intell Robot Syst (2017) 87:211–229 213

Fig. 2 Overview of the
robot design

(a) (b)

humanoid parallel robotic necks [8, 10], the unique
feature of the proposed robot is that 3-DOF rotat-
ing movements of the platform can be realized by
controlling four driving cables directly.

To analyze and control of the flexible parallel robot,
kinematics of the parallel robot should be studied at
first. Compared with serial robot, the inverse kine-
matics of parallel robot are more complex and devel-
oped later [1]. During the process of solving inverse
kinematics, motion equations are usually nonlinear
and transcendental [11]. As a result, it is difficult to
solve them directly. Traditional methods of solving
inverse kinematics include numerical method, analytic
method, and geometric method [12, 13]. For numer-
ical method, the advantage is that it can obtain the
approximate solutions of certain accuracy while the
exact solutions of complex actual problem cannot be
found out [13, 14]. Analytic method uses a set of
analytical expressions, eliminating unknowns except
the input and output, and then makes it become a
one element higher order equation for solution [15–
18]. Although one can obtain an accurate solution, the
mathematical deduction process is very complicated,
and it is too slow to solve those equations when the
index of unknown is higher than 4. Geometric method
solve the inverse kinematic problems through geomet-
rical relationship in the robot structure. This kind of
method is very intuitional and avoid the huge amount
of computation in analytic method [19–21]. Beside

the traditional methods mentioned above, some schol-
ars use improved genetic algorithm, which can acquire
good robustness and global convergence [22, 23].
Also, quaternion and dual-quaternion method are used
to express rotational motion more uniform and effec-
tive [24, 25]. Neural network method has faster speed
and better accuracy [26]. Since each of these meth-
ods has advantages and disadvantages, some scholars
use them in combination to improve accuracy and
efficiency for better solutions [27].

Although different aforementioned techniques of
solving inverse kinematics of parallel robot have been
studied and developed, few research was done for
inverse kinematics of cable-driven parallel robot with
a spring spine. Appropriate modeling of the flexi-
ble spring spine in the parallel robot is the key for
the overall inverse kinematics. There are mainly two
types of lateral bending models of the compression
spring in literature. The first one takes lateral bend-
ing motion of the spring as a circular arc of a circle;
therefore, homogeneous transformation matrix of the
robot can be calculated based on geometry, which
leads to solving inverse kinematics directly [6]. The
second one takes lateral bending of the spring as a lin-
ear two-order differential equation; therefore, inverse
kinematics of the robot has be combined with the lin-
ear two-order differential equation of the spring spine
for possible solutions [9, 10]. These two modeling
methods for the spring spine were compared in the our
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previous work [28]. By studying the forces in the
cables, we found out that negative cable force exists
in the first geometric method when the bending ampli-
tude increases, which contradicts with that cables can
only generate one direction pulling force. Therefore,
the geometric method used in [6] is inaccurate for the
overall kinematics calculation. As a result, the dif-
ferential equation method to analyze the spring spine
will also be employed in this paper. Once the inverse
kinematics is solved together with the linear differen-
tial equation of the spring spine, optimal design and
workspace analysis of the novel 3-DOF flexible par-
allel humanoid neck robot will be presented in this
paper. And main contributions can be summarized as
follows.

– A novel compact cable-driven parallel robot with
flexible spring spine is proposed to mimic 3-DOF
rotating movements of human neck.

– Inverse kinematics of the robot is solved together
with linear differential equation for bending
motion of the spring spine.

– Quantitative analyses on kinematics, optimal
design, and workspace of the parallel humanoid
neck robot are presented.

The rest of the paper is organized as follows: In
Section 2, we describe the robot and establish its
inverse kinematics model by statics balance. After
that, we solve the inverse position and simulate the
cable lengths and forces in Section 3. And then we dis-
cuss the optimal design, translational workspace and
rotational workspace of the robot in Section 4. Finally,
Section 5 concludes the paper.

2 Inverse Kinematics of Flexible Parallel
Humanoid Neck Robot

2.1 Mechanism Description

As we can see in Fig. 2, the mechanism is com-
posed of a fixed base and a moving platform, which
is connected to human trunk and head respectively.
The fixed base and moving platform are connected by
a flexible spine and four cables. The flexible spine’s
bottom is fixed with the base while the top is con-
nected with the moving platform through a bearing,

Fig. 3 Schematic of the mechanism model

which makes the moving platform become rotational.
A compression spring is used as the flexible spine.
The mechanism is actuated by the four cables between
two platforms. The top of these cables are fixed with
the moving platform two by two and distributed in
180 degrees. The bottom of these cables pass through
the holes in the base, actuated by four drivers sepa-
rately. The holes in the base are also distributed in
180 degrees. In the initial state, the line connected two
fixed points on the moving platform is perpendicular
to the line connected two holes in the base.

We establish the model of the mechanism, shown
in Fig. 3. The mechanism is divided into four parts as
follows:

– Fixed base
The fixed base is a part, which connected to the
trunk of the mechanism. We define a base coor-
dinate frame OXYZ on the base. The thickness
of the base is ignored. The origin of the frame is
at the center of the base, the OX axis is along
OP2, the OY axis is perpendicular to OP2. We
determine the OZ axis by right-hand rule.

– Moving platform
The moving platform is the part connected to the
head on which a moving coordinate frame oxyz

is defined. The thickness of the moving platform
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is also ignored. The origin of the frame is at the
center of the moving platform. The ox axis is per-
pendicular to OQ2, the oy axis is along OQ2, and
the oz axis is determined by right-hand rule.

– Cables
Four cables fixed at Qi , pass through Pi , are
pulled to actuate the mechanism. The mass,
diameter and elasticity are ignored. The cor-
respondence of four cables and the points on
platforms are shown in figure [3-1], which is
l1 to P1Q1, l2 to P1Q2, l3 to P2Q1, l4 to
P2Q2. And the radius of the two platforms are
|OPi | = p (i = 1, 2)|OQi | = q (i = 1, 2)
respectively. We denote Ti (i = 1, 2, 3, 4) as the
forces in cable li (i = 1, 2, 3, 4),vi (i = 1, 2, 3, 4)
as the unit vector along the direction of cable
li (i = 1, 2, 3, 4). In this paper, vectors are used
bold letters to denote (e.g. Ti = Tivi).

– Spring
The spring connects the center of the moving plat-
form and the base, providing force and torque to
support the mechanism motion. It cannot move
in radial direction but can buckle in axial direc-
tion due to a fixed connection with the base. As
a result, the spring can be considered as a curve,
which links O and o. The tangent line at O is per-
pendicular to the base plane and the tangent line at
o is perpendicular to the moving platform plane.
Due to the existence of a bearing, we can suppose
that the radial rotational movement is realized by
the bearing. Also, the torsional strength of the
compression spring is quite large, so we consider
it would not twist and bend in a plane. That is
to say, the spring itself cannot rotate about the oz axis.

The mechanism realizes the yaw motion by the
bearing on the top of the spring, which is in the posi-
tion of o. At the same time, four stayed-cables provide
the actuated forces in sideways to make the mov-
ing platforms rotate. This is quite different from the
three cable driven parallel mechanism, which only has
straight pulling forceand cannot rotate about the oz axis.

We conclude the assumptions mentioned above as
follows:

– Assumption 1: Ignore the thickness of fixed base
and moving platform, and consider them as two
disks. Ignore the mass, diameter and elasticity of

the four cables. Ignore the shape and radius of the
compression spring when analyze the statics of
the mechanism.

– Assumption 2: The rotation about oz axis is real-
ized through the bearing, and the spring cannot
rotate, so it bend in a plane.

We can see from Fig. 3, when the spring bends, o′
is the vertical projection of o on the fixed base. So
the spring curve is in the plane Ooo′. To describe the
bending spring, we establish a planar coordinate frame
Omn attached to Ooo′. The origin of the frame is
coincide withO, the origin of the base frame. TheOm

axis is along Oo′ axis, the On axis is along OZ axis.
On the premise of Assumption 1 and Assumption 2,
we need five parameters to describe the position of the
moving platform:

– θm: the angle between Om axis and OX axis
(describe the bending direction of the spring).

– θb: the angle between fixed base’s plane and mov-
ing platform’s plane (describe the bending range
of the spring).

– n0: the length between o′ and o in the frame Omn

(describe the vertical height of the bending spring).
– m0: the length between o′ and O in the frame

Omn (describe the vertical projection of the bend-
ing spring on the fixed base).

– θr : the anticlockwise rotation angle of the moving
platform through the bearing (describe the yaw
angle of the humanoid neck).

There are other ways to set the parameters to
describe the position of the moving platform, but the
above five parameters are the most appropriate. How-
ever, the five parameters are not all independent, so
we cannot assign the values of the parameters arbitrar-
ily. In fact, there are only four independent parameters
among them. To facilitate the calculation behind, we
considerm0 as the dependent parameter. That is to say,
m0 can be determined by other four parameters.

For ease of coordinate transformation, we use
homogeneous coordinate to describe Pi on the fixed
base with respect to OXYZ:
Op1 = (−p, 0, 0, 1)T, Op2 = (p, 0, 0, 1)T

Similarly, the homogeneous coordinate of Qi in the
moving platform with respect to oxyz are:
oq1 = (0, −q, 0, 1)T, oq2 = (0, q, 0, 1)T
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We need to convert moving coordinate to base coor-
dinate to do unified operation, so we need to obtain the
rotational matrix from the moving frame to the base
frame. We can divide the transformation into two steps
to obtain the matrix more conveniently.

First, the base coordinate frame should rotate about
the axis i, which is perpendicular to the Omn plane,
with an angle θb. Second, rotate with an angle θr about
the rotated oz axis. Third, a translational transforma-
tion should be taken.

Using Rodrigues’ formula, the transformation
matrix of the first step can be obtained as:

R = eîθb = I + î sin θb + î
2
(1 − cos θb)=

[
s110 s120 s130
s210 s220 s230
s310 s320 s330

]

s110 = sin2θm + cos θbcos2θm

s120 = t210 = (cos θb − 1) cos θm sin θm

s130 = −t310 = sin θb cos θm

s230 = −t320 = sin θb sin θm

s220 = cos2θm + cos θbsin2θm

s330 = cos θb

where i = [− sin θm, cos θm, 0]T, so its skew symmet-
ric matrix is:

î =
⎡
⎣ 0 0 cos θm

0 0 sin θm

− cos θm − sin θm 0

⎤
⎦

One can obtain the homogeneous form of R:

Rh =

⎡
⎢⎢⎣

s110 s120 s130 0
s210 s220 s230 0
s310 s320 s330 0
0 0 0 1

⎤
⎥⎥⎦

Then, the transformation matrix of the second step is:

Mrot oz =

⎡
⎢⎢⎣
cos θr − sin θr 0 0
sin θr cos θr 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

The translational matrix can be written as:

Mtrans =

⎡
⎢⎢⎣
1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1

⎤
⎥⎥⎦

Using reverse multiplication principle of coordi-
nate transformation, we can obtain the final rotational

matrix from moving frame to base frame by reverse
multiplying the three matrix above:

OTo =MtransMrot ozRh =

⎡
⎢⎢⎣

s11 s12 s13 m0 cos θm

s21 s22 s23 m0 sin θm

s31 s32 s33 n0
0 0 0 1

⎤
⎥⎥⎦

s11 = cos θr(sin2θm + cos θbcos2θm)

+ sin θr (cos θb − 1) cos θm sin θm

s12 = cos θr(cos θb − 1) cos θm sin θm

+ sin θr (cos2θm + cos θbsin2θm)

s13 = cos θr sin θb cos θm+ sin θr sin θb sin θm

s21 = − sin θr(sin2θm + cos θbcos2θm)

+ cos θr(cos θb − 1) cos θm sin θm

s22 = − sin θr(cos θb − 1) cos θm sin θm

+ cos θr(cos2θm + cos θbsin2θm)

s23 = − sin θr sin θb cos θm + cos θr sin θb sin θm

s31 = − sin θb cos θm

s32 = − sin θb sin θm

s33 = cos θb

2.2 Inverse Kinematics and Statics

We must obtain the cable length in order to control the
robot. This lead to inverse kinematics analyze to the
robot, and solve its inverse position. The key is statics
analysis.

Let x = [θm, θb, θr , n0]T ∈ R4,the unsolved cable
lengths l = [l1, l2, l3, l4]T ∈ R4, so the relationship
between them can be written as:

l = f (x), f : R4 → R4

We can determine OTo completely if we obtain the
dependent parameterm0 by using independent variable
x. Therefore, li can be solved by the following formula:

li = ||OTo
oqi1

− Opi2
||, (i1 = 1, 2; i2 = 1, 2)

However, m0 is depend on the mechanical and geo-
metrical characteristics of the mechanism. In other
words, m0 comes from the lateral bending of the
spring, which caused by the cable pulling and grav-
ity of the head. So we will analyze the statics of the
mechanism to solve m0 in the following steps:

– Transform all the cable forces and torques at the
center of the moving platform, and consider the
resultant force and torque to establish the balance
equations.
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Fig. 4 Force and torque analysis

– Using the resultant force and torque to establish
the spring’s lateral bending equations.

– Solve m0 from equations above.
– Obtain OTo, cable lengths and cable forces.

These steps will be amplified in the ensuring para-
graphs.

According toAssumption 2, the resultant force and
torque can be transformed in the plane Omn, or the
spring does not bending in the plane. In addition, when
the spring is treated as a curve, forces at the center of
the moving platform can be regarded at the top of the
spring. The statics analysis is shown in Fig. 4. We con-
vert the resultant force into two perpendicular forces
F1 and F2. F1 is horizontal and F2 is vertical. M is the
resultant torque, it is perpendicular to the plane Omn

inward. We make the third assumption as:

– Assumption 3: Regardless of the mass of the head
and treat the moving platform as a mass point m

at the center of the spring.

We have the following equations by the force and
torque balance:

4∑
i=1

Ti + F = 0 (1)

4∑
i=1

Ori × Ti + M = 0 (2)

where

Ti = Ti
Ovi

F = [−F1 cos θm, −F1 sin θm, F2 − mg]T
M = [M sin θm, −M cos θm, 0]T
From (1) and (2), we have:

4∑
i=1

Ti
Ovi + [−F1 cos θm, −F1 sin θm, F2 − mg]T=0

(3)

4∑
i=1

ori × Ti
Ovi+[M sin θm, −M cos θm, 0]T=0 (4)

where Ovi = (Opi − OTo
oqi )/||Opi − OTo

oqi ||,Ori

corresponds to oQi in the base frame:

Or1 = q[−s12, −s22, −s32]T, Or2 = q[s12, s22, s32]T

Or3 = q[−s12, −s22, −s32]T, Or4 = q[s12, s22, s32]T

We did not consider the rotational angle θr about
the oz axis, the following is the explanation. The
forces lead to the rotation of the moving platform must
be the component forces tangent to the side of the
moving platform plane. When the robot moves to the
final position, the moving platform must remain sta-
tionary with balanced forces or it will go on rotating.
Therefore, the resultant torque composed by the rota-
tional component forces must be 0. Besides, each arm
of component force is equal to the radius of the mov-
ing platform, so the rotational resultant force must be
0 too. That is to say, there is no need to write the
equation of this DOF.

Six equations set can be obtained from Eqs. 3 and 4:

s0 cos θsT
′
1� + (a + bt12)(T

′
2 − T ′

3) + (a − bt12)

×(T ′
1 − T ′

4) + F1 cos θs = 0 (5)

s0 sin θsT
′
1� + bt22T

′
2� + F1 sin θs = 0 (6)

t0T
′
1� + bt32T

′
2� − F ′ = 0 (7)

−T ′
1�(t0t22 − s0t32 sin θs) + M

b
sin θs = 0 (8)

T ′
2�(t0t12 − s0t32 cos θs) − T ′

2�at32 − M

b
cos θs = 0 (9)

−T ′
2�(s0t12 sin θs − s0t22 cos θs) + T ′

2�at22 = 0 (10)
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where:

T ′
i = Ti/li

F ′
2 = F2 − mg

T ′
1� = T ′

1 + T ′
2 + T ′

3 + T ′
4

T ′
2� = T ′

2 + T ′
4 − T ′

1 − T ′
3

We can rewrite it into a matrix form:

PT = F (11)

where:

F =
[
F1 cos θm, F1 sin θm,−F ′

2,
M
q
sin θm,−M

q
cos θm, 0

]T
T=[

T ′
1, T

′
2, T

′
3, T

′
4

]T

P =

⎡
⎢⎢⎢⎢⎣

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44
p51 p52 p53 p54
p61 p62 p63 p64

⎤
⎥⎥⎥⎥⎦

p11 = p − qs12 + m0 cos θm

p12 = p + qs12 + m0 cos θm

p13 = −p − qs12 + m0 cos θm

p14 = −p + qs12 + m0 cos θm

p21 = −qs22 + m0 sin θm

p22 = qs22 + m0 sin θm

p23 = −qs22 + m0 sin θm

p24 = qs22 + m0 sin θm

p31 = n0 − qs32
p32 = n0 + qs32
p33 = n0 − qs32
p34 = n0 + qs32
p41 = n0s22 − m0s32 sin θm

p42 = −t0s22 + m0s32 sin θm

p43 = n0s22 − m0s32 sin θm

p44 = −n0s22 + m0s32 sin θm

p51 = −n0s12 + ps32 + m0s32 cos θm

p52 = n0s12 − ps32 − m0s32 cos θm

p53 = −n0s12 − ps32 + m0s32 cos θm

p54 = n0s12 + ps32 − m0s32 cos θm

p61 = −ps22 − m0s22 cos θm + m0s12 sin θm

p62 = ps22 + m0s22 cos θm − m0s12 sin θm

p63 = ps22 − m0s22 cos θm + m0s12 sin θm

p64 = −ps22 + m0s22 cos θm − m0s12 sin θm

We use Mathematica to calculate the rank of the
augmented matrix [P,F], and the result is 5. That is
to say, there exist one dependent equation among the
equation set. After seeking, Eq. 8 is the dependent
one.

Until now, we have 8 unknowns but only 5 indepen-
dent equations, so we need to find other equations to
solve the unknowns. We focus on the lateral bending
spring. In [9], the spring was treated as a spring bar to
investigate its bending characteristics, so we have the
followingequation for every cross section of the spring:

β
d2m/dn2

[1 + (dm/dn)2]3/2
= M+F2(m0−m)+F1(n0−n)

(12)

where n0 is the vertical height of the spring after com-
pression, β is the flexural rigidity after compression
when the spring is treated as a solid bar. If β0 is the
flexural rigidity before compression, l0 is the initial
length of the spring, we have:

β=β0
n0

l0

We also consider a bending angle no more than 15
degrees for an healthy individual, so the Eq. 12 can be
simplified due to [9], we have:

F1 = X1m0 + Y1 (13)

M = X2m0 + Y2 (14)

where:

X1 = − a2c1 − a1c2

a2b1 − a1b2
, Y1 = −a2d1 − a1d2

a2b1 − a1b2

X2 = − b2c1 − b1c2

b2a1 − b1a2
, Y2 = −b2d1 − b1d2

b2a1 − b1a2

a1 = 1 − cos(
√

F2/βn0)

b1 = √
β/F2 sin(

√
F2/βn0) − n0 cos(

√
F2/βn0)

c1 = −F2 cos(
√

F2/βn0)

d1 = 0
a2 = √

F2/β sin(
√

F2/βn0)

b2 = cos(
√

F2/βn0) + n0
√

F2/β sin(
√

F2/βn0) − 1
c2 = F2

√
F2/β sin(

√
F2/βn0)

d2 = −F2 tan θb

In fact, the spring length usually decrease after
compression. The length reduction caused by lateral
buckling can be neglected according to [10] and [9].
Therefore, we can use Hooke’s law to obtain F2

approximately:

F2 = K(l0 − n0) (15)
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Table 1 Parameters of the mechanism

p(m) q(m) n0(m) m(kg)

0.06 0.06 0.085 0.05

Combine Eqs. 13–15 with balance Eqs. 5–7, 9, 10,
wehavean8-equation set about 8 unknowns as follows:

s0 cos θsT
′
1� + (a + bt12)(T

′
2 − T ′

3)

+(a − bt12)(T
′
1 − T ′

4) + F1 cos θs = 0 (16)

s0 sin θsT
′
1� + bt22T

′
2� + F1 sin θs = 0 (17)

t0T
′
1� + bt32T

′
2� − F ′ = 0 (18)

T ′
2�(t0t12 − s0t32 cos θs) − T ′

2�at32 − M

b
cos θs = 0 (19)

−T ′
2�(s0t12 sin θs − s0t22 cos θs) + T ′

2�at22 = 0 (20)

K(l0 − n0) = F2 (21)

X1m0 + Y1 = F1 (22)

X2m0 + Y2 = M (23)

The above eight equations can be proved indepen-
dent, so we can find out a unique solution from the
equation set.

3 Inverse Kinematics Simulation

Based on the Inverse-kinematics equation set, we
obtain the inverse position and cable forces in Matlab.
Table 1 shows the parameters we choose:

The compression spring’s parameters are in
Table 2,where G is the shearing modulus, E is the
elastic modulus, r is the radius, d is the diameter of
the spring wire, K is the spring constant. Therefore,
we can get β0 from the Eqs. 24 and 25:

I = πd4

64
= 9.811 × 10−12(m4) (24)

β0= 2EGIh0

πr(E + 2G)
= 0.2321 (25)

3.1 The Effect of θm and θb to Cable Lengths
and Forces

We let θr = 0 due to that we only consider the effect
of θm and θb to cable lengths and forces. θm is var-
ied from 0 to 2π and θb is varied from 0 to π/9. The
result is shown in Fig. 5, and the z coordinate shows
the cable lengths and cable forces separately.

We can observe from Fig. 5 that Ti increase with θb.
In other words, the more the spring bends, the more
cable forces are needed. We also observe that each
cable length has the same range, so is each cable force.
We can imagine that when the humanoid neck does
not rotate about oz axis, 4 cable lengths and forces
must have the same range with each other. We also dis-
cover that T1 and T2, T3 and T4 are symmetrical about
θm = π . This because the whole mechanism is sym-
metrical about the oOX plane when it does not rotate
about oz axis. The above observations can be com-
prehended more clearly in Fig. 6. Figure 6 is a cross
section of Fig. 5 at θp = π/9.

3.2 The Effect of θr to Cable Lengths and Forces

We consider θr �= 0 next, let θr = π/6, θb ∈ (0, π/9),
θm ∈ (0, 2π), we have Fig. 7.

Comparing Fig. 5 with Fig. 7, we discover that l1, l4
get longer while l2, l3 get shorter when the humanoid
neck rotate about oz axis clockwise. To have an obser-
vation more clearly, we plot the figure when θr = π/6,
θb = π/9, θm ∈ (0, 2π), shown in Fig. 8. Compar-
ing Fig. 8 with Fig. 6, as a result of the clockwise
angle θr , the range of l1 and l4 changes from (0.11,
0.135) to (0.12, 0.15) approximately, and the range of
l2 and l3 changes from (0.11, 0.135) to (0.095, 0.115)
approximately. We can imagine the change intuitively.

Table 2 Parameters of the
compression spring l0(m) h0(m) G(GPa) E(GPa) r(m) d(m) K(N/m)

0.1016 0.0195 81.2 196.5 22.73 × 10−3 3.76 × 10−3 4153
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Fig. 5 Cable lengths and forces when θr = 0 θm, ∈ (0, 2π), θb ∈ (0, π
9 )
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Fig. 6 Cable lengths and
forces when θr = 0,
θm ∈ (0, 2π), θb= π

9

However, the change trend of cable forces are on the
contrary. Cable lengths and forces satisfy the negative
correlation in [10].

Let θb = π/9, θr ∈ (0,π/6), θm ∈ (0, 2π) to ana-
lyze the cable lengths and forces when it comes to a
fixed θb with variable θr and θm. The result is shown in
Fig. 9.

When θb is a certain value, cable lengths and forces
change sinusoidally. We can imagine that when the
humanoid neck only has a rotational motion, cable
must change sinusoidally, which can be observed
more clearly from Figs. 10 and 11.

Last but not least, compared with the three-cable
driven humanoid neck in [10] and [9], the cable
lengths are not symmetric with cable forces because
of an additional degree of freedom θr .

4 Optimal Design and Workspace Analysis

4.1 Optimal Design

We need to optimize the cable forces to reduce the size
of actuators. When the final position is certain, θm, θb,
θr , t0 is also determined, and F1, F2, M1, m0 can be
worked out too. The parameters can be changed are
only p and q, which is the end position of the four
cables. We will use the numerical method to obtain the
optimal p and q in the following.

We use t = [t1, t2, t3, t4]T to express all the cable
forces. Two norms are used to define the measure [9,
10] as follows:

2 − norm :T2 =
√∑4

i=1
t2i

∞ − norm :T∞ = max{t1, t2, t3, t4}

Due to that cables cannot produce nonnegative
forces, we ignored absolute value symbols in the
above definition. T2 snd T∞ are functions of θm, θb, θr ,
n0, p snd q, because ti can be solved by Eqs. 16–23.
Different n0 can be obtained by changing the pre-
tightening four cables, so we let n0 = 0.085m without
loss of generality. However, it is very difficult to solve
the optimal problem by analytical method because the
expressions of two norms are quite complex. There-
fore, we decide to use numerical method to solve the
problem.

We can transform the optimal problem into:

minimize �(p, q)

where �(p, q) = {T2 or ∞(p, q)|θm, θb, θr , n0, p, q}
both have a upper bound and lower bound limited by
physiology. At the same time, cables forces cannot be
negative. The optimal result can be expressed as:

�∗=�(p∗, q∗) = min
p,q

{�(p, q)}

where * means the optimal value of the function.
We choose workspace V as the optimal space, so

the target function can be defined as:

�max(p, q) = max
V

T2 or ∞=max
V

λ(θm, θb, θr , p, q)

This target function λ indicates the minimum power
of actuators, which determine the size of them. In hu-
manoid robotics, it is necessary to reduce the size of
actuators.

The results from different measures and initial val-
ues are shown in Table 1. We can see that different
initial values have the same result when using same
measures, but different measures lead to different opti-
mal results. To verify the optimal results, we plot the
3D graphs of �max(p, q) in Fig. 12.
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Fig. 7 Cable lengths and forces when θr = π
6 , θm ∈ (0, 2π), θb ∈ (0, π

9 )
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Fig. 8 Cable lengths and
forces when θr = π

6 ,
θm ∈ (0, 2π), θb = π

9

From the figure, we can see that �max(p, q) mea-
sured by T2 has an area of the same color around the
optimal point (0.0638, 0.0619). Also, people usually
tend to use ∞−norm to measure this target function.
So we choose (0.0800, 0.0795) as the optimal point.

4.2 Workspace Analysis

The workspace of a cable driven flexible parallel robot
is the space which cables can constrain the moving
platform with nonnegative forces regardless of any
external torque [9].

In this paper, humanoid neck mechanism can real-
ize yaw, pitch and roll motions. However, yaw motion
only happens in the plane of moving platform, so it
does not affect the translational workspace. There-
fore, we discuss the two kind of workspace separately:
the translational workspace, which is determined by
θm and θb; and the rotational workspace, which is
determined by θr .

4.2.1 Translational Workspace

In this condition, we don’t need to consider the
effect of rotational angle θr . Therefore, let θr = 0.
We consider the translational workspace is the space
which the center of the moving platform can
approach. Denote all the cable forces and forces on the
moving platform as torque vector w, w = −[F,M]T, so
the balance equation of forces and torquescanbe written
as:

[
Ov1 Ov2 Ov3 Ov4

Or1 × Ov1 Or2 × Ov2 Or3 × Ov3 Or4 × Ov4

]⎡⎢⎣
t1
t2
t3
t4

⎤
⎥⎦=w

(26)

Suppose that κi = [Ovi ,
Ori × Ovi]T is the vector

determined by the ith cable, and the Eq. 26 can be
written as:

At = w (27)

where A = [κ1, κ2, κ3, κ4], t = [t1, t2, t3, t4]T. A is
called structure matrix, it highly depend on the struc-
ture of the whole mechanism and the position of the
moving platform.

If the moving platform lies in the translational
workspace, the following request must be satisfied:

{
Rank(A) = 4

t > 0
(28)

According to Eq. 28, we can discretize a cer-
tain space around the initial position of the moving
platform into discrete points, and judge each point
whether satisfy Eq. 28 or not. If a point satisfy Eq. 28,
it is in the workspace and keep it, else it is not in
the workspace and drop it. All the reserved points
compose the workspace.

We discretize the space x ∈ (−0.03, 0.03), y ∈
(−0.03, 0.03), z ∈ (0.08, 0.1) at certain steps, and set
p = 0.08m, q = 0.0795m from the optimal result.
The translational workspace is shown in Fig. 13. From
the figure, we can see that the translational workspace
is like a cone, similar to the workspace in [9].

4.2.2 Rotational Workspace

When θb and θm has arrived at a terminal position, θr

can still rotate in a certain range. This range is called
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Fig. 9 Cable lengths and forces when θb= π
9 , θr ∈ (0, π

6 ), θm ∈ (0, 2π)
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Fig. 10 Cable lengths and
forces when θb= π

9 ,
θr ∈ (0, π

6 ), θm = π
6

rotational workspace D. Not hard to imagine that each
pair of θb and θm can determine a range of θr . Denote
the mapping relationship as σ , we have:

D(θr) = σ(θm, θb)

The constraint condition of rotational workspace is
same as Eq. 28, and the deterministic process is sim-
ilar too. The difference is the rotational workspace
must be consecutive. Therefore, once upon a break-
point appears, the following points in the range are no
need to be judged anymore.

According to the above method, we choose p =
0.03 m, q = 0.08 m and n0 is obtained by pre-
tightening the cables. Without loss of generality, let
n0 = 0.085 m. The rotational workspace is shown
in Fig. 14. The rotational workspace is between the
two surfaces, which correlated stronger with θm than
that with θb. The workspace is central symmetry about

the point θr = 0, θm = 180◦ at a certain θb, which
correspond with our intuitive feeling.

Figures 15 and 16 is the rotational workspace when
p = 0.08 m, q = 0.08m and p = 0.08 m, q = 0.03
m, respectively. We can discover that the volume of
rotational workspace has a relationship with the value
of p/q, the workspace when p/q = 8/3 ≈ 2.667 and
p/q = 3/8 = 0.375 is smaller than that when p/q =
8/8 = 1. That is to say, the rotational workspace
increases when p/q get closer to 1.

From the above analysis of rotational workspace,
the p/q of the optimal result (p = 0.08 m, q =
0.0795 m) is slightly larger than 1. Therefore, the rota-
tional workspace can be approximately biggest when
the cable forces are optimized. The anatomical struc-
ture of human neck does have p/q > 1 [9]. During
the long evolutionary history of human, neck structure
has considered both the smallest actuated forces and
the biggest rotational workspace. This also proves the
result of our analysis.

Fig. 11 Cable lengths and
forces when θb= π

9 ,
θr ∈ (0, π

6 ), θm = π
3
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Fig. 12 The 3D graphs of
�max(p, q)

5 Conclusions

This paper presents a novel bio-inspired 3 DOF flex-
ible parallel humanoid neck robot driven by 4 cables.
Inverse kinematics, optimizing the cable displacement
and workspace of the robot are analyzed and simu-
lated based on Matlab. It is shown that the inverse
kinematics of the flexible parallel robot has to be
solved by combing the force and torque balance equa-
tions with the lateral bending statics of the flexible
spine. According to the simulation results on min-
imizing design for actuating cable force, it’s better

to place the end position of each cables near the
upper bound. And the simulation results on workspace
analysis show that the translational workspace corre-
sponding to pitch and roll movements is an inverted
cone and the rotational workspace corresponding to
yaw movement increases as the connecting radii of
the driving cables to the base and to the moving
platform getting closer. The modeling and analy-
sis method presented in this paper for the novel
cable-driven flexible parallel robot can be extended
to other cable-driven parallel robots with a flexible
spine.
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Fig. 13 Translational workspace

Fig. 14 Rotational
workspace when
p = 0.03m, q = 0.08m
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Fig. 15 Rotational
workspace when
p = 0.08m, q = 0.08m

Fig. 16 Rotational
workspace when
p = 0.08m, q = 0.03m
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