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Abstract New market-based decentralized algorithms
are proposed for the task assignment of multiple
unmanned aerial vehicles in dynamic environments
with a limited communication range. In particular, a
cooperative timing mission that cannot be performed
by a single vehicle is considered. The baseline algo-
rithms for a connected network are extended to deal
with time-varying network topology including iso-
lated subnetworks due to a limited communication
range. The mathematical convergence and scalabil-
ity analyses show that the proposed algorithms have
a polynomial time complexity, and numerical simu-
lation results support the scalability of the proposed
algorithm in terms of the runtime and communication
burden. The performance of the proposed algorithms
is demonstrated via Monte Carlo simulations for the
scenario of the suppression of enemy air defenses.
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1 Introduction and Related Work

With increasing demand for unmanned aerial vehicles
(UAVs) in military and civilian areas, coordination of
multiple UAVs is expected to play a key role in com-
plex missions. However, there exist several technical
issues in employing multiple UAVs. As the number of
agents and tasks increase, a greater burden is imposed
on ground operators, which may cause safety issues.
Due to the limited communication range of UAVs,
the network topology varies in real time and some-
times may be disconnected. Additionally, in a disaster
area or a battlefield, the mission environment often
changes dynamically. In this study, the autonomous
and decentralized task allocation (TA) problem in
dynamic environments is considered. In particular, a
type of task simultaneously requiring multiple UAVs
is considered.

Many studies have solved a TA problem using cen-
tralized [1, 6, 16, 23, 35, 38] and decentralized [2,
7–9, 22, 24, 36] approaches; however, most consid-
ered tasks requiring a single agent. Tightly coupled
tasks such as simultaneous attack and box push-
ing, on the other hand, require multiple agents for
maximizing the effectiveness of the multi-agent sys-
tem to perform the given mission. According to the
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taxonomy presented by Gerkey and Matarić [19], the
former problem is called the single-task robots (ST) –
single-robot tasks (SR) problem, and the latter prob-
lem is called the ST - multi-robot tasks (MR) problem.

The ST-MR problem is referred to as a coalition
formation problem where the coalition means a sub-
group of agents to conduct a common task [33]. Note
that the primary focus of this paper is the overlapping
coalition, in that agents are allowed to be members of
multiple coalitions. Shehory and Kraus [37] presented
the iterative greedy algorithm for the coalition for-
mation that operates in exponential time. Experimen-
tal demonstrations of the distributed auction-based
approach for the box pushing problem [18, 44], coop-
erative load transportation [27], and disaster manage-
ment [24] were respectively presented. The coalition
formation for the simultaneous attack problem was
treated using a centralized [42] and distributed scheme
[25, 41]. The centralized scheme solved the combi-
natorial optimization problem for the coalition for-
mation using the particle swarm optimization (PSO)
technique, and the distributed scheme utilized an auc-
tion and an integer programming. Modification of the
Shehory and Kraus’ algorithm and associated com-
plexity analysis were presented for a non-overlapping
coalition case [34]. A consensus-based bundle algo-
rithm (CBBA) [9] was extended to coupled-constraint
CBBA [46] to consider tightly coupled tasks. The
bio-inspired coalition formation approach was pro-
posed to apply the suppression of enemy air defenses
(SEAD) mission [21]. Das et al. proposed market-
based coalition formation that allocates multiple tasks
both in a centralized [11] and distributed manner
[12]. However, the aforementioned coalition forma-
tion algorithms do not consider a dynamic network
topology and limited communication range. When a
distributed algorithm runs in a dynamic network, TA
results depend on the communication range.

Several TA studies addressed the problem of lim-
ited communication range. Beard and McLain [5] pro-
posed a centralized cooperative path planning method
considering distance constraints between UAVs, and
Sujit and Beard [40] presented a distributed auc-
tion algorithm over a limited communication range.
CBBA was extended to ensure network connectiv-
ity because a limited communication range may
result in a disconnected network [30]. Another idea
to overcome the loss of network connectivity is to
make the idle agent return to the base[31]. Whereas

the aforementioned research considered the ST-SR
problem, studies on the ST-MR problem over a lim-
ited communication range have also been performed.
Weerdt et al. [45] proposed a variant of contract net
protocol (CNP) [39] for the coalition formation over
a limited communication range using the distributed
sequential auction, but the qualification of a coalition
leader (auctioneer) was not considered. On the other
hand, the decentralized coalition formation algorithm
for UAVs to track and destroy moving targets [17, 43]
are proposed with an extensive numerical analysis of
the effect of communication ranges, delays, and the
problem size; however, neighboring UAVs must share
their position and path information continuously to
predict that their subnetwork is invariant during the
coalition formation process.

In this study, two market-based decentralized coali-
tion formation algorithms in dynamic environments
with limited communication ranges are proposed;
one is a project manager-oriented coalition forma-
tion algorithm (PCFA) and the other is a task-oriented
coalition formation algorithm (TCFA). Because the
theoretical basis of the market-based approach [14]
is established utilizing CNP, the proposed algorithm
can be classified as a variant of CNP or a distributed
auction. The agents in a virtual market negotiate with
neighborhood, defined as agents within their com-
munication range, using local information to maxi-
mize the group utility. The virtual market follows the
designed market mechanism, which consists of four
intuitive phases, working in parallel over all of the
agents. Mathematical and numerical analyses in the
connected network are carried out to show the con-
vergence, polynomial time complexity, and bounded
communication burden of the proposed methods. The
proposed algorithms are then extended to deal with
the problem in dynamic environment, where the net-
work connectivity between agents depends on their
distance. The performance of the proposed algorithms
in a dynamic environment is demonstrated by numer-
ical simulations considering multiple UAV SEAD
missions with pop-up tasks.

The main contribution of this work can be summa-
rized as follows. First, two new decentralized TA algo-
rithms are proposed by extending the decentralized TA
algorithm in a static environment [29] to a dynamic
environment with a limited communication range. In
the proposed algorithms, a leader of a coalition is
elected by other agents, and each agent’s position
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and plan do not have to be continuously synchronized
through agents. Second, analyses on convergence and
scalability are performed, which are also supported
by numerical results. Finally, the performance of the
proposed algorithms are demonstrated through Monte
Carlo simulations and compared with the state-of-the-
art algorithm, which is modified by this study.

The paper is organized as follows. Two TA algo-
rithms are proposed in Section 2 with a description
of the TA problem. In Section 3, properties of the
proposed algorithms are analyzed. In Section 4, the
proposed algorithms are extended to dynamic envi-
ronments. Numerical results are shown in Section 5.
Finally, conclusions are given in Section 6.

2 TA Algorithm for Cooperative Timing Missions
over Connected Networks

2.1 Problem Statement

Let us consider a TA problem with N agents and M

tasks. The solution for the TA problem should provide
the best sequences of tasks for each agent to maxi-
mize the objective function. In particular, some task
locations should be simultaneously visited by multiple
agents as requirements [28]. The number of required
agents for each task is predefined based on its degree
of risk. The problem considered can be formulated in
terms of the integer programming problem as follows:

Maximize
p(i),∀i∈I

J =
M∑

k=1

sk(tk(P)) (1)

subject to n(ak(P)) = Zk, ∀k ∈ K (2)

n
(
p(i)

)
≤ Li, ∀i ∈ I (3)

G(K, E(P)) = DAG (4)

where I � {1, ..., N} and K � {1, ...,M} are the
index sets of the agents and tasks, respectively, p(i) is
a path vector representing the sequence of tasks allo-
cated to the agent i, and P is the path list of all of the
agents. The function sk represents the score when the
task k is performed at time tk where tk is the termina-
tion time of task k. Eq. 2 defines a constraint on the
size of the coalition for task k where ak is a set of
indices of agents assigned to task k, n(·) denotes the
cardinality of a set, and Zk is the number of agents
required for the task k. Eq. 3 restricts the number of

allowable tasks for each agent, where Li is the maxi-
mum number of allowable tasks for the agent i.

Additionally, Eq. 4 is introduced to disregard the
TA results, of which involved agents fail to simulta-
neously arrive at their allocated task locations. This
process can be conducted by filtering out the TA
results that generate the directed cycle in the depen-
dency graph G(K, E(P)), which represents the pri-
ority between the allocated tasks [4]. Because the
simultaneous arrival fails when the dependency graph
contains a directed cycle, designating the type of
dependency graph as a directed acyclic graph (DAG),
which is a directed graph with no directed cycles [20],
realizes the filtering. More detailed explanations on
the DAG constraint and the directed edge set E(P) are
provided in Appendix A.

The objective function J indicates the total mis-
sion score. To consider completion time as well as the
priority between tasks, the score function sk can be
defined as follows.

sk(tk(P)) = wke
−λk(tk−t0

k ) (5)

where wk is the inherent worth of the task k, λk > 0
is the time-discounting factor for the task k, and t0

k is
the time when task k is generated. Because some tasks
should be visited at the same time, tk is defined as the
arrival time of the latest agent among the coalition for
task k, which is expressed as

tk(P) = max
i∈ak

(tET A(i, k) + tw(i, k)) (6)

where tw(i, k) denotes the required working time of
agent i to perform task k and tET A(i, k) denotes the
estimated time of arrival (ETA) of the agent i to the
task k, which can be expressed as

tET A(i, k) =
{

dik/vi, if p(i)(1) = k

tl + dlk/vi, otherwise
(7)

where vi is the average speed of agent i. If p(i)(1) = k,
that is, task k is the first task of agent i, then dik is the
distance between the current location of agent i and
task k. Otherwise, dlk is the distance between task l
and task k, where l is the index of the task conducted
by agent i just before task k, which can be expressed as

l = p(i)(b
(i)
k − 1) (8)

where p(i)(b) is the b-th element of p(i), and index b
(i)
k

satisfies the following relationship:

p(i)(b
(i)
k ) = k (9)
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The TA problem defined in Eqs. 1∼4 is a coali-
tion formation problem where coalitions may over-
lap, and this problem can be categorized as a set
covering problem (SCP) [37]. The original SCP is
known as NP-hard [10]. Because the original SCP
does not consider the order of task allocation associ-
ated with Eq. 4, our problem is at least as complex
as the SCP. When the size of the problem becomes
larger, the centralized algorithm requires a signifi-
cant amount of time to determine the exact optimal
solution, which is not appropriate for the dynamic
environment. In this section, decentralized market
mechanisms are presented to solve the complex TA
problem in a suboptimal approach with less computa-
tional/communicational burden.

2.2 Assumption

Through this section, the following assumptions are
considered.

– The network topology between agents is a con-
nected graph that there exists a path between every
pair of vertices. Some pairs of vertices may not be
directly connected due to the limited communica-
tion range, but there are no unreachable vertices.

– The network topology does not change during the
process of TA.

– Agents communicate with each other in a syn-
chronous manner, i.e., each agent communicates
according to the scheduled time table.

The first and second assumptions can be accepted
when the communication range is sufficiently long
and the required time for TA is small. In the later
section on extended algorithms for dynamic environ-
ment, these two assumptions will be omitted. The
last assumption may not be appropriate for real-
world application because asynchronous communica-
tion is more efficient. However, for the purpose of
the analysis of the proposed algorithms, synchronous
communication is considered in this study.

2.3 Project Manager-oriented Coalition Formation
Algorithm: PCFA

2.3.1 Preliminaries

Let us consider a virtual market consisting of N agents
and M tasks. Because the task k ∈ K requires Zk

agents to be performed, agents should build several
temporary coalitions, where the team members may
be overlapped. The goal of this study is to design a rule
for each agents to allocate the given tasks by them-
selves based on the communication between agents.

Suppose that the tasks and the agents are inter-
preted as the projects and the contractors [39]. In
PCFA, agents once make consensus on both a project
manager (PM) and its task, called a target task. Then
the application and selection procedures are conducted
to build a team as shown in Fig. 1, where fitness
and resumé are scalar values representing quantita-
tive suitability of agents. The four-phase algorithm
repeats until all tasks are assigned, and the detailed
description for each phase is introduced in the next
subsection. One complete series of the four phases is
called one round.

In PCFA, the agent i ∈ I, inherits the follow-
ing local variables: the path list vector p(i), the time
table vector t(i), the received application letter matrix
L(i)

app, the received offer letter matrix L(i)
off , the posi-

tion vector U(i)
p , average speed U(i)

v , and the winning
advertisement vector A(i). Table 1 summarizes the
usages of local variables with examples.

On the other hand, the information of given tasks
are defined as a structured variable T, which is
assumed to be updated from the mission control cen-
ter. For all k ∈ K, the task k is composed of six
elements: Tp(k), Ta(k), Tm(k) (=Zk), Tw(k) (=wk),
Tλ(k) (=λk), and T0(k) (=t0

k ). The variable Tp(k)

denotes the position where the task k should be con-
ducted. The variable Ta(k) = 1 if the task k is
assigned to some agents and 0 otherwise.

2.3.2 Phase 1: Advertisement Preparation

At the first phase, the agent i prepares a winning
advertisement vector A(i) as summarized in Algorithm
1. To discover the most appropriate task for the agent
i, fitness list f (i) is calculated for all unassigned tasks.
The agent i then selects the task k∗ with the highest
value among f (i). The fitness of the agent i regarding
the task k, i.e., f (i)(k), is defined as

f (i)(k) = sk(tET A) = wke
−λk(tET A+tw−t0

k ) (10)

Each agent does not know the path list P of the
all agents, and therefore agents cannot calculate the



J Intell Robot Syst (2017) 87:97–123 101

Fig. 1 Task allocation
procedures in PCFA.
Broadcasting message can
be transferred when the
network between the agents
is connected, where solid
line in (a) denotes the
connectivity between two
nodes. In this topology,
direct communications
between diagonal agents are
not available (b) Consensus on PM

(c) Application (d) Task Allocation
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exact score function. Instead, the approximated score
in Eq. 10 is utilized as an alternative in this study.
Users may apply priorities between tasks by setting wk

and λk . When λk and t0
k are consistent for all tasks, the

tasks with sufficiently large wk will be performed ear-
lier than other tasks. The diminishing rate of value can
be adjusted by tuning λk . For example, the urgent task
having top priority and short deadline can be defined
as a task having high wk and λk .

Note that the definition of ETA in Eq. 7 should
be modified because the original definition of ETA
is introduced to evaluate the objective function J (P)

on the premise that path list P is already determined.
However, in the distributed TA process, when agent
i calculates tET A(i, k), agent i does not have task k;
thus, p(i)(1) cannot be equal to k. Additionally, the
time t when tET A is calculated should be considered
because evaluation of tET A may be necessary dur-
ing the mission due to pop-up tasks. The modified
definition of tET A for distributed TA procedure is as
follows.

tET A(i, k, t) =
{

t + dik/vi, if p(i) = ∅
tl + dlk/vi, otherwise

(11)

Table 1 List of local variables of agent i

Variables Example Description

path list p(i) = [2 1] Visiting order of agent i: task 2→ task 1

time table t(i) = [100 200] Arrival times associated with p(i)

position U(i)
p = [10 100] Position of agent i: [10 100] (m)

average speed U(i)
v = 10 Average speed of agent i: 10 m/s

application letter L(i)
app =

[
j1 k r1

j2 k r2

]
Agent i knows that agents j1 and j2 applied
to task k with resumé r1 and r2, respectively

offer letter L(i)
off = [j k t] Agent i knows that agent j sent an offer letter

to agent i for task k with appointed time t

winning advertisement A(i) = [j k f ] Agent i considers agent j as PM for task k

with fitness f
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In PCFA, advertisement for a certain task is only
allowed to agents who have sufficient numbers of
neighborhood for the task. Agent i’s neighborhood,
N (i) ⊂ I, consists of agents connected with the agent
i. In Fig. 1, each agent has two neighborhoods. When
the agent i does not have sufficient neighborhood for
a certain task, fitness for that task is zero (Algorithm
1 line 5). Note that Z

(i)
max(= n(N (i)) + 1) is the max-

imum number of agents that can be mobilized by the
agent i. This conditional statement restricts the candidate
of team members to the neighborhood of the PM.

Additionally, the agent i computes the previous
winning advertisement A(i)

prev , which is designed to be
shared through communication between neighboring
agents in the following phase. When the agent i fails
to calculate the fitness, it generates a dummy winning
advertisement (Algorithm 1, line 14).

2.3.3 Phase 2: Consensus on PM

In this phase, the agent i makes effort to reach con-
sensus on the PM and corresponding target task for
the current round by negotiating with the neighbor-
ing agents as shown in Algorithm 2. Note that every

agent prepares two advertisement vectors in phase 1,
i.e., 1) previous winning advertisement vector A(i)

prev ,
and 2) winning advertisement vector A(i). The first is
broadcast to the neighboring agents, and the second is
compared with the neighboring agents’ previous win-
ning advertisement vectors. If the fitness component
of A(i) is strictly less than the neighboring agent j’s
fitness component of A(j)

prev , A(i) is replaced by A(j)
prev .

Note that A(i)
prev is updated by A(i) before proceeding

to the next iteration.
The above process is repeated until the PM is

selected, and therefore, several iterations may be
required during the phase. To consider the maximum
number of the required iterations, let us consider the
diameter of the network. The diameter is defined as
the maximum distance of the two arbitrary vertices
of the graph, where the distance is the length of the
shortest walk between two vertices [20]. The agent i
propagates the greatest fitness to the entire agents after
comparing the fitness component with its neighboring
agents. By a single broadcasting, the greatest fitness
is propagated to the neighboring agents. Therefore,
by definition, it can be inferred that the number of
required iterations for the consensus does not exceed
the diameter of the network topology. However, the
decentralized agents may not be able to recognize the
exact topology of the network because the communi-
cation connection between agents may change during
the mission. Thus, the network diameter for the worst
case, N − 1, is selected as a conservative limit (Algo-
rithm 2 line 2). When the agents have information
on the exact diameter of the network, N − 1 can be
replaced by the network diameter.

Phase 2 is summarized in Algorithm 2∼3 where
A(i)(b) denotes the b-th element of A(i); that is,
A(i)(2) is the task element and A(i)(3) is the fitness
element of A(i). N (i)(b) denotes the b-th element of
N (i). Note that tie-break rule is applied by priori-
tizing agent with a lower index (Algorithm 3 lines
7 ∼ 9).
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2.3.4 Phase 3: Application

As a result of phase 2, every agent knows the PM and
its target task. In phase 3, each agent sends an appli-
cation letter to PM. In PCFA, sending an application
letter to the PM is allowed only for the agents directly
connected to the PM. The resumé, which is included
in the application letter, is defined as the ETA to the
target task, i.e.,

r(i)(k, t) = tET A(i, k, t). (12)

On the other hand, a PM is not necessarily the most
appropriate agent for the task because the qualifica-
tion of the PM includes the number of its neighboring
agents. When applicants are better than the PM, the
role of the PM is only to recruit applicants by utiliz-
ing its networking ability as shown in Fig. 1. Thus,
the PM should compete with other applicants to be a
team member. Phase 3 is summarized in Algorithm 4,
where the left arrow operator augments the right row
vector into the left matrix.

2.3.5 Phase 4: Team Building

As a result of phase 3, PM has application letters from
its neighboring agents. In phase 4, PM evaluates the
suitability of applicants by comparing resumé, which
is included in their application letters. Because the PM
advertised a task that can be accomplished by itself
and the neighboring agents, there always exists a suffi-
cient number of applicants. The appointed arrival time
is determined as the latest arrival time of the selected
team members. Then, the PM sends offer letters to the
selected team members to inform the appointed arrival
time.

On the other hand, once the agent i receives the
offer letter, it then augments the task and appointed
time into its own path list p(i) and time table t(i),
respectively. This team building procedure is summa-
rized in Algorithm 5, where p(i) ⊕end {k} denotes that
the task k is augmented at the end of the agent i’s path
vector p(i).

2.4 Task-oriented Coalition Formation Algorithm:
TCFA

In PCFA, a coalition is organized by the agreed-upon
PM who is asked to rank applicants and send offer
letters. This method can usually be utilized for coop-
erative timing missions even if the network is not fully
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connected, but the capacity of multiple agents can be
excessively limited due to the restriction that the team
members should be directly connected with the PM.
For instance, suppose that there exist four agents and
a task, which should be conducted by the four agents.
When the communication network of the four agents
has a ring topology, as shown in Fig. 1a, the task can-
not be accomplished because the maximum number
of neighborhood is two. The motivation of TCFA is
to handle this limitation; by relaying application let-
ters, every agent can be a coalition member regardless
of the network topology. In TCFA, agents make con-
sensus on not only a PM and its target task but also
team members by additionally sharing the information
of applicants. Figure 2 shows the overall procedure of
TCFA.

In phase 1, the condition on the number of neigh-
borhood in PCFA is disregarded in TCFA when each
agent prepares the advertisement. The remaining parts
of phase 1 and phase 2 are identical to those of PCFA.
In phase 3, the application letters are shared by each
agent and their neighborhoods to reach a consensus on
the letter. At the first broadcasting, every agent sends
its application letter to neighboring agents, and agents
augment the received letter to its own letter matrix. At
the next broadcasting, every agent sends application
letters accumulated from the previous broadcasting.
In this way, for one broadcasting, all application let-
ters are radially propagated from each agent (vertex)
to its neighboring agents (adjacent vertices). From the
fact that the diameter of the connected network is at
most N −1, every application letter can be propagated
through the whole nodes after N − 1 broadcasts. Note
that the information of the network topology was not
utilized during phase 3.

However, agents do not have to share all applica-
tion letters because only Zk agents are required to
perform task k. In addition, agents know that the PM
is the most proper agent to task k, which means that
Zk − 1 members need to be selected through phase
3 and phase 4. Therefore, after receiving all applica-
tion letters from neighboring agents, each agent keeps
only high-scored Zk −1 application letters and deletes
the others. By this manner, the amount of communi-
cation can be saved because Zk is usually less than
N . The modified phase 3 is summarized in Algorithm

6∼8. When the agents have identical resumé values,
the agent with the lowest index is selected.

In phase 4, every agent has the same awareness; i)
the PM and its target task, and ii) Zk − 1 most proper
members. Therefore, the target task is allocated to the
proper members and PM. Note that agents do not have
to communicate with each other in phase 4 because
all the necessary information for TA is already shared
before phase 4. The modified phase 4 is summarized
in Algorithm 9.

The aim of PM selection in TCFA is to choose the
corresponding target task. By fixing the target task at
phase 2, only the fitness for the target task needs to
be shared, which reduces the communication overhead
and computational load.
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Fig. 2 Task allocation
procedures in TCFA.
Broadcasting message can
be transferred when the
network between the agents
is connected, where solid
line in (a) denotes the
connectivity between two
nodes. In this topology,
direct communications
between diagonal agents are
not available (a) (b)

(c) (d)

2.5 Greedy Distributed Allocation Protocol

For a comparative study, greedy distributed alloca-
tion protocol (GDAP) [45] is modified and adapted to
our problem. The coalition formation scheme, includ-
ing the advertising and applying processes of GDAP,
is similar to the proposed TA algorithms, and differ-
ent aspects will be treated in the subsequent section
dealing with properties of the proposed algorithms.

The idea of GDAP is as follows. There are tasks
that require a certain combination of resources, and all
agents have some resources. The information of each
task is randomly distributed to each agent at the begin-
ning of the TA process, and these agents are called the
managers of each task. When the network topology
between agents is not fully connected, only the man-
ager’s neighboring agents are permitted to contribute
to the task. In other words, not all agents get the infor-
mation about all tasks. All agents, including managers,
are called contractors. Each manager finds contractors
who will help with their tasks, and each contractor
makes bids to the manager who has the highest effi-
ciency among the contractor’s neighboring managers.
If sufficient resources are supplied by contractors, the
manager selects a set of contractors randomly. If a
manager fails to build a coalition for a certain task,
then the task is deleted from the manager’s task list.

To apply GDAP to our problem, GDAP is modified
as follows. In phase 1, the agent i, who is a man-
ager of several tasks, calculates its fitness defined in
Eq. 10 for the tasks distributed to the agent i. In other
words, manager agent i selects the most suitable task
by choosing the highest value among f (i). Manager
agent i then advertises itself to its neighborhood via
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A(i) defined in Table 1. If Z
(i)
max is less than the num-

ber of required agents for the task, the agent i hands
over the task to one of its neighboring agents instead of
deleting it. This is done by transmitting the task infor-
mation to one of its neighboring agents and removing
the information from agent i itself. In phase 2, the
agent i applies to the agent who advertised the highest
fitness as in PCFA and TCFA. In phase 3, if a manager
has sufficient applicants, the manager selects the best
team members according to the resumé value. In our
implementation, each manager is not a team member
of its tasks by default, but it should compete with other
applicants because the arrival time of the manager is
not always shorter than that of others. From the per-
spective of this study, GDAP consists of three phases,
as shown in Fig. 3.

Note that GDAP requires less communication and
no iterations due to the lack of consensus process.
In dynamic environment, rapid decision making may
enhance the TA efficiency. Also, in decentralized TA
algorithm, there exists a trade-off between the com-
munication/computation effort and the performance.
In this context, the modified GDAP is worthwhile to
be compared with the proposed algorithms.

3 Properties of TA Algorithm

3.1 Convergence

In this section, it is proven that a conflict-free solu-
tion generated by the proposed TA algorithms con-
verges. Convergence of a TA algorithm denotes that

the algorithm is capable of allocating given tasks to the
agents within a finite time. The conflict-free represents
that the resultant path list is feasible with respect to the
constraints in Eqs. 2∼4. The convergence of PCFA in
a connected network is guaranteed by Theorem 1.

Theorem 1 Consider PCFA and given tasks with
involved agents. Let us assume that the maximum num-
ber of necessary agents for the given tasks is bounded
by the number of maximum available agents Z

(i)
max ∀

i ∈ I and that the network topology is connected but
not necessarily fully connected. Then, within a finite
time, PCFA converges to a conflict-free solution.

Proof The theorem can be proven by checking the
possible bottlenecks of the four phases. In phase 1,
each agent computes its own fitness and builds a
winning advertisement vector, and therefore, no bot-
tleneck exists. In phase 2, when the network is con-
nected, the number of iterations required to reach a
consensus on the PM is bounded above by N − 1.
When the fitnesses of different PM candidates are
the same, the candidate with lower agent index is
selected. This procedure is applied similarly when the
resumés of different applicants are equal. In phase
3, the application does not produce a bottleneck. In
phase 4, because the agents advertised a task requir-
ing themselves and their neighboring agents, the PM
always has a sufficient number of applicants. There-
fore, within a finite time, a single task will be allocated
to a group of agents during a round.

Because it is assumed that the maximum number
of necessary agents for the given tasks is bounded by

(a) (b) (c)

Fig. 3 Task allocation procedures in GDAP. Broadcasting mes-
sage can be transferred when the network between the agents
is connected, where solid line in (a) denotes the connectivity

between two nodes. In this topology, direct communications
between diagonal agents are not available
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the number of maximum available agents, within a
finite time, M tasks will be assigned during M rounds.
Moreover, because each task is augmented at the end
of the existing path vector, the resulting path vector P
satisfies the DAG constraint in Eq. 4.

According to Theorem 1, the convergence of TCFA
is straightforward. Phase 1 and phase 2 of TCFA do
not form a bottleneck, as in the proof of Theorem 1.
In phase 3, at most, N − 1 iterations are required to
reach a consensus on the application letter. Finally, in
phase 4, because every agent recognizes the PM and
the team members, a single task is allocated to one
team at a round.

3.2 Scalability

3.2.1 Amount of Communication

The amount of communication for TA is analyzed in
this section. As shown in Lemma 1, for a connected
network, there exists a polynomial upper bound for
the number of communications required when allocat-
ing given tasks. It is assumed that the agents are not
informed of the diameter of the current network. Addi-
tionally, one broadcast of an agent to its neighborhood
is counted as one communication. Therefore, it can be
stated that PCFA is scalable to large problems with
regard to the amount of communication.

Lemma 1 For completing the TA process using the
PCFA, where N ≤ 256, upper bounds of the num-
ber of communications and the total communication
overhead in terms of bytes can be computed as
CT A(N, M) and BT A(N, M), respectively.

CT A(N, M) = 2M(N − 1) (13)

BT A(N, M) = 12M(N − 1) (14)

Proof By Theorem 1, M tasks are allocated within
M rounds. Now, let us consider the maximum num-
ber of communications for each round. In phase 1,
no communication is required. In the worst case of
phase 2, each agent broadcasts its winning advertise-
ment A(i) = [j, k, f ] for N − 1 times during N − 1
iterations. In phase 3, each agent sends at most one
application letter L(i)

app = [j, k, r] to the PM. In
phase 4, the PM sends at most N − 1 offer letters

L(i)
off = [j, k, t] to its neighboring agents. Note that

the communication is required in either phase 3 or
phase 4 because the PM does not send an application
letter to other agents. Therefore, the number of com-
munications for allocating a task is bounded above
by 2(N − 1), and for M tasks, the upper bound is
2M(N−1). On the other hand, six bytes are uniformly
required for each communication of A(i), L(i)

app, and

L(i)
off ; two bytes for two natural numbers j, k ≤ 256,

and four bytes for real numbers f, r, t with single-
precision. Thus, the maximum overhead in terms of
bytes are 12(N − 1) bytes.

The number of communications required for TCFA
can be computed as in Lemma 1. For TCFA, commu-
nication is required only in phase 2 and phase 3, and
the maximum number of communications in phase 2
is N −1, which is identical to that of PCFA. Addition-
ally, phase 3 requires at most N − 1 communications
for consensus on application letters. Therefore, the
maximum number of communications for TCFA is
identical to that of PCFA. However, the total com-
munication overhead of TCFA is greater than that of
PCFA, because Lapp is a (Zk −1)×3 matrix in TCFA
while Lapp is a 1 × 3 vector in PCFA. For the target
task k, the communication overhead in terms of bytes
using TCFA is 6Zk(N − 1) bytes; 6(N − 1) bytes in
phase 2 and 6(Zk − 1)(N − 1) bytes in phase 3.

3.2.2 Time Complexity

The proposed algorithms are scalable to large-sized
problems in terms of time complexity. Theorem 2
shows that PCFA runs in a polynomial time.

Theorem 2 The asymptotic worst-case time complex-
ity of the PCFA with M tasks and N agents can be
expressed as follows.

TT A(N, M) = O(M2 + MN2 + MN log(N)). (15)

Proof By Theorem 1, M tasks are allocated to N

agents within M rounds.
Now, let us consider the time complexity of each

round. In phase 1, the time complexity of the first for
statement in Algorithm 1 line 4 is O(M) because the
ETA is calculated for M times. The if-statement in line
9 of Algorithm 1 requires O(2M) time complexity.
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For the worst case of phase 2, each agent compares fit-
ness with the N − 1 neighboring agents during N − 1
iterations. Thus, it can be concluded that the phase 2
has a time complexity of O((N − 1)2). Phase 3 has
a constant time complexity, and this means that the
number of maximum elementary operations in phase
3 does not depend on the number of the involved
agents and given tasks. In phase 4, at most, N ele-
ments are sorted, and it is well known that the time
complexity of the sorting is O(n log(n)), where n is
the number of elements to sort [10]. Therefore, the
time complexity of phase 4 is O(N log(N)). By sum-
ming up the aforementioned numbers, the worst-case
time complexity of each round can be described as
O(3M+(N −1)2 +N log(N)). Moreover, the asymp-
totic worst-case time complexity can be expressed
as O(M + N2 + N log(N)). Finally, for M tasks,
the time complexity of PCFA can be expressed as
O(M2 + MN2 + MN log(N)).

The time complexity of TCFA can be determined
as in Theorem 2. The time complexities of phase 1
and phase 2 of TCFA are the same as those of PCFA,
and, at most, N − 1 iterations are required for phase
3 of TCFA. During each iteration, the application
letters collected by the agent i from its neighboring
agents should not be duplicated. For deleting dupli-
cated letters of agent i and agent j, at most, (N − 1)2

comparisons are required. Because agent i has at most
N−1 neighboring agents, no more than (N−1)3 com-
parisons are necessary. After deleting the duplicated
application letters, a comparison sort is performed,
and this process requires O((N − 1) log(N − 1)).
Therefore, it can be stated that the phase 3 has a time
complexity of O((N −1)4+(N −1)2 log(N −1)). For
phase 4, the time complexity of O(N−1) is demanded
to check the acceptance. Thus, the asymptotic worst-
case time complexity of TCFA can be described as

TT A(N, M) = O(M2+MN+MN2+MN2 log(N)+MN4).

(16)

3.3 Performance

The performance of the proposed TA algorithms is
described in this section. A drawback of the pro-
posed algorithms is that the optimal solution may

not be obtained because the TA problem is addressed
in a decentralized manner. However, the proposed
algorithms have several merits. First, the proposed
algorithms are applicable for various types of network
topologies within a connected network. Specifically,
for a connected network, the adjacency matrix of the
network topology does not have to be shared by all
of the agents. Therefore, the agents require only the
indices of the neighboring agents, and this information
can be easily obtained by the ping test.

Second, the algorithms induce less computational
and communicational burden because the necessary
calculations are composed of fundamental arithmetic
operations or logical operations (i.e., comparison).
The number of communications and total required
overhead are upper bounded by a polynomial.

Third, the proposed algorithms can be extended to
various cooperative TA problems where the fitness and
resumé can be defined. Because this study focuses on
tasks with cooperative timing constraints, the TA algo-
rithm only decides the sequence of the path list and
the time table. Proof of convergence can be equiva-
lently applied regardless of the definition of fitness
and resumé.

3.4 Comparison with GDAP

There is an important difference between the pro-
posed algorithms and GDAP. While the selection of
the auctioneer is negotiated for each round in the pro-
posed methods, all auctioneers are chosen randomly
in GDAP. As a result, TA solutions are different even
in the fully connected network. In other words, every
agent using the proposed algorithms calculates its fit-
ness for all tasks to be a PM. In GDAP, however, only
the manager agents calculate their fitness for the tasks
allowed to them.

In the resource management problem, which is the
target problem of GDAP, the choice of an auctioneer is
not an important factor. However, in the TA problem
considering mission completion time, the choice of an
auctioneer can improve the efficiency. For example,
suppose a dynamic environment has several discon-
nected subnetworks with a limited communication
range. In this case, if the manager of a certain task is
too far from the corresponding task, GDAP will form
an inefficient coalition.

GDAP has strong points with respect to less rounds
and communication, and it can allocate multiple tasks
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(a) (b) (c)

Fig. 4 Possible conflict in GDAP. Broadcasting message can
be transferred when the network between the agents is con-
nected, where solid line in (a) denotes the connectivity between

two nodes. In this topology, direct communications between
diagonal agents are not available

during one round even in the connected network.
However, a conflict can occur in GDAP when the net-
work is not fully-connected, which means all pairs of
vertices are directly connected, because managers are
concurrently contractors. For example, as in the case
shown in Fig. 4, suppose a manager broadcasts an
advertisement of itself in phase 1. Then, the manager
may apply to the neighboring manager with higher fit-
ness in phase 2. In phase 3, there are sufficient agents
applied to the manager, and the manager also becomes
a member of the team. In this case, if the manager is
also selected by another manager, then the manager is
doubly assigned to two different teams. To resolve this
conflict, more cross-checking is necessary.

4 TA Algorithm in Dynamic Environment

4.1 Challenges in Dynamic Environments

In dynamic environments, additional tasks may be
given to agents. Assuming that network connectiv-
ity depends on the relative distance between agents,
the network topology will change dynamically or

may even be disconnected due to the mobility of the
agents. Therefore, the proposed algorithms may not
work in dynamic environments as intended because
a static, connected network during each TA round is
assumed. Specifically, a disconnection during consen-
sus progress causes a conflict. For example, two dis-
connected subgroups may have different ideas about
who the PM is. Additionally, a disconnection during
the application phase creates a disagreement about
who the team member is.

In fact, conflicts over a disconnected network are
inevitable when a decentralized TA algorithm is used,
especially for a strongly coupled problem such as the
coalition formation. The major issue is how to mini-
mize performance degradation over the disconnected
network.

4.2 Decentralized TA Architecture in Dynamic
Environments

This section addresses an extension of the proposed
TA algorithms to the problem in dynamic environ-
ments. The assumptions for this extension are as fol-
lows: i) there is a mission control center that monitors
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Fig. 5 Real-time decentralized TA architecture
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all of the agents and updates the task information T
mutually, ii) the clock is synchronized, and iii) each
agent knows the list of agents in its subnetwork.

Let us consider that each agent has TA block for a
high-level controller and guidance and a control block
for a low-level controller. Once TA block calculates
the path list and corresponding time table, the low-
level controller causes the vehicle to arrive at the target
in time. Guidance and control block run every Tc sec,
and TA block runs every Td sec, where Td depends on
communication bandwidth. Figure 5 shows the archi-
tecture of the proposed TA algorithm for real-time
implementation.

TA block consists of four phases, and one of four
phases is performed at each execution of TA block. At
the phases requiring several iterations for consensus
with neighboring agents, only one iteration is per-
formed at each execution of TA block. For instance, it
takes (N −1)Td sec for phase 2 of PCFA. In this study,
the phase token K(i) is adopted, which indicates the
number of phase to be executed. The agent i resets the
phase token K(i) to one in two cases. First, if there are
no unassigned tasks, agents do not proceed with the
TA process and reset the phase token to one. Another
case is when members of agent i’s subnetwork change
during the mission. Note that the proposed algorithm
requires synchronous phase scheduling in each sub-
network, and therefore, all members of the subnetwork
should have the same value of phase token.

In phase 2, consensus of the PM requires at most
n

(i)
s − 1 iterations where n

(i)
s is the number of nodes

in the agent i’s subnetwork. Still, the information of
the network topology is not used. In phase 3, the
resumé should be changed because there exists a time
gap between application time and team building time.
Simultaneous arrival may fail if this gap is neglected.
The modified resumé of PCFA is as follows.

r(i)(k, t) = tET A(i, k, t) + 2Td (17)

where 2Td compensates for the time gap as well as
the travelled distance of the agent i during Td sec.
The entire process of PCFA dealing with dynamic
environments is presented in Algorithm 10.

Similarly, TCFA can be extended for dynamic envi-
ronments. Agents prepare the application letter in the
first run of phase 3 and then begin to make a consensus
in the second run. The modified resumé of TCFA is

r(i)(k, t) = tET A(i, k, t) + 2(n(i)
s − 1)Td (18)

where 2(n
(i)
s − 1)Td compensates for the time gap

as well as the travelled distance of agent i during
(n

(i)
s − 1)Td sec. The modified pseudocode of case 3

for TCFA is presented in Algorithm 11 where F
(i)
3 is

initialized to zero at case 1 of TCFA.
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4.3 Rally Point

In the ST-MR problem, multiple agents form a coali-
tion to perform a common task, and communica-
tion between agents is required for negotiating which
agents will be included in the coalition. In dynamic
environments, however, the number of members in
the subnetwork may be insufficient to perform the
task due to a limited communication range. This prob-
lem can be resolved by adopting the rally point (RP)
which is the designated place when an agent does
not have any tasks to perform. Agents around the RP
become connected, and thus, they can proceed in the
TA process.

The adaptive positioning of the RP would be bet-
ter than the stationary RP in many applications. For
instance, in a friendly region, the geometric center
of uncompleted tasks can be a time-efficient choice.
During the SEAD mission, the preferable location of
RP is on the safe border of the dangerous region and
concurrently close to the base.

The adaptation law should generate the same loca-
tion of RP through all agents without using other
agents’ positions because the precise position infor-
mation of other agents is hard to update continuously.
To derive the adaptation law for the RP position in
SEAD mission, convex hull and Minkowski sum [13]
are utilized. In the algorithm, the disk representing
the surface to air missile (SAM) radar, which is the
uncompleted task, is approximated as a hexagon, and
the node points are made up of vertices of uncom-
pleted tasks. Now, the convex hull of the node points
becomes the boundary points of the dangerous region.
Considering safe distance from the dangerous region,
the Minkowski sum of the convex hull with a loiter-
ing circle is calculated. Finally, as shown in Fig. 6, the
closest point from the base among the convex hull of
the Minkowski sum is selected as the RP.

4.4 Convergence

In this subsection, convergence of the proposed algo-
rithms in dynamic environment is analyzed. Note that
the term convergence means that the all tasks can
be allocated to the agents within a finite time. Let
us remind the assumptions in Section 2.2; agents
are allowed to communicate with each other syn-
chronously and the network should be static and
connected. For the synchronous communication, the

phase token and its update rules are adopted, which
reset the token when members of subnetwork are
changed. For the static and connected network, RP
was introduced. By gathering the agents not having
any tasks around the RP, the static and connected
network can be expected near the RP. Therefore,
according to Theorem 1, convergence of the proposed
algorithms are guaranteed in the dynamic environ-
ment.

4.5 Deletion of Duplicated Allocation

Disconnected subnetworks due to the limited com-
munication range may yield duplicated allocations
because each subnetwork does not have the infor-
mation of the other subnetworks. In this study, it is
assumed that mission control center resolves this prob-
lem by noticing the status of completed tasks to the
agents. When the mission control center receives the
completion notice reported by the coalition who vis-
ited the task, then it broadcasts the completeness of
tasks as shown in Fig. 5. Note that this treatment
may degrade the performance because multiple coali-
tions may head to the same task until one coalition
completes the task.

5 Numerical Results

Numerical simulations are carried out to demonstrate
the performance of the proposed TA algorithms. The
scalability in a connected network is verified via a
Monte Carlo simulation. Additionally, the proposed
algorithms are applied to the dynamic SEAD scenario,
a primary application of this study. The simulation
environment includes a personal computer equipped
with an Intel Core i5-4670 @ 3.40 GHz with 16 GB of
RAM, and MATLAB on Windows 7 operating system
is chosen as a numerical simulation tool.

5.1 Scalability

The scalability of the proposed algorithms is examined
for a problem in a static, connected network. By The-
orem 2, the proposed TA algorithms have polynomial
time complexity, and therefore, the parallel runtime,
which is obtained by dividing the total runtime by N

[3], can be estimated by the time complexity formula.
The estimated parallel runtime t̂r can be obtained by
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Fig. 6 Choice of rally point
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adapting two unknown parameters for the simplified
time complexity formula as

t̂ cr = αcM
2 + βcMN2, (19)

t̂ dr = αdM2 + βdMN2 log(N), (20)

where αc and βc are unknown estimator parameters of
PCFA, and αd and βd are those of TCFA. The esti-
mator parameters are identified by the least squares
method, and Monte Carlo simulations are carried out
to obtain the data for identification.

The runtime for various sizes of the problems are
obtained by considering M tasks and N agents where
1 ≤ M ≤ 30 and 1 ≤ N ≤ 30, resulting in 900
different problem sizes. In addition, 100 Monte Carlo
simulations are performed for each problem size so
that 90,000 different problem cases are generated. The
initial positions of the agents and the tasks are ran-
domly generated within a 300 km by 200 km area,
and the number of UAVs required for each task Zk

is randomly chosen between 1 to Zmax = max
i∈I

Z
(i)
max ,

where Z
(i)
max ≡ n(N (i)) + 1 for phase 1. Thus, it

can be stated that the network topology determines
Zmax . The random walk approach, which generates
a connected network by connecting two random ver-
tices with an edge, is used for each simulation. The
graph connectivity is determined by examining the
Laplacian matrix. The graph is determined to be con-

nected [20] when the second smallest eigenvalue of
the Laplacian matrix is greater than zero. For a more
general random network, Nr pairs of random vertices
are connected with edges after the graph is connected,
where Nr is randomly selected between 1 and 30.

For each problem size, the maximum parallel run-
time tr of the 100 Monte Carlo simulations was col-
lected as the worst-case value. The 900 sets of the
(N, M, tr ) were used to identify the unknown param-
eters, and the goodness of fit [32] was evaluated by
using the normalized mean square error R2.

The identification results are summarized in
Table 2, and Fig. 7a shows a comparison between
t̂r and tr for each problem size. The estimated run-
time shows excellent agreement with the worst-case
runtime with the exception of several outliers. From
Fig. 7a, it can be concluded that the estimator reason-
ably represents the worst-case runtime. The difference
between the estimated runtime and the worst-case run-
time of PCFA and TCFA are shown in Figs. 7b and 8,
respectively.

The polynomial time complexity is validated from
the fitting results for a specific problem size by eval-
uating R2 and the comparison graph. The simulation
results show that the proposed TA algorithms can
solve large-size problems, for example, the case when
N and M are both 30, within one second. However,
in the simulation results, network bandwidth was not
considered, and therefore, the presented runtime can
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Table 2 Estimated parallel
runtime Formula t̂ cr = αcM

2 + βcMN2 t̂ dr = αdM2 + βdMN2 log(N)

Parameters αc 2.7833 ∗ 10−5 αd 1.9975 ∗ 10−4

βc 3.2584 ∗ 10−6 βd 1.0549 ∗ 10−5

Goodness of Fit R2 0.9671 R2 0.9356

be considered an ideal lower bound for a practical
application.

The number of communications for the 100 Monte
Carlo simulations is also compared with the commu-
nication bound stated in Lemma 1. To pick the worst
case, the maximum number of communications per
agent is logged during the Monte Carlo simulations.
Figure 9 shows the maximum communications with
upper bound with respect to the problem size N(=M).
As derived in Eq. 13, the number of communications
grows quadratically with the problem size. PCFA has
margins from the upper bound because the number of
offer letters is generally less than N − 1. On the other
hand, TCFA communicates exactly the same as the
bound because N−1 iterations are performed in phase
2 and phase 3, as the network topology is assumed to
be unknown.

5.2 Application: SEAD Scenario

5.2.1 SEAD Environment

Figure 10a shows the two-dimensional battlefield con-
sidered for the SEAD mission, of which the objective

is the complete destruction of the entire targets, i.e.,
surface-to-air missiles (SAMs), as soon as possible.
Because SAMs are very dangerous, they must be
simultaneously attacked by multiple UAVs. In Fig. 10,
the number inside the parentheses of the task repre-
sents the number of required UAVs, which implies the
degree of risk. The solid line connecting two UAVs
means that those UAVs are within communication
range. A UAV is considered as a point mass, and the
collision between UAVs is neglected. The speed of
the UAV is set to 200 m/sec. Figure 10b shows the
dynamic environment at 800 sec, where T6 and T7
are pop-up tasks and T1 and T3 are completed tasks.
The dotted line connecting a UAV and a task is the
remaining path of the UAV.

5.2.2 Path Planning for SEAD

The simultaneous arrival strategy for the SEAD mis-
sion is described in this subsection. Let us remind that
each UAV has its own path list and corresponding time
table. The proposed algorithms augment the newly
allocated task at the end of the path list. In addition,
the appointed time is decided as the latest time of
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Fig. 8 Parallel runtime estimation (TCFA)

the team; thus, the scheduled time table and path list
cause the UAVs to arrive at the common task simulta-
neously. When a UAV arrives earlier, it loiters around
the task at a radius Rsaf e, where Rsaf e is the radius
of the loitering pattern for the task position. When the
estimated time to the task is same as the appointed
time, UAVs steer their way to the task. Because the
working time at the target is relatively short for the
SEAD mission, tw is set to zero in this study. After
the completion of the task, each UAV advances to the
next task. A UAV returns to the RP when all the tasks
assigned to it are completed. If every UAV is loitering

around the RP after finishing the tasks of the mission,
they return to the base.

5.2.3 TA Results in Dynamic Environments
with Various Communication Ranges

In this section, the performance of the proposed algo-
rithms with various communication ranges is analyzed
through Monte Carlo simulations. Prior to that, the
detailed TA progress by TCFA is shown in Table 3
as a sample scenario where the description on each
variable was introduced in Table 1. The scenario is
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Fig. 10 SEAD environment

selected as in Fig. 10b where the communication
range is 40 km and the period of TA block Td is 1 sec.
According to the definition of fitness in Eq. 10, the
inherent worth of task k, wk , denotes the priority of the
task k. In our simulations, however, the difference of
priority among tasks was not considered, and wk is set
as 100 denoting the maximum score in our simulation
for convenience. Time-discounting factor λk is set as
0.001 to reduce the score to ‘1/e’ of wk exponentially
as 1,000 seconds have passed from the occurrence of
the task.

At 800 sec, each UAV receives the information
of T6 and T7 from the mission control center, thus
making an advertisement of themselves. The way-
point number 100 denotes the RP. There are three
disconnected subnetworks; group 1 consists of UAV1,
UAV2, and UAV3; group 2 consists of UAV4 and
UAV5; and group 3 consists of UAV6 and UAV7. At
801 sec, each subnetwork tries to make a consensus on
the PM. Note that the numbers of required iterations
for each group are 2, 1, and 1, respectively (Algorithm
10 line 16). Group 2 and 3 agree that the PM is UAV4
and UAV6, respectively. At 802 sec, group 1 makes
a consensus on the PM as UAV3, while group 2 and
3 prepare application letters for consensus in phase
3 (Algorithm 11 line 3). At 803 sec, group 2 and 3
now make a consensus on the application letter, while
UAV1 and UAV2 in group 1 prepare application let-
ters. At 804 sec, members in group 2 and 3 allocate T7
simultaneously, while members in group 1 now start to

make a consensus on the application letter. As in this
case, duplicated allocations can occur in the dynamic
environment due to the limited communication range.
This cannot be avoided without more communication
between the mission control center and the UAVs. In
this study, duplicated allocations are resolved by delet-
ing completed tasks in the path list and the time table
based on the assumption that completeness of tasks is
updated from the mission control center. At 805 sec,
group 1 makes a consensus on the application letter,
while group 2 and 3 intend to begin the TA process
for T6. At 806 sec, group 1 allocates T6. At 807 sec,
phase tokens for all UAVs are reset to one and stop the
TA process because all tasks are assigned (Algorithm
10 line 26).

For Monte Carlo simulations, 100 random scenar-
ios are generated. For each random scenario, 10 tasks
and 10 agents are considered, and initial positions of
tasks are randomly determined within a 300 km by 200
km area without overlapping on each other’s perime-
ters while agents are located around the base. The
number of required agents for each task, Zk , is ran-
domly chosen between one to five, and Rsaf e of each
task is chosen between 20 km to 50 km proportional
to Zk . The maximum number of allowable tasks for
each agent Lmax is set as 5. Among 10 tasks, the infor-
mation regarding two tasks, the other two tasks, and
the last task is disseminated to agents at 800, 1,500,
and 1,800 sec, respectively. On the other hand, the
eight communication ranges considered are 20, 30, 50,
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Table 3 Detailed TA Progress. Variable definitions are summarized in Table 1

Time i K(i) A(i) L(i)
app p(i) t(i)

(sec) = [j, k, f ] = [j, k, r] = [p1, ...] = [t1, ...]
800 1 1 [1,6,51.925] [ ] [100,1,2] [0,726,1139]

2 1 [2,6,60.583] [ ] [100,1,100] [0,726,1026]
3 1 [3,6,60.599] [ ] [100,1,100] [0,726,1026]
4 1 [4,7,70.515] [ ] [100,3,100] [0,734,884]
5 1 [5,7,65.891] [ ] [100,4] [0,934]
6 1 [6,7,55.31] [ ] [100,5] [0,1072]
7 1 [7,7,55.31] [ ] [100,5] [0,1072]

801 1 2 [3,6,60.599] unchanged unchanged unchanged
2 2 [3,6,60.599]
3 2 [3,6,60.599]
4 2 [4,7,70.515]
5 2 [4,7,70.515]
6 2 [6,7,55.31]
7 2 [6,7,55.31]

802 1 2 unchanged [ ] unchanged unchanged
2 2 [ ]
3 2 [ ]
4 3 [ ]
5 3 [5,7,1223]
6 3 [ ]
7 3 [7,7,1398]

803 1 3 unchanged [1,6,1463] unchanged unchanged
2 3 [2,6,1311]
3 3 [ ]
4 3 [5,7,1223]
5 3 [5,7,1223]
6 3 [7,7,1398]
7 3 [7,7,1398]

804 1 3 unchanged [2,6,1311] [100,1,2] [0,726,1139]
2 3 [2,6,1311] [100,1,100] [0,726,1026]
3 3 [2,6,1311] [100,1,100] [0,726,1026]
4 4 [ ] [100,3,100,7] [0,734,884,1223]
5 4 [ ] [100,4,7] [0,934,1223]
6 4 [ ] [100,5,7] [0,1072,1398]
7 4 [ ] [100,5,7] [0,1072,1398]

805 1 3 [3,6,60.599] unchanged unchanged unchanged
2 3 [3,6,60.599]
3 3 [3,6,60.599]
4 1 [4,6,29.709]
5 1 [5,6,29.709]
6 1 [6,6,24.938]
7 1 [7,6,24.938]

806 1 4 [3,6,60.599] [ ] [100,1,2] [0,726,1139]
2 4 [3,6,60.599] [ ] [100,1,100,6] [0,726,1026,1311]
3 4 [3,6,60.599] [ ] [100,1,100,6] [0,726,1026,1311]
4 2 [4,6,29.709] [ ] [100,3,100,7] [0,734,884,1223]
5 2 [4,6,29.709] [ ] [100,4,7] [0,934,1223]
6 2 [6,6,24.938] [ ] [100,5,7] [0,1072,1398]
7 2 [6,6,24.938] [ ] [100,5,7] [0,1072,1398]
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Fig. 11 Average mission
score
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100, 150, 200, 300, and 400 km. For each commu-
nication range, 100 random scenarios are applied. To
compare the proposed algorithms with a state-of-the-
art method, the GDAP algorithm [45] is modified and
applied as introduced in Section 3.4.

Figure 11 presents the average mission score with
respect to communication ranges. The inherent worth
of tasks wk and time-discounting factor λ are set as
100 and 0.001, respectively. For task k, its score sk is
added to the mission score if Zk agents arrive at task

k at the same time, and the second arrival by another
team is not reflected in that score. The blue, red, and
black solid lines indicate the results of PCFA, TCFA,
and modified GDAP, respectively, when the period of
TA block Td is 1 sec. The dashed lines denote the
results of the algorithms when Td is 0.2 sec. Contrary
to the expectation that TCFA shows more efficient
solution than the others, PCFA performs better than
the other methods for all communication ranges when
Td is 1 sec. The degradation of TCFA stems from

Fig. 12 Average number of
subnetworks
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Fig. 13 Average mission
completion time
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the dynamic environment, which will be discussed in
detail. As Td becomes 0.2 sec, the scores of PCFA
and TCFA are enhanced more distinctly than that of
the modified GDAP, which implies that PCFA and
TCFA are more sensitive to Td than the modified
GDAP.

As shown in Fig. 12, the network is mostly con-
nected during the mission for the communication
range beyond 200 km, and thus, TCFA solves the TA
problem as in the fully connected network. Due to the
time delay in phase 3, however, the performance of

the TCFA is degraded. For each task, the additional
time for consensus on application letters in a con-
nected network is 9 sec because N is 10, and this delay
cancels out the advantage of TCFA. Therefore, when
Td is 0.2 sec, TCFA shows better performance, and
the score gap between PCFA is decreased because the
additional time from phase 3 of TCFA is reduced from
9 sec to 1.8 sec. In this context, it is expected that the
degradation of TCFA will be relaxed as Td decreases.

Figure 13 shows the average of mission completion
time, defined as the time spent until every agent arrives

Fig. 14 Average maximum
communications per agent
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Fig. 15 Statistical results
of mission score
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at RP after finishing the given tasks. The average
mission completion time decreases as communication
range increases, which means that the dense network
improves the efficiency of the TA result even when
the TA algorithms are greedy. The decreasing trend of
the average mission completion time is well matched
with the increasing trend of the average mission score
in Fig. 11.

Figure 14 exhibits the averaged number of max-
imum communications per agent with respect to
communication ranges. Modified GDAP consumes
fewer communication because it does not include the
consensus process. In PCFA and TCFA, more com-
munication are required because more resets occur
over shorter communication ranges. In connected net-
works, the number of communication by PCFA and

Fig. 16 Statistical results of
maximum communications
per agent (base=10)
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Fig. 17 Statistical results
of mission completion time
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TCFA are below 180, which is the upper bound from
Eq. 13.

Figures 15–17 show the statistical results of Monte
Carlo simulations when Td is 0.2 sec. On each box,
the edges of the box denote the 25th and 75th per-
centiles, the central mark is the median, and the
whiskers denote 99.3 % coverage if the data are
normally distributed. In Fig. 16, outliers outside the
whiskers are plotted together. Considering the out-
liers, the proposed algorithms sometimes use signifi-
cantly more communication than the modified GDAP
when the communication range is short; however, the
trend is relaxed for problems with longer communica-
tion ranges. Therefore, the modified GDAP can be a
compromise when the communication range is much
shorter than the diameter of a mission area. The pro-
posed algorithms show better performance in terms of
mission score and mission completion time by using
more communication.

5.3 Discussion

Numerical simulation demonstrates that the proposed
decentralized coalition formation algorithms can be
applied to the dynamic environment where time-
varying, isolated subnetworks may appear due to
the limited communication range. Comparative study
with the modified GDAP shows a trade-off relation-
ship between communication burden and efficiency.

However, the proposed coalition formation algo-
rithms do suffer from several limitations. First,
the problem statement and the proposed algorithms
neglect the constraint on finite energy of agents.
By limiting the actions of advertisement and appli-
cation for the case that the remaining fuel is not
sufficient, the constraint can be treated intuitively. A
precise model of fuel consumption, however, is hard
to obtain and depends on the vehicle type such as
a fixed-wing UAV or multi copter UAV. Thus, the
consideration of finite energy constraint and the cor-
responding analysis should be conducted for future
work. Second, Monte Carlo simulations are not suffi-
cient to prove the performance based on synchronous
communication. Hardware experiments and associ-
ated lessons are required to verify the proposed algo-
rithms. Finally, the scalability analysis with respect to
the computation and communication in dynamic envi-
ronment was not presented. The time-varying network
topology due to the limited communication range
makes the convergence analysis very hard. Probabil-
ity of isolated subnetworks makes this problem more
challenging.

6 Conclusion

Two market-based decentralized task allocation algo-
rithms were proposed for cooperative timing missions.
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The network in dynamic environments may be discon-
nected during missions; thus, the proposed algorithms
were extended for use in dynamic environments. With
convergence proof, a scalability analysis regarding
time complexity and communication load was con-
ducted and supported by numerical results. For the
comparative analysis, the state-of-the-art method is
modified and implemented as a benchmark. Numer-
ical results with extensive Monte Carlo simulations
showed that the proposed algorithms perform better
than the existing algorithm, but additional communi-
cations are required.

Appendix A: Directed Acyclic Graph Constraint
on Dependency Graph

The TA algorithm for cooperative timing missions
should provide the proper order of the waypoints
so that the tasks can be visited simultaneously. For
instance, consider a following case in which there are
three agents and four tasks, Z1 = Z2 = Z3 = Z4 = 2,
and

p(1) = [4, 3, 2], p(2) = [4, 1, 3], p(3) = [2, 1] (A.1)

Although this path list satisfies the constraint in Eq. 2,
task 2 cannot be visited simultaneously. On the other
hand, when p(3) = [1, 2], simultaneous arrivals are
possible. Therefore, to generate a path list for simulta-
neous arrivals, the constraint on the path list should be
considered.

Let us consider the dependency graph G(K, E(P))

where directed edge-set E(P) is defined as follows.

E(P) = {(p(i)(b),p(i)(b + 1))|i ∈ I,

b ∈ {1, ..., n(p(i)) − 1}} (A.2)

Then, this directed graph indicates the precedence
among tasks. When a directed cycle exists in the graph
G(K, E(P)), the path list cannot allow simultaneous
arrivals, as shown in Lemma A.1.

Lemma A.1 Let us consider the TA problem for the
cooperative timing mission as defined in Eqs. 1∼4.
When there exists a directed cycle in the dependency
graph G(K, E(P)), the path list P cannot allow simul-
taneous arrivals.

Proof Supposing that even a directed cycle exists in
the dependency graph G(K, E(P)), the path list P can
allow simultaneous arrivals.

Suppose that arbitrary three tasks among M tasks
form a directed cycle in the dependency graph
G(K, E(P)). Let us call these tasks task k, task l, and
task m in sequence, which means that some agents
move in the order of k→ l, l→ m, and m→ k. When
each task is visited simultaneously by each coalition,
the arrival time for each task is uniquely determined
as tk , tl , and tm. Then, according to the first two
sequences, k→ l and l→ m, the arrival time will be
tk < tl < tm. However, the third sequence m→ k
draws tm < tk , which makes a contradiction. Without
a loss of generality, it can be stated that any directed
cycles in the dependency graph result in a contradic-
tion. Therefore, the path list P cannot allow simulta-
neous arrivals when its dependency graph G(K, E(P))

has any directed cycles.

In the previous example, graph G(K, E(P)) using
the path of Eq. A.1 and using the modified path
(p(3) = [2, 1] is replaced by p(3) = [1, 2]) and can be
plotted as Fig. 18.

In Fig. 18a, there is a directed cycle including T1,
T2, and T3; thus, the path of example 1 does not sat-
isfy Eq. 4. On the other hand, there is no directed
cycle in Fig. 18b, which means that the modified path
satisfies Eq. 4.

Note that the aim of Eq. 4 is similar to that of
the Banker’s algorithm [15], which is well-known
method for deadlock avoidance. When a deadlock
occurs in parallel computing environment, the execu-
tion of tasks stops until the problem becomes solved
[26]. In Banker’s algorithm, a virtual banker check-
ing whether the new request may yield a deadlock or
not is adopted to manage the task scheduling. While
the deadlock avoidance process is run in a sequential

T1

T3T2

T4

T1

T3T2

T4

(a) (b)

Fig. 18 Graph G(K,E(P))
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manner in the Banker’s algorithm, batch processing
method is recommended in Eq. 4.
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19. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxon-
omy of task allocation in multi-robot systems. Int. J. Robot.
Res. 23(9), 939–954 (2004)

20. Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC
press, Boca Raton FL (2003)

21. Haque, M., Egerstedt, M., Rahmani, A.: Multilevel coali-
tion formation strategy for suppression of enemy air
defenses missions. J. Aerospace Inform. Syst. 10(6), 287–
296 (2013)

22. Johnson, L., Choi, H.L., How, J.P.: Hybrid Information and
Plan Consensus in Distributed Task Allocation. In: Pro-
ceedings of the AIAA Guidance, Navigation, and Control
Conference (2013)

23. Karaman, S., Shima, T., Frazzoli, E.: A process algebra
genetic algorithm. IEEE Trans. Evol. Comput. 16(4), 489–
503 (2012)

24. Khamis, A.M., Elmogy, A.M., Karray, F.O.: Complex task
allocation in mobile surveillance systems. J. Intell. Robot.
Syst. 64(1), 33–55 (2011)

25. Manathara, J.G., Sujit, P., Beard, R.W.: Multiple uav coali-
tions for a search and prosecute mission. J. Intell. Robot.
Syst. 62(1), 125–158 (2011)

26. Martin, J.M.: Deadlock avoidance in distributed service ori-
ented architectures. Master’s thesis, School of Computer
Science, University of Oklahoma, Norman OK (2010)

27. Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-
uav cooperation and control for load transportation and
deployment. J. Intell. Robot. Syst. 57(1-4), 417–449 (2010)

28. McLain, T.: Coordinated control of unmanned air vehicles.
Technical Report ASC-99-2426 Air Vehicles Directorate of
the Air Force Research Laboratory (1999)

29. Oh, G., Kim, Y., Ahn, J., Choi, H.L.: Market-Based
Task Assignment for Cooperative Timing Missions over Net-
works with Limited Connectivity. In: Proceedings of the
AIAA Guidance, Navigation, and Control Conference (2015)

30. Ponda, S.S., Johnson, L.B., Kopeikin, A.N., Choi, H.L.,
How, J.P.: Distributed planning strategies to ensure network
connectivity for dynamic heterogeneous teams. IEEE J. Sel.
Areas Commun. 30(5), 861–869 (2012)

31. Pujol-Gonzalez, M., Cerquides, J., Meseguer, P.,
Rodrı́guez-Aguilar, J., Tambe, M.: Engineering the decen-
tralized coordination of uavs with limited communication
range. In: Advances in Artificial Intelligence, vol. 8109,
Lecture Notes in Computer Science, pp. 199–208. Springer,
Berlin (2013). doi:10.1007/978-3-642-40643-0 21

32. Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied regres-
sion analysis: a research tool. Springer, New York (1998)

33. Sandholm, T.W., Lesser, V.R.: Coalition Formation
among Bounded Rational Agents. In: Proceedings of the
International Joint Conference on Artificial Intelligence
(1995)

http://dx.doi.org/10.1109/ROBIO.2014.7090496
http://dx.doi.org/10.1007/978-3-642-40643-0_21


J Intell Robot Syst (2017) 87:97–123 123

34. Service, T.C., Adams, J.A.: Coalition formation for task
allocation: Theory and algorithms. Auton. Agent. Multi-
Agent Syst. 22(2), 225–248 (2011)

35. Shaferman, V., Shima, T.: Unmanned aerial vehicles coop-
erative tracking of moving ground target in urban environ-
ments. J. Guid. Control. Dyn. 31(5), 1360–1371 (2008)

36. Shaferman, V., Shima, T.: Task Assignment and Motion
Planning for Multiple Uavs Tracking Multiple Targets in
Urban Environments. In: Proceedings of the AIAA Guidance,
Navigation, and Control Conference. Chicago, IL (2009)

37. Shehory, O., Kraus, S.: Methods for task allocation via agent
coalition formation. Artif. Intell. 101(1), 165–200 (1998)

38. Shima, T., Schumacher, C.: Assigning cooperating uavs
to simultaneous tasks on consecutive targets using genetic
algorithms. J. Oper. Res. Soc. 60(7), 973–982 (2009)

39. Smith, R.G.: The contract net protocol: High-level commu-
nication and control in a distributed problem solver. IEEE
Trans. Comput. 29(12), 1104–1113 (1980)

40. Sujit, P., Beard, R.: Distributed Sequential Auctions for
Multiple Uav Task Allocation. In: Proceedings of the IEEE
American Control Conference, pp. 3955–3960 (2007)

41. Sujit, P., George, J., Beard, R.: Multiple Uav Coalition
Formation. In: Proceedings of the IEEE American Control
Conference, pp. 2010–2015 (2008)

42. Sujit, P., George, J., Beard, R.: Multiple Uav Task Alloca-
tion Using Particle Swarm Optimization. In: Proceedings of
the AIAA Guidance, Navigation, and Control Conference
(2008)

43. Sujit, P., Manathara, J., Ghose, D., de Sousa, J.: Decen-
tralized Multi-Uav Coalition Formation with Limited Com-
munication Ranges. In: Handbook of Unmanned Aerial
Vehicles, pp. 2021–2048. Springer, Berlin, Germany (2014)

44. Vig, L., Adams, J.A.: Coalition formation: From software
agents to robots. J. Intell. Robot. Syst. 50(1), 85–118 (2007)

45. Weerdt, M.d., Zhang, Y., Klos, T.: Multiagent task alloca-
tion in social networks. Auton. Agent. Multi-Agent Syst.
25(1), 46–86 (2012)

46. Whitten, A.K., Choi, H.L., Johnson, L.B., How, J.P.:
Decentralized Task Allocation with Coupled Constraints in
Complex Missions. In: Proceedings of the IEEE American
Control Conference, pp. 1642–1649 (2011)

Gyeongtaek Oh received the B.S. degree in mechanical and
aerospace engineering from Seoul National University, Seoul,
Korea, in 2010. He is currently pursuing the Ph.D. degree in the
Department of Mechanical and Aerospace Engineering at Seoul
National University. His research interests include cooperative
control of multiple unmanned aerial vehicles and its real-world
applications.

Youdan Kim received his B.S. and M.S. degrees in aeronau-
tical engineering from Seoul National University, Korea, and
the Ph.D. degree in aerospace engineering from Texas A&M
University, in 1983, 1985, and 1990, respectively. He joined
the faculty of the Seoul National University in 1992, where he
is currently a Professor in the Department of Mechanical and
Aerospace Engineering. His current research interests include
the control system design for aircraft and spacecraft, reconfig-
urable flight control system, missile guidance and control.

Jaemyung Ahn received his B.S. and M.S. degrees from Seoul
National University in 1997 and 1999, and Ph.D. degree in
aeronautics and astronautics from MIT in 2008. He worked for
the Korea Aerospace Research Institute from 1999 to 2004 and
was involved in the research and development of the first liq-
uid propellant rocket and launch vehicle of South Korea as a
system engineer. From 2008 to 2010, he worked for Bain &
Company as a management consultant helping strategic deci-
sions of clients in various industrial fields. He is currently an
associate professor of aerospace engineering at Korea Advanced
Institute of Science and Technology (KAIST; Daejeon, South
Korea). His research interests include dynamics and control of
aerospace vehicles, multidisciplinary design optimization of a
complex system, and design of experiments (DOE).

Han-Lim Choi is an Associate Professor of Aerospace Engi-
neering at KAIST (Korea Advanced Institute of Science
and Technology). He received his B.S. and M.S. degrees in
Aerospace Engineering from KAIST, Daejeon, Korea, in 2000
and 2002, respectively, and his PhD degree in Aeronautics
and Astronautics from Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, in 2009. He then worked at
MIT as a postdoctoral associate until he joined KAIST in
2010. His current research interests include planning and con-
trol of multi-agent systems, resource management in radars,
and Bayesian inference for large-scale systems. He (together
with Dr. Jonathan P. How) is the recipient of Automatica
Applications Prize in 2011.


	Market-Based Task Assignment for Cooperative Timing Missions in Dynamic Environments
	Abstract
	Introduction and Related Work
	TA Algorithm for Cooperative Timing Missions over Connected Networks
	Problem Statement
	Assumption*.3pt
	Project Manager-oriented Coalition Formation Algorithm: PCFA*-.3pt
	Preliminaries*-.3pt
	Phase 1: Advertisement Preparation
	Phase 2: Consensus on PM
	Phase 3: Application
	Phase 4: Team Building

	Task-oriented Coalition Formation Algorithm: TCFA
	Greedy Distributed Allocation Protocol

	Properties of TA Algorithm
	Convergence
	Scalability
	Amount of Communication
	Time Complexity

	Performance
	Comparison with GDAP*.3pt

	TA Algorithm in Dynamic Environment
	Challenges in Dynamic Environments
	Decentralized TA Architecture in Dynamic Environments
	Rally Point
	Convergence
	Deletion of Duplicated Allocation*.3pt

	Numerical Results
	Scalability
	Application: SEAD Scenario
	SEAD Environment
	Path Planning for SEAD
	TA Results in Dynamic Environments with Various Communication Ranges

	Discussion

	Conclusion
	Appendix A A: Directed Acyclic Graph Constraint on Dependency Graph
	References


