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Abstract In this study, a wheeled mobile robot nav-
igation toolbox for Matlab is presented. The toolbox
includes algorithms for 3D map design, static and
dynamic path planning, point stabilization, localiza-
tion, gap detection and collision avoidance. One can use
the toolbox as a test platform for developing custom
mobile robot navigation algorithms. The toolbox allows
users to insert/remove obstacles to/from the robot’s
workspace, upload/save a customized map and config-
ure simulation parameters such as robot size, virtual
sensor position, Kalman filter parameters for localiza-
tion, speed controller and collision avoidance settings.
It is possible to simulate data from a virtual laser imag-
ing detection and ranging (LIDAR) sensor providing
a map of the mobile robot’s immediate surroundings.
Differential drive forward kinematic equations and
extended Kalman filter (EKF) based localization
scheme is used to determine where the robot will be
located at each simulation step. The LIDAR data and
the navigation process are visualized on the developed
virtual reality interface. During the navigation of the
robot, gap detection, dynamic path planning, collision
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avoidance and point stabilization procedures are
implemented. Simulation results prove the efficacy of
the algorithms implemented in the toolbox.

Keywords Autonomous mobile robots ·
Navigation · Collision avoidance · Gap detection ·
Point stabilization

1 Introduction

Mobile robots are finding increasing use in many areas
such as education [1–4], military, disaster recovery,
home cleaning, advertisement, assistance for peo-
ple with disability, exploration and transfer of goods
[5–7]. Thus, “mobile robot systems” is still a pop-
ular topic among students, robotic researchers and
educators around the world. Along with increasing
interest in mobile robots, simulation tools are becom-
ing more important. A simulation platform is an
extremely useful tool for mobile robot manufacturers
and developers, allowing them to visualize outcomes
of algorithms, robot motion characteristics and envi-
ronmental effects. Validation of navigation techniques
in a physical environment without any simulation
is challenging for many applications. Modelling a
mobile robot and executing algorithms before physi-
cal implementation supply a way to perform feasible
and experienced applications.

In mobile robotics, the navigation problem includes
several sub-tasks such as path planning [6, 8, 9], and
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tracking [7, 10], localization [11], collision avoidance
[12] and point stabilization [13–16]. These tasks can
be considered as independent modules working col-
lectively. The developed toolbox addresses the navi-
gation problem and handles these sub tasks in a multi-
function form. Each module of the toolbox is defined as
an independent function performing a specified sub task.

Matlab offers a powerful programming environ-
ment for developers with wide range of toolboxes.
That is why it is widely used for research to proto-
type algorithms. The functionality of Matlab lets users
to extend the proposed toolbox easily by adding new
functions or modifying the existing ones. Several Mat-
lab based robot tools are presented in the literature
[5, 17, 18]. Although these schemes give satisfac-
tory results in the simulation environment, physical
implementation is not feasible since kinematic con-
straints are not considered. The MATLAB toolbox
presented in [4] offers to generate kinematic and
dynamic equations required for robot control design.
It also generates code for these equations compat-
ible with commonly used programming languages.
However, the toolbox is not a complete simulator.
Many mobile robot simulators have been developed
such as YARS [19], XPERSim [20] and V-REP [21].
These tools provide users an environment to develop
algorithms for wheeled mobile robots. There is no
absolute superiority between the simulation tools.
Advantages and disadvantages of each simulation
environment vary depending on the user experience
and view.

Several model-driven simulators (e.g. Microsoft
Robotics Developer Studio, EasyLab [22]) are
released to overcome challenges in the coding phase
by using generalized blocks and components to fos-
ter reuse. Model and component based approaches
cater ease of use but less flexibility [23]. RoboSim,
which is a virtual environment for the two-wheeled
robots Linkbot and Mobot, is proposed in [24]. The
toolkit has a C/C++ controlled basis, which enables
to program and control physical robots. Corke [17]
has developed a robot toolbox for Matlab. The author
focuses on simplicity and user friendliness of the
interface by illustrating the mobile robot as a simple
triangle and obstacles as circles. Thus, the developed
algorithms cannot be implemented in real-time. The
proposed toolbox in [5] focuses on generating trajec-
tories for rigid bodies numerically without offering a
user interface. One of the most commonly used mobile

robot simulator is Gazebo [25]. Although Gazebo
is a powerful tool, it requires robot operating sys-
tem (ROS) installation as the control interface for the
robot. Besides not having a Windows support, installa-
tion of Gazebo and ROS, creating the bridge between
them and launching Gazebo within ROS is a chal-
lenging task and the environment requires a relatively
high programming experience. Matlab Robotics Sys-
tem Toolbox released in 2016 provides a powerful
environment for mobile robotics applications. Virtual
mobile robot examples for Gazebo environment and
ROS-enabled mobile robot programming interface are
available on the toolbox. Unlike Matlab Robotics Sys-
tem Toolbox, the proposed toolbox provides an all in
one simulation environment. An external installation
is not required for 3D visualization or code devel-
opment. In other words, the developed toolbox is a
standalone application developed in MATLAB, which
is a powerful research tool with wide range of tool-
boxes most researchers are familiar with. The toolbox
offers visual elements such as a user panel, map design
tools, 3D obstacle library, a laser imaging detection
and ranging (LIDAR) simulator, a 3D navigation mon-
itor, zoom and pan tools. The functionality of Matlab
allows users to modify or replace existing algorithms
with custom ones. The simulated mobile robot is con-
sistent with differential drive mobile robot kinematics.
Thus, prototyped navigation and control algorithms
can easily be implemented in real time. In addition, the
toolbox presented in this study offers a robust collision
avoidance procedure. One can easily integrate custom
localization model, kinematics, mobile robot parame-
ters, path planning and point stabilization schemes to
the toolbox.

We have used the technique presented in [26] as the
default dynamic path planner. The default static path
planning method is based on Euclidian distance trans-
form (EDT) [8]. The localization scheme is based on
extended Kalman filtering [27] and differential drive
mobile robot kinematics [28, 29]. We have integrated
these approaches to a LIDAR simulator, which is used
to visualize the robot’s environment, track changes in
the robot’s workspace and detect passable gaps. It is
possible to change location, scanning resolution, view
angle and monitoring options of the LIDAR sensor on
the simulated robot.

The following sections highlight graphical user
interface (GUI), main functions, the navigation algo-
rithm, simulation results and conclusions.
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2 Graphical User Interface (GUI)

The GUI consists of a virtual reality interface (VRI)
and a LIDAR monitor (LM). Definitions of the icons
and color-codes used in the simulation are given in
Table 1.

The main virtual reality window provides an
interface through which users can reach all controls,
construct a map by inserting and deleting obsta-
cles from an obstacle library, specify the initial
position and the target point, view message panel,
start/stop/pause/continue simulation and supply input
to the simulation. A custom 3D map can be con-
structed by inserting and/or deleting obstacles from
an obstacle library. Obstacles can be inserted into the
map by selecting the “Add” sub-menu item from the
“Obstacle” menu. The main virtual reality interface
and obstacle library window are shown in Fig. 1. The
obstacle library currently includes a box, cylinder,
cone, sphere and a table, which can all be scaled in
3D and rotated around the z-axis. After selecting an
object from the library, the point where it will be
located is determined by left clicking on the map.
Similarly, obstacles can be removed by selecting
the “Delete” sub-menu item from the “Obstacle”
menu. Users can add/delete obstacles into/from the

Table 1 Definitions of the Symbols Used in the GUI

Symbol Monitor Definition

VRI Mobile robot

VRI Region of static obstacles

VRI Region of unmapped obstacles

VRI Static path

VRI Traversed path

VRI Predicted path

VRI Global target

LM Points of obstacles

LM Possible collision point

LM Local target

LM Safe maneuvering point

LM Detected gaps

LM Filtered gaps

LM Optimal gap

LM Mobile robot

map both prior and during the simulation. Exist-
ing obstacles can also be repositioned during the
simulation providing a way to simulate a dynamic
environment including non-stationary obstacles.
Obstacle repositioning is accomplished through the
function moveObject. The designed map including
both static and dynamic obstacles can be saved to a
file for future use. The LIDAR monitor visualizes
the obstacles in the robot’s immediate environment
depending on where the LIDAR is located on the
mobile robot. The virtual LIDAR is assumed to be
located at the origin of the monitor. The objects
and planar surfaces represented with gray color are
assumed to be known static obstacles where the rest of
the objects are completely unknown to the simulated
robot until they enter the LIDAR’s field of view. In
other words, the dynamic path planner has no infor-
mation about the global map except for the stationary
walls covering the configuration space of the mobile
robot.

Current LIDAR data, obstacle-free passable gaps,
optimal gap and the optimal local target point are
visualized on the LIDAR monitor. The monitor is acti-
vated after the simulation is started. The main virtual
reality window displays the 3D map including static,
traversed and predicted trajectories, obstacles and the
simulated mobile robot. The real-time behaviors of
the robot are observed through this window. A sam-
ple zoomed region of a virtual reality interface and the
corresponding LIDAR monitor displaying the robot’s
immediate surroundings are given in Fig. 2.

The main window also includes a message panel
that is used to inform users about certain situations.
Sample messages and their descriptions are given
below:

• Message 1: “Navigating the robot”: This mes-
sage indicates that the simulation has started suc-
cessfully and the robot is moving towards the
global target.

• Message 2: “The mobile robot successfully
reached the target”: This message is displayed
when the robot reaches the global target. The
robot is assumed to reach the target after getting
closer to the target than a certain distance.

• Message 3: “No obstacles on the path, head-
ing directly towards the target”: This message
expresses that the mobile robot can proceed to the
global target through a safe corridor.
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Fig. 1 The main virtual
reality interface (a) and
obstacle library window (b)

(a)

(b)

• Message 4: “Robot is on collision course”: This
message denotes that if the robot keeps its current
course, it might collide with an obstacle. In such a
case, the collision avoidance scheme updates the
local target allowing safe maneuvering.

• Message 5: “Cannot assign a local target”: This
message is displayed when the robot does not
detect any passable gaps. In such a case, the
mobile robot makes a zero-radius turn searching
for a passable gap.

• Message 6: “Target is unreachable”: This message
is displayed if the target assigned is unreach-
able given the static map before the simulation
is started or the robot does not sense any gap
after a 360◦ search of its environment during the
simulation.

3 Main Functions and the Navigation Algorithm

3.1 Main Functions and Variables

Table 2 provides a list of the commonly used input-
output parameters.

Definitions for the main functions are given below:
InitSimParam() : This function is used to set the simu-
lation parameters. Size of the mobile robot, LIDAR’s
location on the robot, cruise speed, LIDAR settings,
localization parameters, EKF and collision avoidance
settings, map and display options are set through this
function.

• [LIDAR] = acquireLIDARdata (robotPosition):
This function generates virtual LIDAR data
given the robot’s current position and orienta-
tion. LIDAR data is generated either 2D or 3D
according to user’s choice.

• [safeGaps, gapDist] = FindObstacleFree-
Gaps(robotPosition, LIDAR): This function
implements an algorithm to find the gaps between
the obstacles through which the robot can safely
navigate. Gaps are defined as line segments
joining obstacle corners.

• distMtrx = fcn euclidian dist trans(Ireal BW,
target): This function computes EDT with respect
to a target point.

• [localTarget, OptimalGap, OptimalGapDist] =
SetLocalTarget(safeGaps, gapDist, distMtrx,
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Fig. 2 VRI (a) and LIDAR
monitor (b)

(a)

(b)

robotPosition, LIDAR): This function determines
an optimal local target based on the mobile
robot’s current position, gap configuration and
the Euclidian distance transform matrix. The cost
for a grid point on the map is determined by,

C(pi ) = d(pi − pr ) + D(pi ) (1)
where pi and pr are the ith grid point on the line
passing through the detected gaps and the position
vector of the robot, respectively. d(pi ) is the Euclid-
ian distance between the robot and the grid point pi .
D(pi ) is the Euclidean distance transform value for
pi . The grid point, which minimizes the cost function
is assumed as the local target.

• [Vr, Vl] = SpeedController(robotPosition, local-
Target, dist2Collision): This function sets the
speeds of the left and right wheels. The speeds are
set such that the robot is steered towards the given
local target.

• posEst = LocalizeRobot(): This function deter-
mines the position of the mobile robot.

• kalman filter(KalmanFilter): This function imple-
ments Kalman filtering.

• system model(SystemModel): This function
computes the current position of the mobile robot
based on the kinematic equations.

Differential drive kinematic model is the default
mechanism used in this study. An illustration of
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Table 2 Input/Output
Parameters Commonly
Used in Functions

Parameters Definitions

Imap BW The grid-based global map containing free cells and static obstacles

Ireal BW The grid-based global map containing both static and dynamic obstacles

robotPosition Position of the mobile robot with respect to the global coordinates.

distMtrx Euclidian distance transform matrix computed for a given map.

LIDAR Distance array acquired from the virtual LIDAR.

lidarRes Angular scanning resolution of the LIDAR (0.5◦ or 1◦).
start and target Robot’s initial position and target point.

KalmanFilter A structure of state estimate, input, current measurement value of the
output, process covariance, measurement covariance and error covariance.

SystemModel A structure of state and input vectors.

safeGaps Free spaces between obstacles through which the robot can safely pass.

OptimalGap The gap on which the optimal local target is located.

OptimalGapDist Width of the optimal gap.

gapDist Array of widths of the detected gaps.

localTarget 2D position of the local target with respect to the global coordinates.

localTarget upd Collision avoidance procedure updated local target.

dist2Collision The distance to the nearest obstacle which is closer than a critical value.

Vl Velocity of the right wheel (in cm/sn).

Vr Velocity of the right wheel (in cm/sn).

the model is provided in Fig. 3. Assuming that
vl, vr , b, θ, x, y are the left and right wheel velocities,
wheel base, orientation angle and x and y position
of the mobile robot, respectively. Rotation radius (R),
angular velocity (w) and instant curvature (Ic) are
given by [28]

R = b

2

vr + vl

vr − vl

, ω = vr − vl

b
, Ic

= [x − R sin θ, y + R cos θ ] (2)

State-space model of the differential drive mobile
robot is then given by,

⎡
⎣

xt+∂t

yt+∂t

θt+∂t

⎤
⎦ =

⎡
⎣

cos(ω∂t) − sin(ω∂t) 0
sin(ω∂t) cos(ω∂t) 0
0 0 1

⎤
⎦

×
⎡
⎣

x − Icx

y − Icy

θ

⎤
⎦ +

⎡
⎣

Icx

Icy

ω∂t

⎤
⎦ (3)

Although differential drive mobile robots are consid-
ered in this study, the toolbox can be modified to

be used with other types of mobile robots by updat-
ing the mathematical model defined in system model
function.

• displayPath(xp, yp, type): Function to display a
path given the type and points on the path. Type of
the path is 1 for optimal path (green-triangular tra-
jectory), 2 for predicted path (red), 3 for traversed

Fig. 3 Differential drive kinematics
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path (red-triangular trajectory) and 4 for other use
(solid green circles).

• deletePath(type): Function to delete the specified path.
• [localTarget upd] = CollisionAvaid-

ance(robotPosition, localTarget, OptimalGap,
safeGaps, gapDist, OptimalGapDist, LIDAR):
This function checks whether there is an obstacle
close enough to the direct path to current local
target that the robot might collide with or not.
In case of an obstacle, the current local target is
updated to allow safe maneuvering.

Figure 4 illustrates the collision avoidance proce-
dure used in the simulation. Let t , illustrated by red
cross, be the local target determined by the function
SetLocalTarget. p-line denotes the line from the center
of the robot to the local target. Out of the LIDAR mea-
sured obstacle points closer the robot than the local
target t , the one nearest to p-line is marked as the crit-
ical collision point, c, illustrated by a red circle. Let
the distance between c and p-line be dmin. If dmin is
less than a pre-determined safe distance dtol , the col-
lision avoidance algorithm updates the local target as
the point t∗ that is dtol away from c such that the line
from c to t∗ is perpendicular to p-line. The mobile
robot is then steered to t∗ to avoid possible collision.

Fig. 4 Collision avoidance procedure

• [xp exact, yp exact]=fcn exact euclidian dist
trans(Ireal BW, x init, y init, theta init, x target,
y target, theta target): This function computes the
exact Euclidian distance transform (EEDT) given
the start and the target points. The function com-
putes the waypoints that are utilized in point
stabilization module.

• [X pt stab, Y pt stab, T pt stab]=PointStabiliza-
tion(): This function performs point stabilization.
The point stabilization method proposed in this
study is presented in Section 3.2.

Initialize parameters

Insert/delete obstacles
and/or upload a map

Set start and target points

Estimate robot’s position

Get LIDAR data

Find gaps

Gaps 
detected?Zero-radius turn

Set local target

Collision 
course?Update target

Steer robot towards the target

Target 
reached?

Start simulation

Stop simulation

Y

N

Y

N

Y

N

Compute EDT

Fig. 5 Flowchart of the navigation algorithm
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Fig. 6 Simulation result for
the map with mapped and
unmapped obstacles

Fig. 7 Sample Scenario-1:
VRI (a) and LIDAR (b)
monitors

(a) 

(b)
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• [objNo] = insertObject(pos, scale, strObj): This
function is used to insert an object to a spec-
ified position. The parameter ‘pos’ represents
a vector with 3 elements: x-position (in cm),
y-position (in cm) and orientation angle (in
degrees), respectively. Object type is specified as
a string (‘Box’, ‘Cone’, Cylinder’, ‘Sphere’ or
‘Table’). The physical size of the object can be
scaled with the resizing factor ‘scale’. ‘objNo’ is

a positive integer ID which is assigned to each
inserted object used later for deleting and reposi-
tioning the objects.

• deleteObject(objNo): This function is used to
delete the object specified by ‘objNo’.

• moveObject(objNo, pos): This function is used to
move an object to a specified position.

• setGlobalTarget(pos): This function is used to set
the global target point to a specified position.

Fig. 8 Sample Scenario-2:
VRI (a) and LIDAR (b)
monitors

(a) 

(b)
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Fig. 9 Simulation result for
a maze-type environment

By calling moveObject and setGlobalTarget func-
tion, one can simulate dynamic a dynamic envi-
ronment consisting of moving objects and target.

• NAV tangentBug(): This function is used for exe-
cuting the tangent bug algorithm when the sim-
ulation is started. One can switch this mode on
by selecting the tangent bug as the navigation
algorithm.

• NAV dynaBug(): This function implements the
navigation algorithm presented in this paper.
When selected as the navigation mode through the
simulation parameters settings, the mobile robot
is navigated from its current position to the spec-
ified target point using the proposed navigation
algorithm.

• NAV customCode(): One can develop a custom
navigation algorithm under this procedure. When
the user-defined procedure is selected as the valid
navigation procedure, this function is evoked to
navigate the mobile robot right after the simula-
tion is started.

3.2 Navigation Algorithm

The flowchart describing the navigation algorithm is
given in Fig. 5. The user first designs the workspace
by loading a map and/or adding/deleting obstacles and
sets the start and the target points on the map. When
the simulation is started, the parameters are initial-
ized. EDT is computed with respect to the target point
provided by the user. The position of the robot is
estimated through the function LocalizeRobot which
implements the Kalman based localization scheme
presented in [28]. Next, the algorithm computes the
Euclidean distance between the robot’s current posi-
tion and the global target. If the distance is smaller
than a pre-defined threshold and there is no obstacle
between the robot and the target, the robot is assumed
to reach the target and the simulation is stopped. Oth-
erwise, range data is acquired from the virtual LIDAR
sensor. Based on the LIDAR data, obstacle free gaps
are detected by the function FindObstacleFreeGaps.
In the gap detection scheme, gaps are initially located

Fig. 10 Simulation result
for dynamic global target-1
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by tracking the differences between two consecutive
LIDAR measurements that are bigger than a certain
threshold. The gaps are then post-processed by the
algorithm. If the robot cannot proceed to a given gap
without passing through another gap, the algorithm
keeps the gap the robot must pass first while deleting
the other(s). An example scenario is presented in the
results section. If the algorithm does detect any gaps,
the robot starts making a zero-radius turn searching for
gaps. Otherwise, the dynamic path planning function
SetLocalTarget computes the costs for the grid points
on the detected gaps based on the cost function given
in Eq. 1 and sets the point with the minimum cost as
the optimal local target. The optimal local target is
marked with a red cross on the LIDAR monitor. The
function CollisionAvaidance checks the direct path to
the local target for obstacles close enough to the path
that the robot might collide with. The local target is
updated with a safe one under the presence of such
an obstacle. The robot is finally steered towards the
updated local target by the function SpeedController.

The proposed navigation algorithm also includes
a point stabilization method that is a combination of
exact Euclidian distance transform (EEDT) [8] and

model predictive control (MPC) [14, 15]. Once the
user positions the mobile robot on the map and pro-
vides a target, EEDT algorithm generates waypoints
from the initial position to the target point. Then MPC
based point stabilization is applied on consecutive
waypoint pairs starting from the initial point to the
goal point. Initial and final orientation angles of the
mobile robot are requested from the user through an
external message box. The orientation angles at the
waypoints are calculated by averaging the gradients
of the line segments constructed by consecutive way-
points. MPC based algorithm utilizes the waypoints
and the corresponding orientation angles in order to
generate sub-trajectories. The sub-trajectories are then
combined to obtain the optimized path from the initial
position to target.

4 Simulation Results

In this section, simulation results based on the 3D
map of the 3rd floor of the Mechatronics Engineer-
ing Department of Kocaeli University and custom 3D
maps are presented. For the simulation result given in

Fig. 11 Simulation result
for dynamic global target-2
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Fig. 6, a certain number of random shaped unmapped
(dynamic) obstacles are placed on the map. The map
containing static and dynamic obstacles, simulated
mobile robot, static, traversed and predicted paths
between the start and the global target points are given
in the figure. The static path generated by the EDT
algorithm is depicted with the green trajectory. It is
possible for an optimal static path to cross over an
unmapped obstacle since unmapped obstacles are not
taken into account when computing the distance trans-
form. Sampling period of the simulation is set to 80
ms. Localization, LIDAR simulation, gap detection,
local target setting and monitoring processes are exe-
cuted within a single period. The map size is 600
pixels x 600 pixels with one pixel corresponding to a
5 cm x 5 cm area. Consequently, the map illustrates a
30 m x 30 m indoor area.

The virtual mobile robot has differential drive kine-
matic model. The size of the robot is 60 cm x 60 cm
with a front track width of 50 cm. Minimum, maxi-
mum, and cruise velocities are set to 0 cm /s, 100 cm
/s and 50 cm /s, respectively. Maximum LIDAR range
is simulated to be 10 m with 270 degrees angle of view
and 1 degrees of angular resolution. LIDAR is located
at (0, -2) cm coordinates with respect to mobile robot’s
origin (the center of the wheel-base). The simulation
stops when the robot reaches the destination with 30
cm tolerance. Process and measurement noise covari-
ances used in Kalman filtering are set to 15 cm/s and
30 cm, respectively. If an obstacle gets closer than 2 m
interfering with the robot’s planned path, an action is
taken to eliminate the possibility of a collision.

Figures 7 and 8 illustrate gap detection, local tar-
get setting and collision avoidance procedures under
two different scenarios. Both scenarios are illustrated
by giving immediate VRI screenshots and the cor-
responding LIDAR monitors. Figure 7 depicts the
virtual reality window and the LIDAR monitor for the
first scenario. In the gap detection scheme, gaps are
initially located by tracking the differences between
two consecutive LIDAR measurements that are bigger
than a certain threshold. Gaps numbered 1, 2, 4, 6, 7
and 8 are initially detected by the function FindOb-
stacleFreeGaps. After the post-processing step, gaps
1 and 2 are replaced by the 3rd gap since the mobile
robot cannot proceed to either gap without passing
through the 3rd gap. Similarly, the 4th and the 6th
gaps are replaced by the 5th gap. The optimal local
target determined by the function SetLocalTarget is

marked with a red cross on the LIDAR monitor. The
collision avoidance procedure detects a critical colli-
sion point marked with a red circle and then updates
the local target as the point illustrated with the green
circle. Figure 8 depicts the virtual reality window and
the LIDAR monitor for the second scenario. The gaps
detected by the gap detection scheme are numbered as
1 and 2. The optimal local target set by the dynamic
path planner is shown with a red cross on the 1st gap.

Fig. 12 Simulation result for dynamic global target with
unmapped obstacles
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Fig. 13 Simulation result
for a complex environment

The local target updated by the collision avoidance
module is depicted with a green circle.

Figure 9 illustrates the simulation result for a maze-
type environment. Following the optimal local target
point, the mobile robot initially enters dead-end rooms
in the maze since the simulated LIDAR sensor does
not sense the inside walls. When the walls inside the
rooms fall within the simulated LIDAR’s field of view,
the robot realizes that there is no exit. Consequently,
it turns back and follows an alternative path that leads
to the global target.

Figures 10–12 present the performance of the navi-
gation algorithm for non-stationary targets. Figure 10
illustrates that the mobile robot and the dynamic tar-
get start from different positions and the dynamic
target tracks a sinusoidal trajectory where the mobile
robot follows the target. The mobile robot catches the
dynamic target at the “catching point”. Similarly, as

seen in Fig. 11, the dynamic target starts its motion
through a circular trajectory in CW manner and the
mobile robot reaches the target at “catching point”.

Figure 12 highlights both dynamic target tracking
and obstacle avoidance procedures simultaneously.
The mobile robot does not only follow the moving tar-
get but also tracks sudden changes in its immediate
environment to avoid collision with unmapped obsta-
cles. The average velocities of the mobile robot and
the dynamic target are tuned to be close to each other.
Thus, catching the dynamic obstacle takes a certain
time.

Figure 13 illustrates the simulation result for a com-
plex environment. The map consists of several small-
sized unmapped obstacles. As depicted in the figure
the mobile robot successfully planned a collision-free
dynamic path, navigated through the obstacles and
eventually reached the global target.

Fig. 14 Point stabilization
in obstacle free environment
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Fig. 15 Point stabilization
in the presence of an
obstacle

Figure 14 shows the point stabilization results for an
obstacle free environment whereas Fig. 15 illustrates
a point stabilization example in the presence of an
obstacle. The maps depicted in both figures demon-
strate 15m x 15m sized workspace area.

The origins of both maps are the top right corners.
In Fig. 14, the target point is assigned to be (7.5m,
7.5m) with 0◦ heading angle. The figure demonstrates
that the simulated mobile robot finally settles at the
target point, starting from six different initial posi-
tions. The starting positions are located on a circle
centered on the target point with 7.5m radius.

The scenario given in Fig. 15 demonstrates point
stabilization procedure with a 90◦ initial and 0◦ tar-
get orientations. As clearly seen in the figure, the
mobile robot starts its motion from an arbitrary posi-
tion with the initial heading angle towards the given
target coordinates. The mobile robot makes a reverse
maneuvering motion on the trajectory to achieve the
0◦ final

heading orientation. A comparison between desired
position and actual position at the target point is given
in the message panel as seen in Fig. 15. The final posi-
tioning errors are 0.1 cm, 0 cm and 0.05◦ for the x
position, y position and orientation angle, respectively.

Simulation results prove the efficacy of the
static/dynamic path planning, navigation, gap detec-
tion, collision avoidance and point stabilization algo-
rithms utilized in the toolbox. Although the methods

provide satisfactory results, the users can choose to
replace any algorithm with a custom one and test its
performance. This allows users to effectively proto-
type algorithms.

5 Conclusion

A wheeled mobile robot simulator is presented in this
study that offers a 3D virtual reality interface. Unlike
the tools presented in the literature, the proposed sim-
ulator provides an all in one simulation environment.
An external installation is not required for 3D visu-
alization or code development. The toolbox incorpo-
rates static/dynamic path planning, point stabilization,
localization, navigation and collision avoidance algo-
rithms. Each of these algorithms is defined in a sepa-
rate function which caters flexibility. Researchers and
engineering students can use this toolbox to test and
verify custom navigation algorithms, kinematic mod-
els, and localization systems prior to physical imple-
mentation. The algorithms in the toolbox consider
the mobile robot kinematic and physical constraints
allowing for real-time implementation of prototyped
algorithms.
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